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Featured Application: By introducing the method of deep learning, the precise segmentation
of the aquaculture cages in a specific aquaculture sea area can be achieved, so as to realize the
efficient statistics of the cage culture density and reduce the cost of manual statistics.

Abstract: In harbour areas, the irrational layout and high density of mariculture cages can lead to
a dramatic deterioration of the culture’s ecology. Therefore, it is important to analyze and regulate
the distribution of cages using intelligent analysis based on deep learning. We propose a remote
sensing image segmentation method based on the Swin Transformer and ensemble learning strategy.
Firstly, we collect multiple remote sensing images of cages and annotate them, while using data
expansion techniques to construct a remote sensing image dataset of mariculture cages. Secondly, the
Swin Transformer is used as the backbone network to extract the remote sensing image features of
cages. A strategy of alternating the local attention module and the global attention module is used
for model training, which has the benefit of reducing the attention computation while exchanging
global information. Then, the ensemble learning strategy is used to improve the accuracy of remote
sensing cage segmentation. We carry out quantitative and qualitative analyses of remote sensing
image segmentation of cages at the ports of Li’an, Xincun and Potou in Hainan Province, China.
The results show that our proposed segmentation scheme has significant performance improvement
compared to other models. In particular, the mIoU reaches 82.34% and pixel accuracy reaches 99.71%.

Keywords: aquaculture; remote sensing image; semantic segmentation; smart agriculture;
deep learning

1. Introduction

Aquaculture is a major source of marine aquatic products in China and plays an
important role in the national economy. However, with the increasing number of aquacul-
ture activities, the problem of unreasonable distribution of cages has become increasingly
prominent. The irrational layout and excessive aquaculture densities of aquaculture cages
can lead to deterioration of water quality and the breeding of harmful pathogens, thereby
damaging the marine ecological environment and the sustainable development of the
aquaculture industry.

1.1. Related Work and Motivation

In harbour areas, unplanned high-density farming not only reduces production effi-
ciency but also leads to the deterioration of the marine ecological environment. Therefore,
it is important to use remote sensing images to macro-regulate the distribution of cages
in the sea [1]. At present, in the field of mariculture research, most of the studies do not
partition the statistics for cages, but the density of marine organisms such as fish bodies
cultured in cages. Wu, Leiming et al. [2] studied the effect of different culture densities in
cages on the growth performance, digestive enzyme activity and non-specific immunity
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of broad-bodied golden leech for broad-bodied golden leech culture. Nong Guangcai [3]
and Dai Yangxin [4] studied the effect of different culture densities on the growth of tilapia.
However, it is not only the culture density of organisms in cages that can affect the normal
growth of fish but also the excessive density of cages in the sea area. Therefore, we need to
regulate the distribution of culture cages at a macro level to ensure that their distribution
is reasonable.

In the field of remote sensing image segmentation, Chen Yansheng et al. [5] proposed
an autonomous improved convolutional neural network mU-ResPlus based on U-Net
to address the practical problems of fragmented distribution of small crops and a small
amount of data. mU-ResPlus firstly reduced the number of layers of the U-Net network,
then used multiple deconvolutions to fuse the features of shallow and deep layers of
the image, and introduced the residual blocks to achieve the refinement of the network
segmentation effect. The experimental results show that the accuracy and Kappa coefficient
of mU-ResPlus are 87.4% and 0.747, respectively, which have high application prospects in
the research of small crop image segmentation. Yang Xiaoyu et al. [6] proposed a remote
sensing image segmentation network MAE-Net combining multi-scale attention and edge
supervision, and the experimental results show that MAE-Net could segment buildings
completely from remote sensing images with complex and diverse backgrounds and large-
scale changes, and the segmentation accuracy is high. Zhang Bin et al. [7] improved
the DenseASPP network to address the problems of large differences in target scales and
blurred boundaries in the semantic segmentation of remote sensing images. The channel
attention model and spatial attention model are introduced to give more weight to the key
features in the network; the group convolution is used in the sampling of convolution with
holes, and the pruning strategy is adopted in the training to discard the connections with
lower weights to achieve the sparse network, which effectively overcomes the problem
of excessive memory occupation of DenseASPP. Capturing remote dependencies by null
convolution or increasing the number of channels would lead to a dimensionality explosion
due to the expansion of the model. Yu Chuang et al. [8–10] separately used mask R-CNN,
Segnet, and U-Net to segment the remote sensing cage images. The above proposed
semantic segmentation networks for remote sensing images all use convolutional neural
networks, which can effectively extract local information, but lack the ability to extract
remote features from global information.

