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Abstract: This paper presents a systematic approach to designing a dynamic metaheuristic fuzzy
logic controller (FLC) to control a piece of non-linear plant. The developed controller is a multiple-
input–multiple-output (MIMO) system. However, with the proposed control mechanism is possible
to adapt it to single-input–single-output (SISO) systems as well. During real-time operation, the
dynamic behavior of the proposed fuzzy controller is influenced by a metaheuristic particle swarm
optimization (PSO) mechanism. Nevertheless, to analyze the performance of the developed dynamic
metaheuristic FLC as a piece of non-linear plant, a 1 kW four-wheel independent-drive electric
rover is controlled under different road constraints. The test results show that the proposed dynamic
metaheuristic FLC maintains the wheel slip ratio of all four wheels to less than 0.35 and a top recorded
translational speed of 90 km/h is maintained for a fixed orientation.

Keywords: fuzzy logic (FL); particle swarm optimization (PSO); brushless sensored direct-current
motor control; four-wheel independent-drive

1. Introduction

Contemporary science, engineering and technology are based on mathematical mod-
els, which are derived through system-governing equations and algorithmic computer
programs [1,2]. Therefore, an appropriate mathematical model needs to be established
with respect to the physical parameters when analyzing or controlling the behavior of
a system. When modelling physical systems, if the information related to the system is
continuous then differential equations [3] need to be derived, and if not that means that if
the information is discrete then difference equations need to be derived. Moreover, when
the information related to the governing equation(s) is continuous and if more than one
dependent variable or parameter describes the system behavior, then partial differential
equations need to be established; in such cases, this information or the system parameters
that relate to measurable physical quantities are needed. To analyze or control a system
that is described by such mathematical equations, a mechanism or algorithmic approach is
needed to find an appropriate solution for such system-governing equations.

However, when the system behavior becomes non-linear, there will be problems
that cannot be solved using this approach. Therefore, non-linear system models need
to be considered and the non-linear equations need to be sophisticated. In practice, the
answers to such challenges may often be found despite the lack of an appropriate model
or an algorithmically acceptable model. This is because in such a mathematical model the
information is not precise, meaning it will have fuzziness.

Fuzzy logic is a mathematical theory that is based on fuzzification, defuzzification,
fuzzy inference and fuzzy-rule-based mechanisms. Therefore, fuzzy logic is capable of
dealing with imprecise information, where such problems have no ordinary mathematical
model or acceptable algorithmic solution [4]. Such problems are often encountered in
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automobile engineering or technology when controlling the wheel slip of each wheel
(independently), as an example of such a complex phenomenon.

The functioning of fuzzy logic, such as fuzzification, defuzzification, fuzzy inference
and fuzzy-rule-based mechanisms, is based on two main concepts, which are the fuzzy
set and fuzzy linguistic variables. These concepts could be illustrated by considering the
translational velocity (speed) of a vehicle. The vehicle speed is a measurable quantity;
however, in practice, it is often stated that the speed is slow, moderate or fast rather than
giving an exact speed amount in km/h or mph. With respect to fuzzy logic concepts, speed
is a linguistic variable that can be assigned different values for slow, moderate and fast. For
example, speeds between 40 and 70 km/h (≈ 25 to ≈ 40 mph) are considered moderate,
while speeds lower than 40 km/h are slow and higher than 70 km/h are fast. In accordance
with the ordinary mathematical approach, it is possible to say that there are three groups
(sets) of speed values, namely a set of slow values (all values below 40 km/h), a set of
moderate values (all values between 40 to 70 km/h) and a set of fast values (all values
above 70 km/h). Thus, a speed of 39.9 km/h would be slow but 40.1 km/h would be
moderate. Such sets have rigid (sharp) boundaries. However, boundaries, in reality, are not
rigid. For example, a moderate speed for one person may be excessively slow for another.
This gives rise to the idea of a fuzzy set, which is defined by a membership function that can
have any value between (and including) 0 and 1. In such cases, this membership function
corresponds to a membership value for every speed value. This membership value is also
known as the grade of membership or the degree of membership. Moreover, there may be
situations that occur where the membership functions will overlap with neighboring fuzzy
sets. Therefore, the values of the crisp variable speed may contain a value belonging to all
merged fuzzy sets. However, all of the defined membership functions (fuzzy sets) create a
quantitative relationship between the linguistic variables and conventional quantifiable
quantity. In a SISO/MIMO fuzzy system, with respect to input–output fuzzy linguistic
variables, if appropriate fuzzy rules are defined, such a fuzzy controller could be used to
control physical plants. In such a fuzzy logic controller (FLC), at the input side the ordinary
or conventional variables represent the physical parameters (such as the speed). The first
phase, termed fuzzification, evaluates all membership functions and finds membership
values or membership grades that correlate with the values of the input variables. Sub-
sequently, “if” and “then” operations are executed in the second phase (also known as
fuzzy inference). The outcomes of these processes define the form or the shape of the fuzzy
set membership function applied to the output linguistic variable. In the final phase, the
membership function of the output fuzzy set is used to discover the most appropriate crisp
value of the output variable, which is known as defuzzification.

To control a plant related to a physical phenomenon via fuzzy logic, one has to define
the input–output variables, fuzzy sets or fuzzy membership functions and fuzzy rules.
Generally, these types of fuzzy logic systems (FLS) are known as type-1 FLS/FLCs. Table 1
shows the current state of this research field, with key publications showing evidence of
the sophisticated development of fuzzy input–output membership functions (shown in
the 4th and 5th columns), and especially the fuzzy inference mechanism (FIM) due to the
sophisticated physical phenomena. Moreover, in some situations, the definitions of the
fuzzy sets and fuzzy rules are not obvious. Table 1 shows that for an FLC to become more
realistic, hundreds of fuzzy rules have to be implemented (as shown in the 6th column) in
the FIM. Even in such a system, the defined input–output fuzzy sets will remain as they
are. Therefore, developing such a controller becomes more tedious and time-consuming
when the system becomes non-linear (uncertain). A previous study [5] showed that even
after developing such a complicated FIM, tuning the fuzzy rules is also a crucial issue.
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Table 1. A general summary of the current state of the research area that shows the sophisticated
development of fuzzy input–output membership functions (shown in the 4th and 5th columns),
especially when developing the FIM (the 6th column shows evidence of the development of a large
number of fuzzy rules) to compensate for sophisticated physical phenomena.
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[6] 2021
An Agent-Based Model-Driven Decision Support System for Assessment of

Agricultural Vulnerability of Sugarcane Facing Climatic Change: Crop yield model
(Scopus-Indexed)

8 5 768

[7] 2021 New FMEA Risks Ranking Approach Utilizing Four Fuzzy Logic Systems
(Scopus-Indexed) 4 1 625

[8] 2021
Symptom Analysis Using Fuzzy Logic for Detection and Monitoring of COVID-19

Patients
(Scopus-Indexed)

6 1 512

[9] 2021
A Fuzzy Logic-Based Cost Modelling System for Recycling Carbon Fibre Reinforced

Composites
(Scopus-Indexed)

5 1 243

[10] 2021
Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction

Motor for Standalone Photovoltaic Water Pumping System
(Scopus-Indexed)

3 1 180

[11] 2021
SAFEA application design on determining the optimal order quantity of chicken

eggs based on fuzzy logic
(Scopus-Indexed)

3 1 144

[12] 2021
A fuzzy logic-based approach for evaluating forest ecosystem service provision and

biodiversity applied to a case study landscape in Southern Germany
(Scopus-Indexed)

5 5 125

[13] 2021
A Fuzzy Logic Model for Early Warning of Algal Blooms in a

Tidal-Influenced River
(Scopus-Indexed)

3 1 125

[14] 2021
Fuzzy Logic in Aircraft Onboard Systems Reliability Evaluation:

A New Approach
(Scopus-Indexed)

3 1 125

[6] 2021

An Agent-Based Model-Driven Decision Support System for Assessment of
Agricultural Vulnerability of Sugarcane Facing Climatic Change:

Crop vulnerability model
(Scopus-Indexed)

5 3 120

[15] 2021
Inverter current control for reactive power compensation in solar grid system using

Self-Tune Fuzzy Logic Controller
(Scopus-Indexed)

2 1 91

[16] 2021
A Fuzzy Logic Model for the Analysis of Ultrasonic Vibration Assisted Turning and

Conventional Turning of Ti-Based Alloy
(Scopus-Indexed)

4 4 81

[17] 2021
Fuzzy Logic Based Synchronization Method for Solar Powered

High Frequency On-Board Grid
(Scopus-Indexed)

2 1 81

[6] 2021

An Agent-Based Model-Driven Decision Support System for Assessment of
Agricultural Vulnerability of Sugarcane Facing Climatic Change:

Uncertain parameters model
(Scopus-Indexed)

5 3 72
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[6] 2021

An Agent-Based Model-Driven Decision Support System for Assessment of
Agricultural Vulnerability of Sugarcane Facing Climatic Change:

Non-nutritional disorders model
(Scopus-Indexed)

5 3 72

[18] 2021
Prediction of gas velocity in two-phase flow using developed fuzzy logic system

with differential evolution algorithm
(Scopus-Indexed)

3 1 64

[19] 2021 Comprehensive Knowledge-Driven AI System for Air Classification Process
(Scopus-Indexed) 5 3 55

[20] 2021
Overall fuzzy logic control strategy of direct driven PMSG wind turbine connected

to grid
(Scopus-Indexed)

2 1 49

[21] 2021 Optimal Geno-Fuzzy Lateral Control of Powered Parachute Flying Vehicles
(Scopus-Indexed) 2 1 49

[22] 2021
Fuzzy Mathematics-Based Outer-Loop Control Method for Converter-Connected

Distributed Generation and Storage Devices in Micro-Grids
(Scopus-Indexed)

