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Abstract: Airport gate assignment is a critical issue in airport operations management. However,
limited airport parking spaces and rising fuel costs have caused serious issues with gate assignment.
In this paper, an effective multiobjective optimisation model for gate assignment is proposed, with the
optimisation objectives of minimising real-time flight conflicts, maximising the boarding bridge rate,
and minimising aircraft taxiing fuel consumption. An improved tunicate swarm algorithm based on
cosine mutation and adaptive grouping (CG-TSA) is proposed to solve the airport gate assignment
problem. First, the Halton sequence is used to initialise the agent positions to improve the initial
traversal and allocation efficiency of the algorithm. Second, the population as a whole is adaptively
divided into dominant and inferior groups based on fitness values. To improve the searchability of
the TSA for the dominant group, an arithmetic optimisation strategy based on ideas related to the
arithmetic optimisation algorithm (AOA) is proposed. For the inferior group, the global optimal
solution is used to guide the update to improve the convergence speed of the algorithm. Finally, the
cosine mutation strategy is introduced to perturb the optimal solution and prevent the target from
falling into the local extrema as a way to efficiently and reasonably allocate airport gates. The CG-TSA
is validated using benchmark test functions, Wilcoxon rank-sum detection, and CEC2017 complex
test functions and the results show that the improved algorithm has good optimality-seeking ability
and shows high robustness in the multiobjective optimisation problem of airport gate assignment.

Keywords: airport gate assignment; tunicate swarm algorithm; Halton sequence; arithmetic optimi-
sation strategy; adaptive grouping; cosine mutation strategy

1. Introduction

The growing size and population of cities with limited resources and services for
healthcare, education, the environment, and transportation will make the development
of smart cities even more difficult. Smart transportation contributes to the design of
smart cities that meet user needs in terms of transportation network efficiency and social
sustainability. In this paper, improving urban transportation services is the main goal and
the intelligent management of public transportation is the fundamental aspect. With the
growing demand for air transportation and the rapid increase in the number of flights,
the limited airport resources are already overloaded. Airport parking space is an essential
resource for airports and is one of the most critical factors for achieving the fast and safe
stopping of flights, ensuring the compelling connection between flights, and improving the
operational efficiency and resource use efficiency of the whole airport [1]. There are two
methods for alleviating the strain on airport parking resources. One approach is to begin
directly on the hardware side by expanding infrastructure such as parking spaces, corridor
bridges, and airport aprons. However, increasing hardware equipment and expanding
airports will necessitate significant investment in terms of money, time, workforce, and
large-scale planning, which will be a long-term strategic consideration. The second goal
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is to optimise the software aspect, allocate gate resources more efficiently, and improve
airport gate utilisation efficiency. In comparison to hardware expansion, the latter is more
appropriate for solving problems such as insufficient parking spaces, with low investment
costs, low risk, and quick results. As a result, studying the optimal configuration of airport
gates is extremely practical.