Recently, Transformer-based models have shown prominence in various fields such
as natural language processing and computer vision. In computer vision, Vision Trans-
formers [11] (ViTs) have demonstrated optimal performance in various benchmark tests.
Specifically, the self-attention module allows for modelling the interaction between token
embedding via pairs of remote messages in ViT-based models, leading to more efficient
local and global contextual representations. However, it only uses the self-attention mecha-
nism, resulting in much higher image recognition rates than the models based on CNN.
End-to-end object detection (DETR) with the Transformer [12] first involves using the Trans-
former in advanced vision, which adds location information to complement image features
and feeds them into the Transformer structure to obtain predicted class labels and bounding
boxes. However, there is still low detection of small targets and weak local information
acquisition. In this paper, image features are extracted using the Swin Transformer [13] as
the backbone network. The Swin Transformer constructs a hierarchical Transformer and
performs self-attention calculations within non-overlapping window regions. Rather than
performing self-attention computation on the entire set of patch markers, it uses window
partitioning as an attention mechanism to apply constraints on the position and allows
communication between windows by using a shift configuration. Through the ensemble
learning strategy, the feature extraction capabilities of different deep learning network
frameworks in different pixel size datasets are integrated to give full play to the advantages
of each model. In this way, it can improve the generalization ability of the model, and then
improve the overall prediction accuracy.
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1.2. Our Contributions

(1) By introducing the method of deep learning, the precise segmentation of the
aquaculture cages in a specific aquaculture sea area can be achieved, so as to realize the
efficient statistics of the cage culture density and reduce the cost of manual statistics.

(2) To address the problem of lack of mariculture cage dataset, we construct a remote
sensing cage image dataset and expand the data of the training set to effectively improve
the training effect of the model.

(3) An ensemble learning strategy is used to fuse the feature extraction capabilities
of different deep learning network frameworks on different pixel size datasets, thereby
improving the generalization capability of the model and the overall prediction accuracy.

1.3. Paper Organization

The rest of this article is organized as follows. Section 2 introduces the network model,
details of the segmentation scheme and the statistical method of breeding density. Section 3
introduces the experimental results. In Section 4, we analyze and discuss the experimental
results. Section 5 makes a conclusion and proposes future work.

2. Materials and Methods
2.1. Network Model

This subsection first introduces the basic concepts of semantic segmentation networks
and ensemble learning. Subsequently, the basic concepts and working principles of the
Swin Transformer are introduced.

2.1.1. Semantic Segmentation Network

Image segmentation entails dividing an image into specific regions with unique
properties and extracting targets of interest, which is a key step in the transition from
image processing to image analysis. Typically, segmentation can be divided into semantic
segmentation, instance segmentation and panoramic segmentation according to its purpose.
The technique used in this paper is semantic segmentation, which is the classification and
labelling of each pixel point in an image. As the segmentation result in Figure 1 shows, the
cages in the image are labelled. The main task of this paper is to mark the breeding cages
in the remote sensing images and calculate the breeding density of the cages through the
statistics of the pixel points of the cages through semantic segmentation.