2 1 49

[23] 2021
A Novel Fuzzy PI Control Method for Variable Frequency Brushless Synchronous

Generators
(Scopus-Indexed)

2 1 49

[24] 2021
A Fuzzy Multi-Criteria Model for Municipal Waste Treatment Systems Evaluation

including Energy Recovery: Workstation evaluation
(Scopus-Indexed)

2 1 49

[24] 2021
A Fuzzy Multi-Criteria Model for Municipal Waste Treatment Systems Evaluation

including Energy Recovery: Treatment system evaluation
(Scopus-Indexed)

4 1 49

[25] 2021
A Temperature Control Method for Micro-accelerometer Chips Based on Genetic

Algorithm and Fuzzy PID Control
(Scopus-Indexed)

2 1 49

[26] 2022
Induction Motor DTC Performance Improvement by Inserting Fuzzy Logic

Controllers and Twelve-Sector Neural Network Switching Table
(Scopus-Indexed)

7 7 49

[27] 2022
Fuzzy Hysteresis Current Controller for Power Quality Enhancement in Renewable

Energy Integrated Clusters
(Scopus-Indexed)

7 7 49

[28] 2021 Fuzzy Logic-Based Controller for Bipedal Robot
(Scopus-Indexed) 2 1 30

[29] 2021

A Swarm Intelligence Graph-Based Pathfinding Algorithm Based on Fuzzy Logic
(SIGPAF): A Case Study on Unmanned Surface Vehicle

Multi-Objective Path Planning
(Scopus-Indexed)

3 1 27

[30] 2021

Fuzzy Logic and Modified Butterfly Optimization with Efficient Fault Detection and
Recovery Mechanisms for Secured Fault-Tolerant Routing in

Wireless Sensor Networks
(Scopus-Indexed)

3 1 27
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[31] 2021
Optimal Routing Protocol for Wireless Sensor Network Using

Genetic Fuzzy Logic System
(Scopus-Indexed)

3 1 27

[32] 2021
GPS Data Correction Based on Fuzzy Logic for Tracking Land Vehicles:

Fuzzy system 1
(Scopus-Indexed)

2 1 25

[33] 2021
Lifting and stabilizing of two-wheeled wheelchair system using interval type-2

fuzzy logic control based spiral dynamic algorithm
(Scopus-Indexed)

2 1 25

[34] 2021 Optimization of Fuzzy Logic Based Virtual Pilot for Wargaming
(Scopus-Indexed) 2 1 25

[35] 2021 LQR and Fuzzy Logic Control for the Three-Area Power System
(Scopus-Indexed) 5 5 25

[36] 2021
Smart Homes as Enablers for Depression Pre-Diagnosis Using PHQ-9 on HMI

through Fuzzy Logic Decision System
(Scopus-Indexed)

2 1 20

[37] 2021 Pineapple maturity classifier using image processing and fuzzy logic
(Scopus-Indexed) 3 1 18

[38] 2021
Algorithm for Preventing the Spread of COVID-19 in Airports and Air Routes by

Applying Fuzzy Logic and a Markov Chain
(Scopus-Indexed)

4 1 14

[39] 2021
Artificial Intelligence Search Strategies for Autonomous Underwater Vehicles

Applied for Submarine Groundwater Discharge Site Investigation
(Scopus-Indexed)

3 2 13

[40] 2021
Intelligent Fault Detection and Identification Approach for Analog Electronic

Circuits Based on Fuzzy Logic Classifier
(Scopus-Indexed)

3 1 12

[32] 2021
GPS Data Correction Based on Fuzzy Logic for Tracking Land Vehicles: Fuzzy

system 2
(Scopus-Indexed)

2 1 9

[41] 2021
Optimum Design of a Composite Optical Receiver by Taguchi and Fuzzy Logic

Methods
(Scopus-Indexed)

3 1 9

[42] 2022
SOC Balancing and Coordinated Control Based on Adaptive Droop Coefficient

Algorithm for Energy Storage Units in DC Microgrid
(Scopus-Indexed)

3 3 9

[43] 2021 Fuzzy Logic in Selection of Maritime Search and Rescue Units
(Scopus-Indexed) 2 1 6

However, the level of uncertainty in a system can be minimized by employing interval
type-2 fuzzy logic, which has stronger capabilities to handle uncertainties by modelling
the vagueness and unpredictability of information [44–47]. This is because the growth of
type-2 FLS uncertainty can be directly integrated into fuzzy sets, as described in Section 6.
Furthermore, in the last three years of studies on higher-order types of FLS in particular,
the designed and developed applications of interval type-2 fuzzy logic have increased
significantly [48–54]. These type-2-based FLS applications have been identified in artificial
intelligence (AI) [55–59], adaptive control [60–66], electric motor control [67–72], Internet
of Things (IoT) [73–77], digital image processing [78–84] and other areas [85–87]. Of
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course, the application of interval type-2 fuzzy logic in the domain of control has recently
attracted a lot of attention due to its better performance under uncertain conditions. The
fundamental issue, however, is the complexity of designing and constructing interval type-2
fuzzy controllers, which contain more parameters than their type-1 counterparts; therefore,
this causes greater computational complexity and overhead issues [88–99]. Therefore,
several efforts were made to reduce the complexity of generalized interval type-2 fuzzy
logic systems; for example, Samui and Samarjit [100] published a neural network (NN)-
based tuning mechanism and Cagri and Tufan [101] developed a differential flatness-based
controller, which both enable computation with generalized type-2 FLS (GT2FLS). However,
no general design strategy for finding an optimal type-2 fuzzy model has been proposed
yet [102].

The main contribution of this paper is the design and development of a robust FLC
that enables researchers to rapidly develop more realistic fuzzy controllers. Therefore,
to overcome the problems and drawbacks from the abovementioned review of previous
studies, the main advantages of this study are as follows:

1. We evaluated how the type-2 FLS are more capable of performing under uncertain
conditions and designed and developed a mechanism to integrate them into the
proposed type-1 FLC;

2. We designed and developed an adaptive metaheuristic FIM for type-1 FLS to overcome
the problems that are currently faced when developing realistic fuzzy rules (as shown
in Table 1, column 6);

3. We designed and developed a fuzzification and de-fuzzification mechanism while
integrating the features that were abstracted from the type-2 FLS into type-1 FLS;

4. A real-time dynamic metaheuristic algorithm to automatically optimize all of the
abovementioned processes related to dynamic fuzzification, de-fuzzification and
fuzzy reasoning was designed and developed;

5. To examine the performance of the proposed controller as a complex physical phe-
nomenon, a four-wheeled independent-drive electric rover was designed and devel-
oped to regulate the wheel slip (under high-speed conditions on slippery roads).

2. Overall System Design

Figure 1 shows the proposed dynamic metaheuristic FLC implemented with closed-
loop control strategies and the master–slave [103] control mechanism. Controller A rep-
resents the proposed dynamic metaheuristic FLC. The proposed dynamic metaheuristic
FLC is a combination of four identical controllers (the Takagi–Sugeno–Kang particle swarm
optimization fuzzy logic controller (TSK-PSO-FLC)), which are separately dedicated to
each wheel while synchronizing together in order to regulate the wheel slip. A previous
study [104] showed that the designed and developed differential fuzzy logic controller
(D-FLC (controller C)) was needed to generate the four excitation signals (desired wheel
speeds) for each TSK-PSO-FLC, as per the desired throttle amount and the steering angle.
Moreover, when the rover travels under high-speed conditions on slippery roads, the
change and rate of change of the desired orientation are rectified via the steering fuzzy logic
controller (S-FLC (controller B)) by continuously monitoring the actual orientation of the
rover through the feedback path. Therefore, Figure 1 shows that with respect to the desired
steering angle and the actual yaw angle (orientation) of the rover, the S-FLC generates the
corrected steering angle and feeds this into the D-FLC. The S-FLC (controller B) and the
D-FLC (controller C) had to be developed due to the nature of the application (electric rover).
The modelling of the system dynamics of the rover has been discussed in [104]. However,
this paper focuses on the design and development of a dynamic metaheuristic FLC for
other research scientists to absorb into their developments.
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3. Implementation of the Dynamic Metaheuristic Fuzzy Logic Controller
(TSK-PSO-FLC)

Figure 2 illustrates that the proposed dynamic metaheuristic FLC is implemented
in three phases. In phase one, the static Mamdani FLC was developed in a laboratory
experimental setup [105] to identify the optimum fuzzy inference engine to compensate for
the error and rate of change of the error (motor angular velocity).
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4. Implementation of the Static Fuzzy Logic Controller (Static FLC)

However, due to the non-linearity behavior of the rover (non-linear wheel slip), a
dynamic particle swarm optimization (PSO) mechanism was integrated into the developed
static fuzzy controller in phase two (discussed in Section 1). Moreover, in phase three, the
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controller had to become more realistic, so a Takagi–Sugeno–Kang (TSK) fuzzy controller
was developed to dynamically optimize the parameters of the PSO mechanism. The
subsequential Sections 4–6 discuss the development of the static fuzzy controller, the
dynamic PSO mechanism and the integrated dynamic PSO mechanism into the developed
Mamdani dynamic FLC.