The Airport Gate Assignment Problem (AGAP) [2] is a multiobjective optimisation
problem that involves allocating resources while taking into account the various stake-
holders and the opposing goals for the same stakeholder. Its goal is to distribute a large
number of flights among a small number of gates in order to minimise the amount of time
passengers must spend walking to their gates. Airport operators strive to decrease resource
requirements, resource congestion, disturbances, and delays while also maximising the
effectiveness of airport resources. Therefore, this paper provides a review of the literature
from two main perspectives: that of the passenger and that of airport operations. Accord-
ing to the first perspective, Bihr [3] proposed a 0–1 linear planning method to minimise
the passenger travel distance by reducing the distance passengers walk from one gate to
another. Although some practical ideas are provided in a dynamic airport environment,
the solutions are idealised. Xu et al. [4] proposed a simple tabu search metaheuristic to min-
imise the time for passengers to change flights. Drexl et al. [5] proposed a Pareto-simulated
annealing strategy to reduce the number of flights and passengers’ walking distances. Xie
et al. [6] proposed an improved simulated annealing algorithm based on a cluster search,
introducing the neighbourhood construction of the variable neighbourhood search idea to
achieve a 0–1 integer planning model for aircraft gate assignment while minimising the
number of gates used and taking transit passengers’ transfer tensions into account. Yuan
et al. [7] proposed a hybrid particle swarm algorithm based on the combination of a genetic
algorithm and a PSO algorithm to achieve the minimisation of passenger walking distance
and parking space idle time equalisation. Dell et al. [8] proposed a new fuzzy swarm
optimisation algorithm to reduce total passenger walking distance. CeCen [9] proposed
mixed integer linear programming (MILP) and the simulated annealing (SA) algorithm
to reduce the total walking distance of passengers from the gate to the baggage conveyor
as well as the total fuel consumption of the aircraft taxiing from the gate to the baggage
conveyor. From the perspective of airport operators, Yan et al. [10] proposed a heuristic and
a simulation framework to assist airport gates in the gate assignment for delayed flights.
Hassounah et al. [11] investigated random flight delays to improve static gate assignment
performance. Yan et al. [12] used a fixed buffer time between two consecutive flights
assigned to the same gate to minimise random flight delays. Dorndorf et al. [13] proposed
a recovery planning procedure to maximise the total aircraft assignment preference while
minimising the number of constrained expected gate stops. Zhang et al. [14] proposed
a biogeography-based optimisation algorithm and a new method for estimating conflict
probability to solve a multiobjective gate assignment model that minimises the flight con-
flict probability and the number of flights allocated to the ramp, thereby improving gate
assignment robustness.

Of the types of methods, mathematical planning methods are popular: these systems
assign flights to gates based on specific rules. Cheng [15] proposed an airport gate as-
signment system based on mathematical planning techniques, resulting in an assignment
scheme that satisfies both static and dynamic cases at a reasonable computation time.
Jaehn [16] proposed a dynamic planning scheme with the sole goal of maximising the
aircraft/gate preference fraction in order to solve the gate assignment problem in linear
time relative to the number of flights. Yan et al. [17] developed a network model and
proposed a Lagrangian relaxation-based subgradient method algorithm, shortest path
algorithm, and Lagrangian heuristic algorithm to help airports allocate gates efficiently.

Another class of methods can be broadly categorised as “heuristic” methods. Bi et al. [18]
proposed a label search-based algorithm to create a unique neighbourhood structure and
tabu search strategy for effectively and rationally allocating gates in order to reduce airport
operation costs and improve passenger satisfaction. Hu et al. [19] constructed chromosomes
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using relative aircraft positions rather than absolute aircraft positions in the gate queue and
proposed an infeasibility-free genetic algorithm for multiobjective gaps. Asadi et al. [20] pro-
posed a hybrid metaheuristic algorithm based on the shuffle frog leap algorithm (SFLA) and
grasshopper optimisation algorithm (GOA) to solve the problem of joint aircraft turnaround
time and airport gate assignment. Deng et al. [21] proposed an improved ant colony optimisa-
tion algorithm that used a collaborative ant colony strategy and a pheromone update strategy
to quickly achieve a reasonable and efficient airport gate assignment.