(a) (b)

Figure 1. An example of semantic segmentation: (a) original image; (b) semantic segmentation image.
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2.1.2. Ensemble Learning

Ensemble learning is a machine learning method that uses a series of base learners
and uses some rules to integrate the individual results to achieve better performance than a
single learner. The generalization ability of an ensemble approach is usually much stronger
than that of a single learner, which makes it very attractive. In practice, two necessary
conditions should be met for a good ensemble: accuracy and diversity [14]. The base
learners should be more accurate than random guesses, and each base learner should have
its own knowledge of the problem and a different error pattern from the other base learners.
This paper adopts the ensemble learning method based on stacking. The stacking [15]
ensemble learning framework first divides the original data set into several sub-datasets,
which are input to each basic learner of the first-level prediction model, and each basic
learner outputs its own prediction result. Then, the output of the first level is used as the
input of the second level, the meta-learner of the second-level prediction model is trained,
and the final prediction result is output by the model in the second level. The stacking
learning framework generalizes the outputs of multiple models to improve the overall
prediction accuracy, as shown in Figure 2.
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Figure 2. The architecture of stacking.

2.1.3. Swin Transformer

The Swin Transformer is a new network framework based on Transformer, which
introduces the hierarchical construction method commonly used in convolutional neural
networks (CNN) to build a hierarchical Transformer. Meanwhile, it solves the problem of
scale and resolution of Transformer migration from the field of natural language processing
(NLP) to computer vision (CV) by introducing the idea of the locality domain. It alter-
nates the local attention module and the global attention module to reduce the attention
computation.

Firstly, the image is fed into the Patch Partition module for chunking, i.e., one patch
for every 4 × 4 adjacent pixels, so that each patch has 4 × 4 = 16 pixels. Then it is flattened
in the channel direction. If the input is a three-channel RGB image, each pixel has three
values R, G and B, so there are a total of 16 × 3 = 48 pixels after spreading. Thus, the
image shape changes from [H, W, 3] to [H

4 , W
4 , 48] after Patch Partition. A linear embedding

layer then linearly transforms the channel data for each pixel from 48 to C, i.e., the image
shape changes from [H

4 , W
4 , 48] to [H

4 , W
4 , C]. A number of Swin Transformer blocks are

applied to the embedded tokens and together with the linear embedding layer above form
“Stage 1”. To obtain a hierarchical representation, the output of “Stage 1” is then sent by
patch merging, where 2 × 2 neighbouring patches are merged together. The resolution is
also reduced by a factor of 2, the number of tokens is reduced by a factor of 4, and a linear
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layer is applied to change the dimensionality from 4C to 2C. As shown in Figure 3, multiple
Swin Transformer blocks are joined together to form three identical stages through the
patch merging layer. In addition, the output resolution is H

16 × W
16 and H

32 × W
32 .
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Figure 3. The architecture of the Swin Transformer.

The Swin Transformer is constructed by replacing the standard Multiple Self-Attention
(MSA) module in the Transformer block with a shift window-based module, leaving the
other layers unchanged. As shown in Figure 3, a Swin Transformer block consists of a
shift-window based MSA module and a two-layer MLP, which is connected nonlinearly
via GELU. A LayerNorm (LN) layer is applied before each MSA module and each MLP,
and a residual is applied after each module to connect them, as shown in Equation (1).

Ẑl = W − MSA(LN(Zl−1)) + Zl−1

Zl = MLP(LN(Ẑl)) + Ẑl

Ẑl+1 = SW − MSA(LN(Zl)) + Zl

Zl+1 = MLP(LN(Ẑl+1)) + Ẑl+1 (1)

2.2. The Proposed Segmentation Method

In this subsection, we first give the cropping rules for the dataset. Then a detailed
description of the proposed segmentation method is given, and the overall implementation
scheme is presented.