4.1. Fuzzification Process of the Static Fuzzy Logic Controller

Figure 3 shows the experimental setup created to test the performance of the proposed
static FLC. The proposed static FLC calculates the error Ek and the rate of change of the
error dEk for every discrete sample instant k [105]. Here, Ek and dEk were computed by the
static FLC according to (1) and (2):

Ek = (Rk −Yk) (1)

dEk = Ek − E(k−1) (2)

where Rk is the desired input trajectory or the reference signal that is proportional to the
desired velocity and Yk is the actual output (actual angular velocity of the motor). These Ek
and dEk crisp values are mapped into the non-singleton fuzzy sets through the fuzzification
process. The singleton fuzzy sets are not suitable due to the non-linearity behavior of the DC
motor, because of a lack of information about the surroundings. When taking into account
a non-singleton fuzzy set, this can be expressed as an elliptic function ℘, which means the
linguistic variable belonging to that fuzzy set is periodic in two directions (according to Ek
and dEk, the linguistic variables can be used to obtain values, either positive or negative).
In this case, it contains information about the surroundings (the Ek and dEk crisp values
are affected by uncertainty) and is capable of handling non-linear situations compared to
singleton fuzzy sets. This non-singleton fuzzifier for the fuzzy set error E can be expressed
as (3):

nsg : E→ ℘ 3 ∀e ∈ E→ µe(·) = nsg[e] : µe(e) = 1∧ Support[µe(·)] ⊃ {e} (3)

where nsg is the non-singleton set, ∀e is the logical operator with a predicate variable e
that belongs to the fuzzy set error, E→ is the implication (the if and then condition) and
Support[µe(·)] ⊃ {e} is the degree of truth that the implication relation belongs to “e”.
Here, e is an element of E. When discrete sampling instants are taken, then (3) can be
expressed as for every sampling instant “k” as (4):

nsg : Ek → ℘ 3 ∀ek ∈ Ek → µek (·) = nsg[ek] : µek (ek) = 1∧ Support
[
µek (·)

]
⊃ {ek} (4)

Figure 4 shows that the non-singleton fuzzy sets of the static FLC utilize seven lin-
guistic variables. These variables can be expressed as “NB”, “NM”, “NS”, “ZE”, “PS”,
“PM” and “PB”, which mean “Negative Big”, “Negative Medium”, “Negative Small”, “Zero”,
“Positive Small”, “Positive Medium” and “Positive Big”, respectively.
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4.2. Implementation of the Fuzzy Inference Mechanism of the Static Fuzzy Logic Controller

The proposed static FLC is mainly based on the Mamdani fuzzy approach. Through
the fuzzification process, Ek and dEk are fuzzified, and all aforementioned fuzzy sets are
passed through the FIM. During this process of designing and developing the fuzzy rule
base of the system, the input fuzzy sets belonging to Ek and dEk are mapped into a different
fuzzy set Uk (output fuzzy set (angular speed of the motor) with seven linguistic variables).
This fuzzy relation is based on the MAX-MIN composition.

In the fuzzy domain, the linguistic variables are E, dE and U, with the linguistic values
as shown in Figure 4, then the fuzzy sets can be represented as shown in (5)–(7):

E =

{
µE(NB)

NB
,

µE(NM)

NM
,

µE(NS)
NS

,
µE(ZE)

ZE
,

µE(PS)
PS

,
µE(PM)

PM
,

µE(PB)
PB

}
(5)

dE =

{
µdE(NB)

NB
,

µdE(NM)

NM
,

µdE(NS)
NS

,
µdE(ZE)

ZE
,

µdE(PS)
PS

,
µdE(PM)

PM
,

µdE(PB)
PB

}
(6)

U =

{
µU(NB)

NB
,

µU(NM)

NM
,

µU(NS)
NS

,
µU(ZE)

ZE
,

µU(PS)
PS

,
µU(PM)

PM
,

µU(PB)
PB

}
(7)

This fuzzy set mapping process is mainly based on the fuzzy-rule-based matrix, and
the fuzzy rule base is based on fuzzy propositions (fuzzy statements), which are assigned
to the fuzzy sets Ek, dEk and Uk. If a fuzzy proposition P̃ is allocated to a fuzzy set, Ã, then
the truth value T

(
P̃
)

of this proposition can be expressed as (8):
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T
(

P̃
)
= µÃ(x) (8)

where 0 ≤ µ ≤ 1.
Therefore, the degree of truth for the proposition P̃ is that P̃ : x ∈ Ã is equal to the mem-

bership value of x in the fuzzy set Ã. In FLS, the fuzzy sets in the consequent and antecedent
dimensions can make connections with the logical connectives (9), (10), (11) and (12). These
connectives are shown by taking into account two propositions P̃ and Q̃, which are allocated
to the fuzzy sets Ã and B̃, respectively.

Negation (absence):
T
(

P̃
)
= 1− T

(
P̃
)

(9)

Disjunction (lack of correspondence): P̃ ∨ Q̃ : x is Ã or B̃, then:

T
(

P̃ ∨ Q̃
)
= max

(
T
(

P̃
)

, T
(

Q̃
))

(10)

Conjunction: P̃ ∧ Q̃ : x is Ã and B̃, then:

T
(

P̃ ∧ Q̃
)
= min

(
T
(

P̃
)

, T
(

Q̃
))

(11)

Figure 2 shows the rule-based matrix of the developed static FLC based on “if” and
“then” statements. This means if the fuzzy proposition P̃ implies the fuzzy proposition Q̃,
then the fuzzy implication can be expressed as (12).

Implication: P̃→ Q̃ : x is Ã, then x is B̃, then:

T
(

P̃→ Q̃
)
= T

(
P̃ ∀ Q̃

)
= max

(
T
(

P̃
)

, T
(

Q̃
))

(12)

Then, as in (12), this binary logic implication of the P̃ and Q̃ fuzzy sets can be expressed
as: P̃→ Q̃ is IF x Ã, THEN y is B̃; then, this is equivalent to the fuzzy relation R̃, where

R̃ =
((

Ã× B̃
)
∪
(

Ã×Y
))

.

Then, the membership function of the fuzzy relation R̃ can be expressed as in (13).

µR̃(x, y) = max
[(

µÃ(x)
)
∧ µB̃(y),

(
1− µÃ(x)

)]
(13)

In Mamdani-type FLCs, this implication (fuzzy sets connective) can be easily ex-
pressed in the fuzzy rule base with the “if” and “then” statement form. The MAX-MIN
composition [106] was utilized as the fuzzy relation for this developed static FLC, as men-
tioned above. If R̃ is a binary fuzzy relation on U ×V and S̃ is a binary fuzzy relation on
V ×W, then the MAX-MIN composition of R̃ and S̃ is a binary fuzzy relation on U ×W
denoted by

(
S̃ o R̃

)
and which is given by (14):(

S̃oR̃
)
(u, w) = max

[
min

{
R̃(u, v)S̃(v, w)

}]
(14)

For example, the fuzzy relations R̃ on U × V and S̃ on V ×W, where U = {a, b, c},
V = {x, y, z} and W = {&, ∗}, are given in the matrix format by:

1.0 0.4 0.5
and

0.7 0.1
R̃ = 0.3 0.0 0.7 S̃ = 0.2 0.9

0.6 0.8 0.2 0.8 0.4

Considering the elements of U, V and W, then:
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V W
x y z & ∗

R̃ = a 1.0 0.4 0.5 S̃ = x 0.7 0.1
U b 0.3 0.0 0.7 V y 0.2 0.9

c 0.6 0.8 0.2 z 0.8 0.4

Then, the fuzzy relation
(

S̃oR̃
)

can be expressed as (14). If we consider the relation
for the elements (a, &) then the fuzzy relation U ×W for (a, &) can be expressed as (15):(

S̃oR̃
)
(a, &) = max

[
min

{
R̃(a, v), S̃(v, &)

}]
(15)

For every v in V, then:

= max
[
min

{
R̃(a, x), S̃(x, &)

}
, min

{
R̃(a, y), S̃(y, &)

}
, min

{
R̃(a, z), S̃(z, &)

}]
= max[min(1, 0.7), min(0.4, 0.2), min(0.5, 0.8)]
= max[0.7, 0.2, 0.5]
= 0.7

According to (15), for the developed static FLC in the inference mechanism, 49 fuzzy
relations are utilized. These fuzzy rules are developed based on the experimental test as
shown in Figure 3. These “if” and “then” statements are based on fuzzy rules, and the
relations can be expressed as follows:

IF the (Ek is NB AND dEk is NB) THEN the Uk is PB
All of these developed fuzzy rules, according to the behavior of the DC servomotor,

in real-time operation can be formed into a fuzzy-rule-based matrix (7 × 7), as shown
in Table 2. The effectiveness of each fuzzy relation or the fuzzy rule depends on the
membership grade or the linguistic value of each linguistic variable in each fuzzy set, as
mentioned in (5)–(7).

Table 2. Fuzzy relations of the developed static FLC [105].

Error (Ek)
NB NM NS ZE PS PM PB

R
at

e
of

C
ha

ng
e

of
Er

ro
r

(d
E k

)

NB PB PB PB PS PS PS ZE

NM PB PM PM PS PS ZE NS
NS PB PM PS ZE ZE NS NS
ZE PM PS ZE ZE ZE NS NS
PS PM PS ZE ZE NS NS NM
PM PS PS NS NS NS NS NM
PB ZE NS NS NM NB NB NB

After the fuzzy relation takes place in the static FLC, it still belongs to a fuzzy set
(“speed” (Uk) fuzzy set), because during the fuzzification process it will only map the
non-linear relation into another non-linear form. According to these fuzzy relations (MAX-
MIN composition), to feed the fuzzy decision into the motor drive through a pulse width
modulation (PWM) signal, it needs to be converted into a crisp output value. For this
purpose, the de-fuzzification process was carried out.