Kaur et al. [22] proposed a new tunicate swarm algorithm (TSA) in 2020, which was
inspired by tunicate swarm behaviour. Tunicates are the only animals that move through the
ocean using fluid jets for propulsion and they survive by using jet propulsion and swarm
intelligence. The TSA is easier to implement than other optimisation algorithms, has better
average robustness and global search capabilities, and has been successfully applied in a
variety of fields. For example, Li et al. [23] proposed a tent mapping-based tunicate swarm
optimisation algorithm that generates initialisation using tent mapping and uses the grey wolf
algorithm to generate global search vectors to improve the algorithm’s global exploration
capability. The Levy flight is also introduced to broaden the search range and provide an
optimal economic and environmental dynamic scheduling scheme. Houssein et al. [24]
proposed a TSA based on local search improvements and introduced a local search algorithm
(LEO) [25] to improve the TSA’s convergence speed and local search efficiency, which they used
for global optimisation and image segmentation. Sharma et al. [26] used a TSA to implement
a local search algorithm to estimate the optimised values of unknown PV cell parameters at
standard temperatures. It has been discovered through the study of TSA that using a TSA’s
global search capability can avoid the problem of falling into local optimal solutions in the
process of finding the optimal solution for traditional multiobjective optimisation problems
and can keep the diversity of individual solutions.

In summary, the decision to set walking distance objectives for passengers has in-
creased in popularity in recent years, driven by the significance of robust gate schedules
for airports and airlines and a growing number of robustness-oriented objectives. Few
instances have addressed the requirement for airport operators to simultaneously pursue
reduced fuel costs and shorter passenger walking distances. Therefore, in this paper, the
AGAP is essentially divided into four objectives: minimising real-time flight conflicts,
maximising the boarding bridge rate, minimising the fuel used by aircraft during taxiing,
and simultaneously addressing the overall goal of increasing the boarding bridge rate and
minimising the fuel used by aircraft. By increasing the effectiveness of airport operations,
the pressure on airport fuel prices will be reduced. A survey of the literature on airport gate
assignment [27] issues revealed that a number of heuristic and metaheuristic methods have
been employed to find solutions. Few have, however, suggested multiobjective precise
approaches, and some metaheuristics might generate infeasible solutions. Therefore, an
improved tunicate swarm algorithm based on cosine mutation and adaptive grouping
(CG-TSA) is proposed in this paper. The Halton sequence initialisation algorithm was
introduced to allow the TSA to traverse all possible gates within the entire airport during
the initial search in order to improve assignment efficiency. A cosine mutation strategy is
used for the gate assignment multiobjective problem to prevent the algorithm from being
limited to the optimisation performance of one objective at the expense of the solvency
of the others and to prevent the single-objective optimisation from falling into the local
extrema, thereby improving the robustness of the gate multiobjective problem solution.
The proposed CG-TSA generates partially feasible solutions and improves them during the
iterative process. The efficiency of the optimisation procedure can thus be improved.

The remainder of the paper is organised as follows. A multiobjective optimisation
model for gate assignments is developed in Section 2. In Section 3, an improved TSA based
on cosine mutation and adaptive grouping is proposed. Section 4 evaluates the performance
of CG-TSA using the benchmark test function, the benchmark test function Wilcoxon rank-
sum detection, and the CEC2017 test function. Section 5 presents the application of CG-TSA
to the gate assignment multiobjective optimisation problem and simulates and analyses the
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data, and these results are compared with the TSA and GA. The conclusion of this work is
provided in Section 6.

2. Optimisation Modelling of Gate Assignments
2.1. Description of the Gate Assignment Problem

Airport gate assignments can be subject to a variety of conditions. To achieve fast, safe,
and effective flight docking, reasonable gate assignments play a vital role. The following is
a detailed analysis of the gate and flight characteristics. For gates, there are three important
features as follows.

1. Matching characteristics of gates

Gates can be divided into three types according to size: large, medium, and small.
Large gates can park large and small aircraft, medium gates can park small and medium
aircraft, and small gates can only park small aircraft.

2. Parking uniqueness

Only one aircraft can be assigned to the same gate at any one time during a time slot.

3. Auxiliary facilities

Due to geographical and land constraints, an airport has a limited number of boarding
bridges. In addition to the bridges, passengers can board from the apron by transfer bus.

For the landing characteristics of flights, the following types of characteristics exist.

1. Flight No.

To facilitate the organisation of transport production and differentiate management,
each flight is coded with different numbers according to certain rules.