2.2.1. Training Set Cropping Rule

As the resolution of remote sensing images is too large to be directly input into the
neural network for training, the original remote sensing images need to be cut into the
required size for training by cropping. The segmentation scheme in this paper crops the
training samples into 256 × 256 and 512 × 512 sizes respectively. In order to verify the
robustness of the network structure, this paper uses a controlled ratio of positive and
negative samples for cropping.
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2.2.2. Test Set Cropping Rule

As the model is trained on a training set of 256 × 256 and 512 × 512 resolution, the
test set needs to be cropped to the corresponding size and then input to the model for
segmentation, and then the small pieces of the segmented images are combined in order to
achieve accurate segmentation of the original remote sensing image. If the test set is directly
cropped, the resolution size of the image is often not exactly cropped into integer blocks.
Therefore, in order to ensure that the remote sensing image can be segmented in its entirety,
we use a method similar to the voting mechanism [16] to fill the original remote sensing
image. When cropping by rule for large resolution remote sensing images, the move step is
half the length of the resolution edge of the cut image. Additionally, to ensure that each
part of the remote sensing image can be segmented four times, the left and top sides of the
remote sensing image are filled with blanks of half the resolution edge length of the cut
image, and the right and bottom sides of the remote sensing image are filled with blanks of
the resolution edge length of the cut image. The schematic diagram is shown in Figure 4,
where the red box represents the remote sensing image and the outer yellow represents the
filled image. The black box is the initial position and the sequential cropping is performed
at one-half the size of the resolution edge of the cut image, and all parts within the red
box will have been segmented four times. Semantic segmentation is performed on each
pixel point in the image, and the predicted output is a probability value between 0 and
1 [17,18]. As each pixel point in the remote sensing image is computed four times, the sum
of the four times is averaged to better represent the true class of the point and thus achieve
a more accurate segmentation.

Figure 4. Diagram of filling and cropping with test sets overlap clipping.

2.2.3. Proposed Method and Introduction of the Overall Scheme

For remote sensing image segmentation of mariculture cage, we propose a segmenta-
tion method based on the Swin Transformer and ensemble learning strategy. The proposed
method description based on the ensemble learning strategy is shown in Algorithm 1,
and the overall technical scheme based on this method is shown in Figure 5, which is
different from the traditional machine learning segmentation method. Firstly, multiple
remote sensing images of mariculture cage are collected by Google Maps and annotated,
and then the datasets are divided into a training set and a test set, and the training set
is cropped to 256 × 256 and 512 × 512 pixels and expanded to obtain two training sets
with different resolutions [19,20], respectively. The Swin Transformer, Attention U-Net and
Mask Rcnn networks are used to train the two training sets and generate six trained models.
The test sets are then cropped to 256 × 256 and 512 × 512 size respectively according to
the rules and input to the trained models of corresponding resolutions for segmentation.
Then, the output images are stitched according to the rules [21]. Next, images of the same
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resolution from different networks are combined by an ensemble learning strategy, and
then the final segmentation image is obtained by voting on the two segmentation images of
different resolutions. Finally, the estimation of aquaculture density is performed based on
the segmentation results. This work is presented in Section 2.3.

Algorithm 1: Description of the ensemble learning algorithm for segmentation
Input: An image [H × W × 3].
Output: Segmentation image.

1 Preprocess: Data augmentation and crop the training set to 256 × 256 and
512 × 512 pixels respectively.

2 Training
3 for each network n = 1, 2, 3 do
4 Control the proportion of positive and negative samples.
5 Train with 256 × 256 and 512 × 512 pixels datasets respectively.
6 end
7 Acquire six trained model.
8 Test
9 Overlap crop the test set to 256 × 256 and 512 × 512 pixels respectively.

10 for each kind of resolution n = 1, 2 do
11 Segment images with the trained models of corresponding resolutions.
12 Gain the segmentation image blocks.
13 end
14 Use an ensemble learning strategy to combine image blocks of the same resolution

from different networks.
15 Obtain the final segmentation image by voting on the two segmentation images of

different pixels.