4.3. De-Fuzzification Process of the Static Fuzzy Logic Controller

The final goal of this static FLC is to control the brushless direct current (BLDC)
motor more precisely and in a stable way to obtain the optimum performance. This task
is very sophisticated due to the non-linearity behavior of the wheel slip. However, the
fuzzy reasoning mechanism is based on human reasoning. Moreover, in the real world,
when developing AI controllers, all of these microprocessors and the embedded systems
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are discrete devices that are unable to manipulate fuzzy outputs. Therefore, this fuzzy
output needs to be converted into a crisp output that is related to the fuzzy domain. A
de-fuzzification mechanism was utilized in this developed static FLC to convert the fuzzy
quantity to a precise quantity. The output of this developed static FLC was the logical union
of the seven membership functions designed and developed in the universe of discourse
of the output variable speed (Uk). In this case, the union of these seven memberships
functions involved with the MAX operator, as described in Section 4.2, could be expressed
as (16):

Ũk =
7
∪

j=1

(
Ũj,k

)
(16)

where k is the sample instant and j ∈ Z+ and 1 ≤ j ≤ 7.
According to (16), after computing the logical sum to obtain an average output crisp

value, the centroid method or the center of gravity method was used as in (17):

CoA =

Xmax∫
Xmin

U(x)xdx

Xmax∫
Xmin

U(x)dx
(17)

where U(x) denotes each membership function of the output fuzzy set (angular speed of
the DC motor), x denotes the value of the linguistic variable, and Xmin and Xmax represent
the minimum and maximum ranges of linguistic variables. However, Figure 1 shows that
to minimize the rover travel distance (the rover reaction distance for an updated signal
received from the controller), the proposed control mechanism should have the capability
to respond to a higher frequency for setpoint trajectories. Therefore, Figure 2 shows that to
overcome the drawbacks [105] of the developed static FLC, a metaheuristic dynamic FLC
is integrated with the static FLC.

5. Dynamic Particle Swarm Optimization (PSO) Mechanism

When developing the proposed dynamic metaheuristic FLC for the four-wheeled
independent-drive electric rover, mainly 12 non-linear parameters were taken into con-
sideration. These parameters include the throttle level, steering angle, three orthogonal
acceleration directions (the longitudinal direction, lateral direction, and radial direction)
and three orthogonal angles (such as around the yaw axis, pitch axis and the roll axis).
Figure 1 shows that the developed D-FLC [104] took into consideration the behavior of
all of these parameters and generated the desired angular velocity and torque required
by the proposed dynamic metaheuristic FLC. However, due to the non-linear variations
(uncertainties) of the actual angular velocity and torque (because of the non-linear wheel
slip), sharp rising and falling edges of the desired input trajectory took place. Therefore,
the proposed dynamic metaheuristic FLC should have the ability to quickly generate an
optimum solution to enhance the stability. Table 1 shows that under the column “number of
fuzzy rules”, for the FLCs to become more realistic, the research scientists have to strengthen
the FIM by creating hundreds of fuzzy rules. Therefore, instead of developing such a
sophisticated FIM to overcome these issues, the proposed dynamic metaheuristic FLC is
capable of dynamically optimizing the fuzzy reasoning process. Moreover, in addition
to optimizing the fuzzy reasoning process, the proposed metaheuristic FLC is capable of
dynamically optimizing the fuzzification and de-fuzzification processes as well.

Implementation of the Dynamic PSO Mechanism

In this proposed PSO-based optimization mechanism, the main goal is to identify
and generate a global minimizer for the objective function (based on Ek and dEk). Many
of the optimization mechanisms fulfil this requirement through deterministic methods
and probabilistic methods. Deterministic-method-based optimization mechanisms use
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heuristic approaches (learning by themselves) by taking into consideration the Ek and dEk
(the error and rate of change of the error). Therefore, the optimization process is controlled
through the objective function threshold level, and this objective function is a function
of the parameters Ek and dEk. Mostly, the deterministic optimization mechanisms apply
penalties to the generated output.

The PSO mechanism is a progressive computation technique based on swarm intelli-
gence that gives a potential solution among the population members in the hyperspace.
The optimized solutions are represented by adaptable position change (velocity) particles.
The position of each particle in the hyperspace (search space) can be represented by n-
dimensional axes. Figure 2 shows that these coordinate positions are assigned to dynamically
tune the fuzzification process, de-fuzzification process and the FIM. These optimum pa-
rameters are the final solution of the PSO controller, which is generated while taking into
consideration the personal best PBest of each particle (feasible solutions) until reaching the
global best GBest or the social best solution in the search space. These parameters need to
be quickly re-optimized because of the dynamic behavior of the wheel slip.

Figure 5 shows the updated positions of the particles that are determined by taking into
consideration the updated velocity. When considering the original PSO mechanism [107],
in hyperspace if the position of the particle “i” is denoted by xi(t) at a discrete time t then
the updated position xi(t + 1) and the updated velocity vi(t + 1) are determined according
to (18), (19) and [107]:

xi(t + 1) = xi(t) + vi(t + 1) (18)

vi(t + 1) = ωv1(t) + r1a1(PiBest(t)− xi(t)) + r2a2(GBest(t)− xi(t)) (19)

where ω is the inertia weight; vi(t) the velocity at a time step t; r1, r2 are the randomly
generated and uniformly distributed numbers (0 ≤ r1 ≤ 1 and 0 ≤ r2 ≤ 1), respectively; a1,
a2 are the acceleration coefficients; PiBest is the personal best; and GBest is the global best.
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In (18) and (19), the heuristic parameters critically affect the optimization mechanism.
The inertia weight ω critically affects the convergence behavior of the PSO mechanism.
This fast convergence behavior occurs in the PSO mechanism because the inertia weight ω
highly influences the exploration process of the PSO mechanism. This takes place due to
the inertia weight creating an impact on the current velocity based on the previous velocity
of each particle. Therefore, a large ω value toward the particles moves over the hyperspace
rapidly, and the smaller ω value towards particles moves around its neighborhood particles.
In this case, the large ω values allow global exploration, and smaller ω values create a
tendency for exploitation or local exploration (a fine-tuning process).

Equation (19) shows that in the original PSO mechanism [107], the properly tuned
values of parameters a1 and a2 allow for rapid convergence. The extended practical
experiments show that this rapid convergence occurs with a large value of the cognitive
parameter a1 and with a large value of the social parameter a2 when a1 + a2 ≤ 4. [108].
The values r1 and r2 control the diversity of the optimal solutions, and originally they are
uniformly distributed between the range of 0 and 1.
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However, it has been noticed that during the programme execution process, once
the best particle in the global range traps in a local minimum, all particles follow that
particle and are trapped in the same local minimum. In such cases, once they are trapped
in the local minima, to overcome this issue the parameter values in (19) are switched via a
separately dedicated Takagi–Sugeno–Kang (TSK) FLC. The design and development of the
TSK-FLC have been discussed in detail in Section 7. Finally, this mechanism enables the
particles to find a completely new solution set for the next generation.

Figures 1 and 2 show that the proposed metaheuristic FLC (TSK-PSO-FLC) has been
designed and developed according to the closed-loop control strategies. Therefore, the
proposed metaheuristic FLC is a dynamic controller that mimics the error E and the rate
of change of the error dE and rapidly optimizes its own parameters for every sampling
instant “k”.

Therefore, this proposed Mamdani-approach-based metaheuristic FLC controller con-
sists of a dynamic fuzzy model and a predefined static fuzzy model (with predefined
fuzzy sets and fuzzy inference), as described in Section 3. The static fuzzy model consists
of twenty-one (21) linguistic variables (shown in Figure 4, seven (7) linguistic variables for
each fuzzy set E, dE and U), twenty-one (21) membership functions (seven (7) memberships
functions for each fuzzy set E, dE and U) and forty-nine (49 (=72)) fuzzy rule base functions.

6. Implementation of the Dynamic Fuzzy Logic Controller (Dynamic FLC)

In addition to this static fuzzy model, the dynamic behavior for this metaheuristic FLC
is given through the dynamic PSO mechanism, whereby the PSO parameters are optimized
dynamically via the predefined TSK-FLC. Figure 2 illustrates that all three main controllers
are combined and synchronized together to act on the same sample instant “k”.

Due to the non-linear parameter variations (uncertainties) of the electric rover, the
proposed metaheuristic FLC should have the ability to quickly optimize the fuzzification
process, de-fuzzification process and fuzzy reasoning process.

6.1. Dynamic Fuzzification Process for the Fuzzy Antecedent and Consequent Dimensions with the
Dynamic PSO Mechanism

Figure 6 shows that when designing and developing the fuzzy antecedent and con-
sequent dimensions for the proposed metaheuristic FLC, interval-valued fuzzy sets were
taken into consideration. In these types of fuzzy sets, for any given input x, the membership
in this fuzzy set Ã can be expressed as µA(x) for the membership interval from λ1 to λ2.
To obtain more robust behavior for these types of fuzzy sets, the fuzzy intervals become
fuzzy. These types of fuzzy functions can be represented by the “n” number of ordinary
fuzzy sets. Therefore, these are called interval-valued fuzzy sets or type-2 fuzzy sets. These
fuzzy sets can be expressed as (20):

Ã : X → ε([0, 1]) (20)

In this fuzzy set Ã, ε([0, 1]) includes all of the closed intervals of real numbers in [0,1].
Therefore, this can be represented as (21):

ε([0, 1]) ⊂ < (21)

In this case, Figure 6 shows that for each value of x, in Ã(x) the membership grade
is given by the shaded area enclosed by the membership curves f1 and f2 When x = a,
f1 → λ1 and f2 → λ2 . Therefore, λ1 and λ2 are the upper bound limit and the lower

bound limit for Ã(a) when x = a. In fuzzy-logic-based systems, the accuracy is critically
dependent on the capabilities of designing and constructing the appropriate membership
functions. However, reasonable values between the upper bound and the lower bound
limits are selected. That means that the uncertainty behavior is not taken into consideration.
In practice, this causes more speed fluctuations, due to the rapid changes that take place
in the desired input trajectory. As per the observed data, interval-valued fuzzy linguistic
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variables are more capable of capturing the uncertainty behavior of Ek and dEk. This is a
more accurate process compared to using crisp variables. However, the disadvantage of
these interval-valued membership functions compared to the ordinary fuzzy sets is that
they are computationally more demanding and sophisticated.
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Practically, programming libraries and toolboxes are not available. This is because
most modern day-to-day fuzzy-logic-based applications are not very sensitive to minor
changes in the predefined fuzzy membership functions. However, the developed electric
rover should respond to minor changes in the controlled parameters affecting the power
optimization and stability of the rover.