Remote Sensing 

Image Acquisition

Image Annotation

Training set Test set

Control the proportion of 

positive and negative samples, 

and data augmentation

Overlap cropping

256x256 512x512

Six trained models

Image blocks

Segmentation

Combine based on the 

ensemble learning strategy

256x256 512x512

Vote

The final segmentation 

image

Model test

Model training

Calculate breeding 

density

Figure 5. The proposed overall scheme.
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2.3. Introduction to the Statistical Method of Breeding Density

Since the semantic segmentation used in this paper is to detect and segment the image
at the pixel level, this paper adopts the method of traversing each point in the image. If the
point belongs to the mask area, the sum of the segmentation pixels is increased by one, as
shown in Figure 6.

Figure 6. Schematic diagram of area calculation.

Each square in the figure represents a pixel, A represents the pixel area occupied by
the detection frame, and B represents the pixel area occupied by the detected object mask.
During the test, all the pixels in A are traversed. When a pixel area is in the A-B area, it is
judged as False; when a pixel is in the B area, it is judged as True, and the total number of
pixels required is determined. The point value is incremented by one. In the experiment,
the number of pixels occupied by each tile is calculated (as in Equation (2)), and then the
total number of pixels is obtained by summing the pixels of each tile (as in Equation (3)).
The total number of points and the total number of pixels in the picture are used to calculate
the cage breeding density (as in Equation (4)).

P =
k

∑
i=0

ai (2)

Pc =
m×n−1

∑
j=0

Pj (3)

ρ =
Pc

Ptotal
(4)



Appl. Sci. 2022, 12, 8234 9 of 16

In Equations (2)–(4), P represents the number of pixels in the mask area in a single tile,
k represents the number of objects segmented in the tile and ai represents the number of
pixels occupied by the mask segmented object in the tile Pc represents the total number of
pixels in the identified cages, m and n represent the times of dividing the high-resolution
image into rows and columns respectively, Ptotal represents the total number of pixels in
the image, and ρ represents the cage breeding density.

3. Results
3.1. Dataset Acquisition

We construct a remote sensing cage image dataset consisting of 53 images, with the
training set consisting of 50 images and the test set consisting of 3 images. Through
data expansion, we generate 160,000 images for the training set of 256 × 256 pixels and
40,000 images for the training set of 512 × 512 pixels. The three test set images include
a dense distribution of cages, a sparse distribution of cages and a uniform distribution
of cages.

3.2. Experimental Settings
3.2.1. Experimental Environment and Parameter Settings

In this paper, the experimental environment is ubuntu20, the GPU is Nvidia GeForce
RTX 3080, Pytorch and python3.6. For the annotation of the dataset, the labelme [22]
annotation software is used to obtain mask images, and then they are converted into black
and white binary maps in uint8 format as label images [23]. The Swin Transformer is
available in four different sizes, namely Swin Tiny (Swin-T), Swin Small (Swin-S), Swin
Base (Swin-B) and Swin Large (Swin-L). Given the performance limitations of the system,
we choose Swin-T, using pretrained weights on the Ade20K dataset, which has over
25,000,000 images and 150 categories. The embedding dimension of the first stage is set to
C = 96, the window size is set to 7, and the number of blocks and heads in each stage is set
to {2, 2, 6, 2} and {3, 6, 12, 24}, respectively. We used AdamW as the optimisation function
with a learning rate of 1 × 10−5 [24].

3.2.2. Data Augmentation

On the one hand, due to the high resolution of remote sensing images, they cannot be
directly input into deep learning neural networks for training. On the other hand, deep
learning requires a large dataset for training to achieve better results, and the number of
remote sensing cage images is small. Therefore, we perform data augmentation operations
on the training set. Take building a training set of 512 × 512 pixels as an example. First, the
original high-resolution image and the label image are simultaneously randomly cropped
to a size of 512 × 512 pixels. Then, perform data augmentation operations on the cropped
image, such as random rotation transformation, blur transformation, flip transformation,
and adding Gaussian noise. Finally, the augmented data is extended to the training set. The
random rotation and flip transformations model the difference in the cage’s position. Blur
transforms and Gaussian noise better simulates various environments. Finally, by looping,
the desired number of different training samples can be obtained. As shown in Figure 7,
it shows the effect of performing data augmentation.
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Figure 7. Results of data augmentation.

3.3. Evaluation Metric

For the binary classification problem, A is referred to as a positive example (Positive),
B is referred to as a negative example (Negative), and the classifier predicts correctly is
noted as True and predicts incorrectly as False. From these four basic combinations, the
four base elements of the confusion matrix are formed as TP (True Positive), FN (False
Negative), TN (True Negative) and FP (False Positive), as shown in Table 1.

Table 1. Confusion matrix.

Truth
Prediction

T F

P TP FN
N FP TN

In semantic segmentation experiments, the commonly used experimental metrics are
mIoU [25] and pixel accuracy (PA). Where IoU represents the ratio of the intersection to
the merge between the predicted outcome of each category and the True label, as shown in
Equation (5). For the binary classification problem, mIoU is the sum and then the average
of IoU, which can be expressed as Equation (6). Pixel accuracy represents the ratio of the
number of pixels correctly predicted for a category to the total number of pixels, as shown
in Equation (7).
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IoU =
TP

TP + FP + FN
(5)

mIoU = [
TP

TP + FP + FN
+

TN
TN + FP + FN

]/2 (6)

PixelAccuracy =
TP + TN

TP + TN + FP + FN
(7)

3.4. Quantitative Experiments

In order to verify the effectiveness of the algorithm based on ensemble learning, the
experiments compare the algorithm in this paper with several current algorithms with
better performance, the comparison algorithms include U-Net [26], Mask-RCNN [27],
SOLOv2 [28], UCTransNet [29], Attention U-Net [30] and the Swin Transformer. Evaluation
metrics included mIoU and pixel accuracy. To ensure the validity of the experimental
comparisons, the same experimental environment is used for all experimental methods.The
experimental results are shown as Tables 2 and 3.

Table 2. mIoU for different neural network segmentation.

Methods 256 × 256 512 × 512

U-Net 0.6425 0.8061

Mask-RCNN 0.7024 0.7833

SOLOv2 0.7142 0.7891

UCTransNet 0.7423 0.6951

Attention U-Net 0.6897 0.8142

Swin Transformer 0.7627 0.7976

Ensemble 0.8234

Table 3. Pixel accuracy for different neural network segmentation.

Methods 256 × 256 512 × 512

U-Net 0.9858 0.9934

Mask-RCNN 0.9851 0.9879

SOLOv2 0.9879 0.9902

UCTransNet 0.9842 0.9851

Attention U-Net 0.9886 0.9947

Swin Transformer 0.9896 0.9967

Ensemble 0.9971

Meanwhile, this paper makes statistics on the cage breeding density of Xincun Port,
Potou Port and Li’an Port from 2017 to 2021, and makes a vertical comparison of the cage
breeding density of different ports at the same time, and a horizontal comparison of the
breeding density of the same port at different times. The experimental result is shown in
Figure 8.
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Figure 8. Breeding density.

3.5. Qualitative Experiments

The final test results of the proposed Swin Transformer and ensemble learning strategy-
based segmentation scheme are shown in Figure 9. The breeding situation of different ports
in different time periods is shown in Figure 10. Because there were no culture cages in Li’an
Port in 2021, we do not show them.

(a) (b) (c)

(d) (e) (f)

Figure 9. Cont.
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(g) (h) (i)

Figure 9. The results of test. (a) Potou Port; (b) Segmentation; (c) Visualization; (d) Xincun Port;
(e) Segmentation; (f) Visualization; (g) Li’an Port; (h) Segmentation; (i) Visualization.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (l) (m)

Figure 10. The breeding situation of different ports. (a) Xincun Port (2017); (b) 2018; (c) 2019; (d) 2020.
(e) Potou Port (2017); (f) 2018; (g) 2019; (h) 2020. (i) Li’an Port (2017); (j) 2018; (k) 2019; (l) 2020.