Figure 6 shows that this interval-valued fuzzy set could be represented by two ordinary
symmetric static Gaussian curve membership functions. In that case, the boundary limit
functions of this interval-valued fuzzy membership function could be expressed as in
(22) and (23):

f1(x; σ1; c1) = exp

(
−1

2

(
x− c1

σ1

)2
)

(22)

f2(x; σ2; c2) = exp

(
−1

2

(
x− c2

σ2

)2
)

(23)

In this curve, where x represents the error Ek and the change of the error dEk for
any current situation, σ1 and σ2 represent the spread or width of the curves according
to the maximum r.p.m. of the motor in the clockwise and counter-clockwise directions
(−5000 r.p.m. to 5000 r.p.m.). Here, c1 and c2 represent the position of the center of each
membership curve during the fuzzification process.

According to (22) and (23), and as shown in Figure 6, the positions of the center c and
the spread or the width σ of each the boundary curves f1 and f2 are fixed values. However,
according to the non-linear behavior of this electric rover, the fuzzy membership functions
should be more robust. Therefore, these interval-valued membership functions limit the
optimum fuzzification process and the optimum fuzzy reasoning process because of the
fixed boundaries.

To overcome these drawbacks while maintaining the properties of the interval-valued
membership functions, a dynamic fuzzification process was designed and developed. The
dynamic behavior and the robust performance are given to the Mamdani-based dynamic
FLC during the fuzzification, defuzzification and fuzzy reasoning processes through a
dynamically optimized metaheuristic PSO mechanism for every sampling instant “k”. The
proposed dynamic PSO mechanism tunes 22 parameters of the proposed dynamic meta-
heuristic FLC. These 22 parameters of the dynamic FLC belong to the dynamic membership
functions in the fuzzification process, de-fuzzification process and dynamic fuzzy reasoning
process (the dynamic fuzzy rule base).
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Therefore, in this proposed dynamic metaheuristic FLC, the membership functions
are formed with dynamic Gaussian curve membership functions.

Figure 7 and (24) show the dynamic optimization mechanism of each fuzzy linguistic
variable or a fuzzy membership function for any given sampling instant “k”.

fi(x; σi; ci) = exp

(
−1

2

(
x− ci

σi

)2
)

(24)
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According to (24), to dynamically optimize the values ci and σi of each membership
function, two dynamic membership gain factors gainci and gainσi are considered. Therefore,
for all seven linguistic variables (NB, NM, NS, ZE, PS, PM and PB), 14 dynamic membership
gain factors are taken into consideration. Therefore, the peak value of the center ci and
the width or the standard deviation σi of each membership function are functions of these
dynamic membership gain factors.

In this proposed dynamic metaheuristic FLC, Ek and dEk are the inputs to the con-
troller, where Uk is the output (actual r.p.m.). For all input and output variables, 21 (7× 3)
linguistic variables take place (each input or output variable is formed with seven linguistic
variables). However, as described above, according to this mechanism, to dynamically opti-
mize all these 21 linguistic variables that belong to Ek, dEk and Uk, 42 (14× 3) optimized
membership gain factors (gainci and gainσi ) need to be generated through the proposed
dynamic PSO mechanism.

However, these 42 membership gain factors will be good enough only to optimize the
angular velocity of one wheel.

Therefore, when considering the non-linear behavior of this four-wheeled independent-
drive electric rover to optimize the desired angular velocity of all four wheels, 168 (42× 4)
dynamic membership gain factors need to be generated and optimized. Therefore, in the
hyperspace of the PSO mechanism, 168 dimensions need to be considered for each particle
when it moves to a global best position GBest while optimizing each particle to its personal
best position PBest.

This makes the proposed controller more sophisticated and computationally inefficient.
In such cases, to dynamically optimize all 21 linguistic variables that belong to the input–
output variables (Ek, dEk and Uk), another three independent gain factors were taken into
consideration. These input–output (IO) gain factors λE, λdE and λU belong to the input–
output variables Ek, dEk and Uk, respectively. In the PSO mechanism, λE, λdE and λU are
optimized on another independent three-dimensional axis.

Therefore, when considering the optimizing process of one wheel, to enhance the
dynamic performance of the PSO mechanism and to simplify the algorithm, out of these
42 membership gain factors (for the 21 linguistic variables) only 14 membership gain
factors (gainci and gainσi ) are optimized. However, these 14 membership gain factors
are good enough only to optimize seven linguistic variables. In this case, as a solution,
these membership gain factors are optimized through consequent 14 dimensions of the
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PSO mechanism by considering the objective function index threshold level (a function of
the Ek).

These fourteen (14) common membership gain factors are utilized to generate the
optimized ci and σi values for all 21 linguistic variables by taking into consideration the
optimized IO gains factors (λE, λdE and λU). The dynamically optimized 14 common
membership gain factors through the global best GBest solution of the PSO mechanism can be
expressed as shown in Table 3.

Table 3. The fourteen (14) common membership gain factors optimized by the PSO mechanism.

Ci (Optimized Peak Value
or the Center Value) j σi (Optimized Standard

Deviation) j

gainc1 = − 1
α1

G(Best)j
× 5000 1 gainσ1 =

1
β1

G(Best)j
× 707 2

gainc2 = − 1
α2

G(Best)j
× 3333 3 gainσ2 =

1
β2

G(Best)j
× 707 4

gainc3 = − 1
α3

G(Best)j
× 1667 5 gainσ3 =

1
β3

G(Best)j
× 707 6

gainc4 = ± 1
α4

G(Best)j
7 gainσ4 =

1
β4

G(Best)j
× 707 8

gainc5 =
1
α5

G(Best)j
× 1667 9 gainσ5 =

1
β5

G(Best)j
× 707 10

gainc6 =
1
α6

G(Best)j
× 3333 11 gainσ6 =

G
β6

G(Best)j
× 707 12

gainc7 =
1
α7

G(Best)j
× 5000 13 gainσ7 =

G
β7

G(Best)j
× 707 14

Where, αi, βi ∈ R, 1 ≤ i ≤ 7, i ∈ Z+, 1 ≤ j ≤ 14, j ∈ Z+ and G(Best)j
represent the

fourteen (14)-dimensional global best solution of the PSO mechanism in Table 3.
Based on these common membership gain factors and the IO gain factors, the opti-

mized ci and σi values for all 21 linguistic variables can be expressed, as shown in Tables 4–6.
Here, λE is the I/O gain factor of the Ek membership functions pEi , qEi ∈ R, 1 ≤ i ≤ 7 and
i ∈ Z+.

Here, λdE is the I/O gain factor of the dEk membership functions pdEi
, qdEi

∈ R,
1 ≤ i ≤ 7 and i ∈ Z+ in Table 5.

Here, λU is the I/O gain factor of the Uk membership functions pUi , qUi ∈ R, 1 ≤ i ≤ 7
and i ∈ Z+ shown in Table 6.

This PSO-based dynamic FLC optimization mechanism is used to optimize the angular
velocity of one wheel in a highly non-linear environment.

Table 4. The dynamically optimized ci and σi factors for the membership functions of Ek.

Optimized Gain Factors for the Input Variable Ek (Error)

ci
(Optimized Peak Value)

σi
(Optimized Standard Deviation or the

Width of the Curve)
Membership Function (MF)

cE1 = −5000±
(

λE
pE1

)
× gainc1 σE1 = 707±

(
λE
qE1

)
× gainσ1

NB

cE2 = −3333±
(

λE
pE2

)
× gainc2 σE2 = 707±

(
λE
qE2

)
× gainσ2

NM

cE3 = −1667±
(

λE
pE3

)
× gainc3 σE3 = 707±

(
λE
qE3

)
× gainσ3

NS

cE4 =
(

λE
pE4

)
× gainc4 σE4 = 707±

(
λE
qE4

)
× gainσ4

Z

cE5 = 1667±
(

λE
pE5

)
× gainc5 σE5 = 707±

(
λE
qE5

)
× gainσ5

PS

cE6 = 3333±
(

λE
pE6

)
× gainc6 σE6 = 707±

(
λE
qE6

)
× gainσ6

PM

cE7 = 5000±
(

λE
pE7

)
× gainc7 σE7 = 707±

(
λE
qE7

)
× gainσ7

PB
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Table 5. The dynamically optimized ci and σi factors for the membership functions of dEk.

Optimized Gain Factors for the Input Variable dEk (Error)

ci
(Optimized Peak Value)

σi
(Optimized Standard Deviation or the

Width of the Curve)
Membership Function (MF)

cdE1
= −5000±

(
λdE
pdE1

)
× gainc1 σdE1

= 707±
(

λdE
qdE1

)
× gainσ1

NB

cdE2 = −3333±
(

λdE
pdE2

)
× gainc2 σdE2 = 707±

(
λdE
qdE2

)
× gainσ2

NM

cdE3 = −1667±
(

λdE
pdE3

)
× gainc3 σdE3 = 707±

(
λdE
qdE3

)
× gainσ3

NS

cdE4
=
(

λdE
pdE4

)
× gainc4 σdE4

= 707±
(

λdE
qdE4

)
× gainσ4

Z

cdE5 = 1667±
(

λdE
pdE5

)
× gainc5 σdE5 = 707±

(
λdE
qdE5

)
× gainσ5

PS

cdE6 = 3333±
(

λdE
pdE6

)
× gainc6 σdE6 = 707±

(
λdE
qdE6

)
× gainσ6

PM

cdE7 = 5000±
(

λdE
pdE7

)
× gainc7 σdE7 = 707±

(
λdE
qdE7

)
× gainσ7

PB

Table 6. The dynamically optimized ci and σi factors for the membership functions of Uk.

Optimized Gain Factors for the Input Variable Uk (Error)

ci
(Optimized Peak Value)

σi
(Optimized Standard Deviation or the

Width of the Curve)
Membership Function (MF)

cU1 = −5000±
(

λU
pU1

)
× gainc1 σU1 = 707±

(
λU
qU1

)
× gainσ1

NB

cU2 = −3333±
(

λU
pU2

)
× gainc2 σU2 = 707±

(
λU
qU2

)
× gainσ2

NM

cU3 = −1667±
(

λU
pU3

)
× gainc3 σU3 = 707±

(
λU
qU3

)
× gainσ3

NS

cU4 =
(

λU
pU4

)
× gainc4 σU4 = 707±

(
λU
qU4

)
× gainσ4

Z

cU5 = 1667±
(

λU
pU5

)
× gainc5 σU5 = 707±

(
λU
qU5

)
× gainσ5

PS

cU6 = 3333±
(

λU
pU6

)
× gainc6 σU6 = 707±

(
λU
qU6

)
× gainσ6

PM

cU7 = 5000±
(

λU
pU7

)
× gainc7 σU7 = 707±

(
λU
qU7

)
× gainσ7

PB

For example, Figure 7 shows that out of these seven linguistic variables, if the positive
medium (PM) linguistic variable (PM membership function) is considered, the optimized
state 1, state 2 and state 3 of the PM membership function can be obtained for the sampling
instants “k”, “k + 1” and “k + 2”, respectively. When the membership function shape
changes dynamically through this optimization mechanism, this causes the membership
grade µA(x) to become more dynamic for every sample instant k. This enables one to
capture the uncertainty behavior as the interval-valued membership function. Figure 8
shows the overall mechanism of the dynamic fuzzification process through the dynamic
PSO mechanism.

Figure A1 shows the optimized ci and σi values obtained for all 21 linguistic variables.
Moreover, according to Figure A1, this dynamic membership function optimization mecha-
nism is mainly based on the dynamically optimized 14 common membership gain factors
and the 3 dynamic I/O gain factors.
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6.2. Dynamic Fuzzy Reasoning Process Optimized by the PSO

Figure 8 shows that in addition to the 17 dimensions of the dynamic fuzzification
process, another additional 5 consequent dimensions were taken into consideration. The
first 3 consequent axes represent the linguistic variables, and in the other remaining two
axes one axis represents either the “and” fuzzy operator (minimum) or the “or” fuzzy
operator (maximum) between the consequent and the other remaining axis, which rep-
resents the weight of the fuzzy rule, as shown in Figure 9. In the first three axes (axis:
j = 18, 19 and 20) the lower bound value LBj and the upper bound value UBj were limited
to 1 and 7, respectively.

However, in practice, it was noted during the optimization process that when the
particles moved to the global best position G(Best)j

they generated floating values. Therefore,
the generated optimized values of axes 18, 19 and 20 were rounded and assigned to
the most suitable linguistic variables of the inputs and output fuzzy variables. In this
dynamic metaheuristic FLC, the corresponding global solution values of each dimension
are “NB = 1”, “NM = 2”, “NS = 3”, “Z = 4”, “PS = 5”, “PM = 6” and “PB = 7”. The lower
bound limit and the upper bound limit of the other remaining axes (axis 21 and axis 22) are
limited to 0 and 1, respectively. However, on axis 21, the obtained optimized values are
rounded. If the rounded value is 0 or 1 then it is assigned to the logical operator “or” or
“and”, respectively. The 22-axis value (value between 0 and 1), which is generated through
the PSO mechanism, is used as the firing strength of the fuzzy rule.

All of these 5-dimensional optimized values are obtained over and over again for
every sampling instant “k” to generate the appropriate dynamic fuzzy rules in the fuzzy
reasoning process.
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Figure 9. The five consequent dimensions of the PSO mechanism for the dynamic fuzzy reason-
ing process.

Table 7 shows all corresponding decimal values that are assigned to each linguistic
variable of each membership function. Therefore, Figure 9 shows the dynamically generated
fuzzy rule through the dynamic PSO mechanism in the fuzzy reasoning process, which can
be expressed as in Table 8.

Table 7. Corresponding decimal values for the linguistic variables in the PSO mechanism.

Linguistic Variables

NB NM NS ZE PS PM PB

Rounded decimal value in Axis 18, 19 and 20. 1 2 3 4 5 6 7

Table 8. Dynamically generated fuzzy rules through the dynamic PSO mechanism.

Fuzzy variables : Ek dEk Uk
Decimal representation : 3 5 6

Corresponding fuzzy rule : If the Ek is NS and the dEk is PS then Uk is PM

Here, Uk is the output angular speed should be of the permanent magnet BLDC motor.
In addition to these dynamically generated fuzzy rules through the PSO mechanism,

49 static fuzzy rules are also taken into consideration when optimizing the behavior of
the BLDC motor as illustrated in Figure 2 and Table 2. Figure 10 shows the designed and
developed program structure used to integrate the static fuzzy rule mechanism and the
dynamic fuzzy rule mechanism into the proposed metaheuristic FLC. In the optimization
mechanism, these static and dynamic fuzzy reasoning processes are synchronized for every
sampling instant “k” However, Figure 2 shows that the proposed robust PSO mechanism
was optimized through the TSK-FLC.
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6.3. Optimization of the Dynamic PSO Mechanism to Tune the Proposed Metaherustic FLC

The tuning process of the proposed metaheuristic FLC utilizing 22 variables is de-
scribed in Section 6.2. In order to dynamically tune these 22 variables, 22 dimensions
are taken into consideration in the hyperspace when designing the proposed dynamic
PSO mechanism.

In a traditional PSO mechanism [107], all candidate solutions or particles are unable
to converge to an equilibrium position due to the rapid changes in the amplitude and
the frequency of the desired input trajectory (the dynamic behavior) of each wheel. To
overcome this problem, in the proposed metaheuristic FLC, the parameters of the dynamic
PSO mechanism are tuned in real-time through a separately dedicated TSK-FLC. Through
this TSK-FLC, for every iteration or discrete sample, the particle positions (solutions) are
re-initialized by optimizing the population size nPop, inertia weights (ωmax and ωmin) and
acceleration coefficients (a1 and a2) and the PSO is charged by adding dynamic accelera-
tion aij into Equation (19). Finally, this 22-dimensional dynamic PSO mechanism can be
expressed as shown in (25) and (26):

xij(t + 1) = xij(t) + vij(t + 1) (25)

vij(t + 1) = ωvij(t) + r1a1

(
P(Best)ij

(t)− xij(t)
)
+ r2a2

(
G(Best)j

(t)− xij(t)
)
+ aij(t). (26)

where aij(t) = 1
K


(

i=∞; p=nPop
∑

i=1; p=1
aip

)
(nPop)

, K ∈ R, nPop is the population size, j ∈ Z+,

1 ≤ j ≤ 18, r1a1

(
P(Best)ij

(t)− xij(t)
)

is the cognitive component and r2a2

(
G(Best)j

(t)− xij(t)
)

is the social component.
The cognitive component and the social component are taken into consideration for

the previous best solution and the global best solution, respectively.
In this mathematical model, for the proposed dynamic metaheuristic FLC, the inertia

weight ω is computed according to (27) and continuously optimized through the TSK-FLC
as described in Section 7.

ω = ωmax −
(

ωmax −ωmin
maxIterations

)
× Iteration (27)
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where ωmax and ωmin are the maximum and minimum inertia weights assigned in the
TSK-FLC, “maxIterations” is the maximum number of iterations and “Iteration” is the
current iteration.

To optimize the metaheuristic FLC via the dynamic PSO mechanism, an objective
function fob is utilized as the input to the PSO mechanism, which is a function of the Ek
and the dEk, as shown in Figure 2. In this dynamic environment, for rapid convergence and
enhancement of the performance of the PSO mechanism, an objective function index I( fob)

is taken into consideration while applying a penalty on each constraint violation. Here,
I( fob)

is computed according to (28) and (29):

fob = RMSE =

√√√√ 1
N

N

∑
k=1

(Ek(t))
2 (28)

I( fob)
= fob +

(
N

∑
k=1

Ek

)
× penalty (29)

where

√
1
N

N
∑

k=1
(Ek(t))

2 is the root mean square error.

7. Implementation of the Takagi–Sugeno–Kang (TSK) FLC

The output level “Z” of the TSK-FLC can be expressed as (30):

Zk = a(Ek) + b(dEk) + c. (30)

The constructed TSK-FLC contains 16 fuzzy rules, where a, b and c are constants and
(a = b = 0). This means that the output level is always a constant and not a linear function.
When the firing strength of a particular fuzzy rule is wk for a kth sample and when each
fuzzy rule is interacting with an “and” operator, then the firing strength can be defined
as (31):

wk = Andmethod(MFi(E), MFi(dE)). (31)

where MFi(E) and MFi(dE) are input membership functions for the ith linguistic variables
(i ∈ Z+ and 1 ≤ i ≤ 7). In the TSK-FLC, for all the aforementioned 16 fuzzy rules, the
weighted average final output is computed as (32):

Output(TSK−FL)i =

16
∑

i=1
wiZi

16
∑

i=1
wi

(32)

The output of the TSK-FLC is determined according to (30)–(32). Figure 11 shows the
6 output parameters of the TSK-FLC, which are inputs to the dynamic PSO mechanism and
tuned in real-time according to the rapid changes of the Ek and dEk.
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Figure 12 shows the membership functions and boundaries of each fuzzy set (mem-
bership function), where “PVS”, “PS”, “PM” and “PB” represent the positive very small,
positive small, positive medium and positive big linguistic variables, respectively. Accord-
ing to each output, the practically verified linguistic values of the linguistic variables are
shown in Table 9. Table 10 shows the main governing fuzzy rules of the TSK-FLC. In the
TSK-FLC, the outputs are always constants (not linear functions).
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Table 9. Assigned linguistic values for the linguistic variables of the TSK-FLC.