4. Discussion

The results in Tables 2 and 3 show that the segmentation scheme combined with the
ensemble learning strategy outperforms other existing algorithms in terms of mIoU and
pixel accuracy compared to segmentation using only the Swin Transformer algorithm. It
can also be seen from Tables 2 and 3 that the segmentation network proposed in this paper
is less accurate for small targets than large targets. On the one hand, there may be fewer
images containing small targets in the dataset, which leads to the model being biased
towards larger targets during training; on the other hand, the area of small targets is so
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small that there are fewer anchors containing them, which also means that the probability
of small targets being detected becomes smaller. It can be seen from Figure 9 that the
segmentation scheme proposed in this paper has a good segmentation effect, but there
are still some cages that have not been segmented in the segmentation result graph, as
shown in Figure 11. The image block on the corner of the image is an enlarged view of
the corresponding area. First, the farming cages in this part have similar characteristics to
the abandoned cages, and there is no obvious farming mouth; otherwise, the cages in this
area are built in a different way, which does not appear in the training set, resulting in the
model not learning the features.

Figure 11. Visualization of the result.

Considering that the scale of aquaculture varies in different seasons and harsh weather
may result in unclear remote sensing images, the experimental pictures are selected from
the conditions of the peak season of aquaculture and good weather. The result in Figure 8
shows that the breeding density of each port reached the maximum in 2019, and then
gradually decreased, and even Li’an Port will no longer carry out cage culture in 2021. The
breeding density of Potou Port also surpassed that of Xincun Port in 2018, ranking first
among the three ports. The breeding density of Li’an Port has always remained the lowest.
Through efficient statistics on the breeding density of cages in different ports, effective
macro-control can be achieved to prevent the unreasonable layout of breeding cages.

Using deep learning technology to count the distribution density of cages, on the one
hand, can greatly improve the success rate of nursery and adult fish breeding, and reduce
the possibility of ecological pollution; on the other hand, the introduction of deep learning
technology is conducive to the establishment of a new modern smart breeding model. In
large-scale and high-density aquaculture with cluster effect, efficient and scientific data
analysis can reduce the input of human and material resources. At the same time, it
can also reduce the loss caused by human subjective judgment errors and lag, thereby
improving the economic benefits of aquaculture. From the perspective of maintaining
the ecosystem, the introduction of deep learning technology is conducive to the rational
and scientific layout of the marine aquaculture industry, promotes the establishment of
green and healthy styles of marine aquaculture, and protects the ecological environment in
harbour areas. This innovative style plays a significant role in promoting the development
of environment-friendly aquaculture, reducing the use of drugs, reducing the breeding
of pathogens and realizing pollution-free aquaculture, and can provide strong technical
support for the sustainable development of marine aquaculture.



Appl. Sci. 2022, 12, 8234 15 of 16

5. Conclusions

In aquaculture, the normal growth of fish is closely related to the density of mariculture.
Therefore, in order to solve the density statistics of mariculture cages, this paper adopts the
Swin Transformer neural network algorithm, an accurate segmentation scheme for remote
sensing images of cages based on the Swin Transformer and ensemble learning strategy.
In order to verify the effectiveness of the scheme proposed in this paper, comprehensive
comparison experiments are conducted on U-Net, Mask-RCNN, SOLOv2, UCTransNet,
Attention U-Net and Swin Transformer in the experiments. The experimental results show
that the segmentation scheme proposed in this paper can produce optimal segmentation
results with mIoU reaching 82.34%.

Although the scheme proposed in this paper has produced a good segmentation effect
on the remote sensing images of cages, there are still shortcomings. On the one hand, for
the problem that some of the cages cannot be segmented, future attempts can be made to
incorporate temporal features and spatial features. On the other hand, the scheme proposed
in this paper is not effective in segmenting small targets, and future attempts can be made
to combine image pyramids and multi-scale sliding window methods to improve the seg-
mentation accuracy of mariculture cages. At the same time, the seasonality of aquaculture
and how to extract high-definition remote sensing images in harsh environments can also
be studied in the future.
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