TSK-FL Controller Outputs

Linguistic Variables nPop ωmax ωmin a1 a2 af

PVS 5 0.800 0.100 0.975 0.975 None
PS 10 0.825 0.300 0.985 0.985 0.009
PM 15 0.875 0.400 0.995 0.995 None
PB 20 0.900 0.500 1.000 1.000 None

Table 10. Governing fuzzy rules of the proposed TSK-FLC.

No.
Inputs Outputs

Ek dEk nPop ωmax ωmin a1 a2 af

01 PVS PVS PS PM PM PM PM None
02 PS PVS PS PM PM PM PM None
03 PM PVS PM PB PM PM PM None
04 PB PVS PB PB PB PB PB PS
05 PVS PS PS PM PM PS PS None
06 PS PS PM PM PM PM PM None
07 PM PS PM PB PB PM PM None
08 PB PS PB PB PB PB PB PS
09 PVS PM PM PM PM PM PM None
10 PS PM PM PB PM PM PM None
11 PM PM PM PB PB PM PM None
12 PB PM PB PB PB PB PB PS
13 PVS PB PM PM PM PM PM None
14 PS PB PM PB PB PM PM None
15 PM PB PB PB PB PM PM None
16 PB PB PB PB PB PB PB PS

8. Modelling of Mechanical Dynamics of the Four-Wheeled Independent-Drive
Electric Rover

The design and development of a dynamic metaheuristic FLC (TSK-PSO-FLC) to
control a non-linear plate in the desired manner is described in Section 1. Therefore, the
dynamic self-adaptive fuzzification process, defuzzification process and FIM are discussed
instead of describing the electric rover system models. Figure 1 shows that the developed
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intelligent dynamic controller of this four-wheeled independent-drive electric rover is a
combination of 3 controllers.

A previous study [104] described the obtained rover system model that is used to
identify the mechanical dynamics behavior of the rover, the proposed tire model that is
utilized to identify the wheel slip of each tire, the tire model that is proposed to identify the
kinetic friction coefficient (µ) between the tire and the road surface and the designed and
developed steering FLC and differential FLC.

9. Results and Discussion

Straight, incline, downhill and curving roads were used to examine the performance
of the built dynamic metaheuristic FLC with all sorts of road limits during the quickest
acceleration and deceleration phases. This article, on the other hand, focuses on road testing
conducted on straight roads under various traction conditions (such as on slippery wet
grass surfaces), as shown in Figures A2 and A3.

When the rover moves along a straight path (trajectory), even under varied traction
environments (different friction coefficients µj), the orientation of the rover should re-
main constant throughout time. Correspondingly, in order to maintain a certain intended
orientation based on the observed data from the installed gyroscope, the built dynamic
metaheuristic FLC should synchronize all of the angular velocities (r.p.m.) of each wheel
in order to retain the desired orientation (fixed orientation) (because the developed rover
turning method based on the differential speed technique is not discussed in this paper).

Figure 13 depicts the desired throttle signal and the desired steering angle, which
indicate a zero-degree yaw angle (in its neutral position) during the straight road test
operating time period (fed wirelessly based on the IEEE 802.15.04 protocol through a
computer-controlled joystick).
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Figure 13. The throttle signal is given to the controller to achieve the desired translational velocity.
The neutral position of the steering angle level is 1.7 (to achieve a zero-yaw angle) [104].

Figure 14 shows that the µj fluctuation over time, as calculated by Equation (7) in [104],
is less than 0.4, while the average µj is about 0.12. This means that the wet grass road
surface is extremely slick. Consequently, in all of these situations, optimizing the wheel
slip of each wheel and maintaining the desired yaw angle across the operating time period
proved very complex.

Figure 15 depicts the r.p.m. of each wheel in relation to the required average r.p.m
refWs. Table 11 shows the steady-state error Ess and steady-state error as a percentage
Ess% for the peak edge of the r.p.m. of each independent wheel. The steady-state error
Ess is minimized during the deceleration via the proposed FLC by driving the motor(s)
in the opposite direction. However, this could be more effective by applying brake force
during the deceleration via a fuzzy logic control magnetic brake mechanism [109,110]
in addition to a reverse polarity changing mechanism. The greatest average r.p.m. and
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translational velocity values of the rover are 1024.4 r.p.m. and 25.09 km/h, respectively, at
the maximum r.p.m.
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Figure 14. The variation of the kinetic friction coefficient (µj) vs. time (Sec) [104].
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Table 11. Steady-state error percentage (Ess%) of each independent wheel [104].

Wheel of the Rover Steady-State Error (Ess) (r.p.m.) Steady-State Error % (Ess%) (r.p.m.)

Front-Left (FL) 58.16 5.24
Front-Right (FR) 68.81 6.27
Back-Left (BL) −28.65 −2.95

Back-Right (BR) −51.82 −5.36

Figures 16 and 17 show the three orthogonal acceleration directions (“AccX: longitudi-
nal”, “AccY: lateral” and “AccZ: radial”) and three gyro-angles (“GyYaw: Yaw”, “GyPit: Pitch”
and “GyRol: Roll”) observed when the wheel speed data were examined.

Furthermore, Figure 16 demonstrates that as the rover achieved a high r.p.m., the
radial acceleration varied dramatically. This occurred as a result of an uneven road surface.

Figure 17 shows that the rover encountered a slope of around 30 degrees within about
3.5 s. Again, within 3.5 s, the rover’s actual yaw angle was pushed away from its target
yaw angle by roughly 10 degrees. The yaw angle variation was 10 degrees in relation to the
beginning location when compared to the overall travel distance (measured distance was
105.64 m). Furthermore, due to the slope of the grass surface into the lateral direction of the
rover, a roll angle of roughly 2 degrees occurred.

Based on the observed wheel speed data, the wheel slip ratio, Sj, was estimated in real
time for various road surfaces using Equation (3) in [104] (for different friction coefficients).
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Figure 17. The actual yaw angle, pitch angle and roll angle vs. the time of the rover [104].

Figure 18 shows that the proposed dynamic metaheuristic FLC mechanism improved
the rover’s performance by coordinating all four wheel speeds to an optimal level.
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The “mWsrFL”, “mWsrFR”, “mWsrBL” and “mWsrBR” values in Figure 18 reflect the
observed wheel slip ratio of the front-left, front-right, back-left and back-right wheels,
respectively. Figure 18 depicts all of the wheel slip ratio graphs as having the same form.
These events occurred as a result of the straight road test being done on a surface with an
almost even kinetic friction coefficient. Furthermore, it demonstrates that the wheel slip
ratio for all wheels was positive, and the proposed dynamic metaheuristic FLC kept the
wheel slip ratio of all wheels within a range of less than 0.35.

Apart from the observed test results mentioned above to evaluate the performance of
the proposed FLC, a comparative performance study between the proposed FLC and the
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other typical control mechanisms is taken into consideration. However, there are few rover
or vehicle verification studies in this research field, particularly studies on regulating the
wheel slip independently while maintaining a fixed orientation on slippery roads under
high-speed conditions (during acceleration and deceleration) via dynamic FLCs. In order
to further verify the proposed metaheuristic FLCs’ effect, studies involving a reference
estimation model [111], an adaptive fuzzy type-2 control mechanism [112], H∞ with the
Moore–Penrose theory [113], a torque distribution control [114], an electrical drive wheel
speed using a machine learning approach [115], a longitudinal vehicle speed estimator
based on fuzzy logic control [116], a torque vector control of a rear-wheel independent-drive
(RWID) electric vehicle [117] and an anti-skid fuzzy PID control strategy for a four-wheel
independent-drive electric vehicle (4WDIEV) [118] are selected to be compared and a
validation simulation is carried out, except for [116], which is validated via both the
simulation setup and hardware setup. A comprehensive performance comparison is shown
in Table 12.

Therefore, it is evident that the suggested strategy has a good control impact on
the wheel slip during high-speed acceleration or deceleration, with high feasibility for
integration in the controller hardware.

Table 12. Comparative performance study between the proposed FLC model and typical dy-
namic models.
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[111]

Research on Torque
Distribution of

Four-Wheel
Independent Drive

Off-Road Vehicle Based
on PRLS Road Slope

Estimation. 2021.

PRLS Road Slope
Estimation.

Wheel slip and
orientation of the

vehicle.

Wheel torque
distribution.

The maximum
translational velocity
was tested at around

25 km/h.
The average wheel

slip of all four
wheels was 0.8
The maximum

wheel torque was
achieved at
2.4 kN·m

The angular speed of
each wheel.

The angular torque of
each wheel.

The desired orientation
of the rover under

high-speed conditions
(sudden acceleration

and deceleration).
The rover had lateral
stability, longitudinal

stability and radial
stability under

high-speed conditions.
The top recorded

translational speed of
the rover was

approximately 90 km/h.
The maximum
translational

(longitudinal)
acceleration on wet

grass slippery surface
(0.01 ≤ µ ≤ 0.4) was

3.4 ms−2.
The recorded wheel slip

of the rover was less
than 0.35.

The proposed
metaheuristic FLC is

independent of
mathematical

governing equation(s).

Hardware-in-the-
loop real-time

simulation and
real vehicle tests.

The proposed dynamic
metaheuristic FLC was
tested via a four-wheel

independent-drive
electric rover model.
Figures A9 and A10.
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Adaptive Fuzzy Type-II
Controller for Wheeled

Mobile
Robot with

Disturbances and
Wheel slips. 2021.

Adaptive Fuzzy
Type-II Control

mechanism.

Wheel slip and
trajectory follower.

Wheel torque
distribution.

The maximum
recorded

translational velocity
was around
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As the authors stated:
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The proposed
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system is independent
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Simulation setup.
The authors have

done a
simulation with
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elliptical and
Trifolium shapes.
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Control for four-wheel
independently

driven electric vehicles
to improve

steering performance
using H∞ . and

Moore–Penrose theory.
2019.

H_∞ and
Moore–Penrose

theory.
In this case, the

authors developed a
“logarithmic

functional
relationship between
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Wheel slip and
orientation (yaw
moment) of the

vehicle.

Regulated the wheel
cornering stiffness.
Controlled the yaw

moment of the
4WID EV.

As the authors stated,
the “decrease of
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by the

wear of the tyre could
change the vehicle’s

dynamic property, and
the design of a more

robust controller
adjusting to a varying
vehicle system would

bring some new
challenges”.

This issue is not a
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proposed metaheuristic
FLC because it is
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system-governing equa-
tion(s)/(mathematical

model)

A simulation test
setup has been
established for
the following

three cornering
stiffness (Scα )

categories.
Category 1:
If Scα > 1

Category 2:
If Scα < 1

Category 3:
If Scα = 1
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[114]

A New Torque
Distribution Control for

Four-Wheel
Independent-Drive

Electric Vehicles. 2021.

Torque distribution
control.

Vehicle stability and
handling

performance,
especially under
extreme driving

conditions.

Wheel torque
distribution.

Torque control was
considered to

achieve the desired
yaw moment of the

4WIDEV.
As the authors

stated, they made
“quicker and fuller

use of lateral force to
generate yaw

moment and gained
better vehicle

stability”.

In this similar research
work, an “ideal motion

state estimator” was
developed. However,

when the mathematical
model needed to

become more realistic,
all system information
needed to be captured.
The proposed FLC was

tested in real-time
through a hardware

application (4WDI ER)
and compared to

similar research work.

HIL simulation
has been utilized
by the authors to

verify the
effectiveness of
the proposed

optimal
torque

distribution
approach (two

approaches have
been considered).

Approach 1:
Sine with Dwell:

The initial speed
was set to
80 km/h.

The friction
coefficient was

0.8.
Approach 2:
Double Lane

Change
Closed-loop

simulations have
been conducted

at a constant
speed of
60 km/h.

The friction
coefficient was

0.8.

[115]

A new application for
fast prediction and

protection of electrical
drive wheel speed

using machine learning
methodology. 2022.

Artificial neural
network (ANN)

coupled with
particle swarm
optimization
(ANN-PSO).

Steering angle and
steering ahead are

achieved via an
electronic

differential control.

Angular velocity
and wheel slip.

The longitudinal
forces, lateral forces

and radial forces.
The maximum

recorded
translational velocity

was around
80 km/h.

The maximum
wheel torque was
≈ 138 N·m (total

wheel torque)

In this similar research
work to stabilize a

vehicle under uncertain
conditions, the wheel

speed or torque have to
be regulated. Therefore,
to achieve the desired

electric current or
voltage of the

permanent magnet
synchronize motor

(PMSM), Lyapunov’s
stability analysis theory

is taken into
consideration.
The proposed

metaheuristic FLC is
independent of

non-linear
mathematical

(Lyapunov’s, etc.)
models.

The electric
rear-wheel-drive

PMSM speed
regulation is

simulated using
the DTFC
command.

[116]

A Novel Longitudinal
Speed Estimator for
Four-Wheel Slip in
Snowy Conditions.

2021.

Longitudinal vehicle
speed estimator

based on fuzzy logic
control.

Wheel angular
velocity/torque and

wheel slip.

Angular velocity
and wheel slip.

The translational
velocity of the

vehicle.
Longitudinal

acceleration of the
vehicle.

The authors stated in
similar research work

that “the estimated
result is not accurate in

high-slip conditions”.
However, when
considering the
proposed FLC

mechanism, the
observed test results

show that the controller
performed at an
admirable level.
The maximum

translational speed of
the rover is

approximately 90 km/h,
while synchronizing the

all-wheel speed to
achieve a fixed

orientation.
The average kinetic
friction coefficient is

around 0.1. Therefore,
the proposed FLC has
the ability to perform

well under high wheel
slip conditions.

Experimental
and simulation
tests have been

carried out.
Three driving

condition cases
have been taken

into
consideration.

1st Case:
No wheel

Slip.
2nd Case:
At least

one-wheel slips.
3rd Case:

All four wheels
slip.

[117]

Torque Vectoring
Control of RWID

Electric Vehicle for
Reducing

Driving-Wheel Slippage
Energy Dissipation
in Cornering. 2021.

Vector control
mechanism.

Wheel angular
velocity/torque and

wheel slip.

Longitudinal linear
stiffness of each
driving wheel.

The initial
differential torque.

Tire slippage energy
dissipation.

Acceleration slip
regulation (ASR).

Simulations of
typical

maneuvering
have been

considered.
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[118]

Research on Anti-Skid
Control Strategy for

Four-Wheel
Independent Drive

Electric Vehicle, 2021.

Fuzzy PID
Control strategy

(Artificial
Intelligence and

classical
control-based

control strategy).

Anti-skid control.
Wheel slip rate in

real time.

Angular velocity
and wheel slip.
The maximum
electric vehicle

driving translational
velocity was around

10 km/h.
The driving torque

of each independent
driving

wheel was 500 N·m.

The authors stated that
“he entire road surface
identification process

is in line with the
assumptions”.

The proposed FLC has
the ability to

compensate for
unexpected

disturbances.

Based on Carsim
and MAT-

LAB/Simulink,
the vehicle

dynamics model,
tire model

and driving
anti-skid control

simulation
model(s) have

been established.

10. Conclusions

Table 1 expresses evidently that when controlling a sophisticated physical phenomenon
via an FLC, hundreds of sophisticated fuzzy rules have to be implemented to build a realis-
tic FLC. However, even in such a fuzzy inference mechanism, tuning the fuzzy rules is also
a crucial issue. Moreover, the current studies on higher-order types of FLS, particularly
the designed and developed applications of the interval type-2 fuzzy logic, have increased
significantly because of the ability to compensate for uncertain conditions. However, there
are concerns among the researchers due to the complexity of designing and construct-
ing interval type-2 fuzzy controllers, which contain more parameters than their type-1
counterparts, which causes greater computational complexity and overhead issues.

Therefore, the motivation for this research is to design and develop a dynamic meta-
heuristic algorithm to automatically optimize the fuzzification, defuzzification and fuzzy
reasoning processes by integrating the features of type-2 FLCs to give more accurate con-
trol results under uncertain conditions. This allows researchers to quickly develop more
accurate fuzzy controllers.

However, to identify the performance of the developed dynamic metaheuristic FLC,
as a piece of non-linear plant, a four-wheel independent-drive electric rover was taken into
consideration. Moreover, compared to previous work and approaches to a similar research
problem, the proposed dynamic metaheuristic FLC with a self-optimization mechanism has
the ability to improve the rover’s stability during its fastest acceleration and deceleration
phases in slippery road conditions. Figure 1 shows the proposed dynamic metaheuristic
FLC (controller A) along with the designed and constructed steering FLC (S-FLC (controller
B)) and the differential FLC (D-FLC (controller C)), which is capable of driving the rover
at a notable peak translational velocity of 90 km/h (55 mph). However, during testing
(on slippery roads), the rover’s translational velocity was reduced to 45 km/h (28 mph).
Furthermore, the proposed dynamic metaheuristic FLC with the D-FLC kept the wheel slip
ratio of all four wheels within an admirable range of less than 0.35 on a wet grass surface
with an average friction coefficient µj of 0.12.

For subsequent investigations, future work should be carried out to identify the ef-
ficiency or performance characteristics of the yaw moment generation for independent
wheel torque distribution via the proposed dynamic metaheuristic FLC. Moreover, under
high-speed conditions, future studies should investigate how the proposed FLC compen-
sates for negotiating curves while maintaining the desired lateral forces to enhance the
rover’s stability.
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S.C.M.; Visualization, H.R.J.; Supervision, W.R.d.M. and S.C.M. All authors have read and agreed to
the published version of the manuscript.



Appl. Sci. 2022, 12, 8242 30 of 38

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appl. Sci. 2022, 12, 8242 33 of 41 
 

Appendix A 

 

 
Figure A1. The dynamic variations of the fourteen (14) common membership gain factors. 

 

Figure A1. The dynamic variations of the fourteen (14) common membership gain factors.



Appl. Sci. 2022, 12, 8242 31 of 38Appl. Sci. 2022, 12, 8242 34 of 41 
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Figure A5. The developed wireless transceiver with a system database (up to 2 km). 

 
Figure A6. The synchronized four-motor drive signal for every sampling instant “𝑘”. 

 
Figure A7. The back-left tire response for the desired input trajectory (50 samples /s). 
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Figures A4–A6 show the designed and developed experimental test setup that was
utilized to control the electric rover while observing data wirelessly in the designed and
developed database (via IEEE 802.15.04 protocol). Figure A7 shows the desired angular
velocity trajectory generated via the TSK-PSO-FLC and the observed actual angular velocity
of the back-left wheel during the laboratory test.

Table A1. The physical parameters of the electric rover.

Physical Parameter Amount with Units

Rover Width (W) 0.415 m
Rover Height (H) (Ground clearance) 0.06 m
Rover Length (L) 0.465 m
Diameter of a wheel 0.13 m
Weight of the rover body (MB) 3.288 kg
Weight of a wheel (MWh) 0.064 kg
Total weight of the rover (MR) 5.066 kg
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