2. Flight types

This refers to the types of aircraft owned by the airlines. The aircraft type is determined
by the number of seats and the layout of the cabin. Different performance variables (such
as range, fuel consumption, etc.) mean the aircraft will vary in fuselage size and operating
costs. Common flight models are Airbus 320, Boeing 737, Boeing 767, etc.

3. Dynamic characteristics

Each flight has an arrival time and a departure time, with prearranged runways for
take-off and landing.

2.2. Determine the Objective Function

Airports, passengers, and airlines all have a stake in the allocation of airline slots. The
preassignment of airline slots should take into account flight delays, weather effects, and
other disruptions from the perspective of airport operations management. To improve the
robustness of the preallocation, the gate assignment model must be solved with the ability
to handle dynamic changes, minimise the number of idle slots, and minimise the number
of conflicts between real-time operating flights. As a result, minimising real-time flight
conflicts is chosen as an optimisation goal. Because the number of airport boarding bridges
is limited, as the number of flights increases, some flights will be assigned to more distant
aprons. To access the boarding area, passengers must take a bus. This causes inconvenience
to passengers while also increasing the workload for dispatchers. As a consequence, opti-
mising flight occupancy will reduce wasted boarding bridge slots and improve passenger
satisfaction. Furthermore, due to the promotion of “green transportation” and the ongoing
rise in international oil prices, airlines have faced pressures due to fuel consumption costs
in recent years. The cost of aircraft fuel accounts for approximately 15.5 percent of all airline
operating costs [28]. As a result, reducing fuel consumption and lowering transportation
costs have been critical issues for airlines to address. The choice of gate directly affects the
taxiing costs of the aircraft from the landing runway to the gate in the gate assignment
problem so minimising fuel consumption is used as an optimisation objective. At the same
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time, although the aircraft typically wants to arrive at the assigned gate using the least
amount of fuel, the gate reached at this point may be a more distant gate. As a result, the
overall goal is to maximise the boarding bridge rate while minimising aircraft taxiing fuel
consumption. In summary, the detailed description of the identified optimisation objectives
is as follows.

1. Minimise real-time flight conflicts

In this paper, the multiobjective function optimisation uses the linear weighting
method. Minimising the number of real-time running flight conflicts during gate preallo-
cation can improve the flight punctuality rate. The mathematical model of the conflicting
objective function is shown below.

F1 = min( ∑
k∈N

∑
u∈M

xku+ ∑
k∈N

∑
u∈M

ψku) (1)

where N is the set of flights, M is the set of aircraft slots, and xku is a variable taken as 0 or 1.
xku = 1 if flight k is assigned to slot u and xku = 0 otherwise. ψku is the penalty factor when a
flight is assigned to a distant slot and is 0 if assigned to a near slot and 1 when assigned to
a distant slot.

The robustness of the preassignment scheme can be improved by minimising the number
of conflicts in real-time flights, which can equalise the efficiency of the utilisation of aircraft
resources, and by improving the normalisation rate of flight releases in terms of minimising
idle time. The minimisation of the slot idle time objective function is shown as follows.

tk =

N
∑

k=1
tk

m
(2)

minF2 =

N
∑

k=1
(tk − tk)

2

m
(3)

where tk denotes the slot idle time between flight k and flight k − 1. The dataset in this
paper contains m flights and assuming that the slot is closed after the arrival of the last
flight, there are a total of m slot idle times.

2. Maximise the boarding bridge rate

The objective function for maximising the number of flight stops at the boarding
bridge is shown below.

F3 = max ∑
k∈N

∑
u∈M

xku pu (4)

where pu is a variable that takes the value of 0 or 1. It takes the value of 1 when the flight is
assigned to a near gate and 0 when it is assigned to a far gate.

3. Minimise fuel consumption

The minimised fuel consumption objective function for a flight landing on the runway
and taxiing from the runway to the preassigned gate is shown below.

F4 = min

C ·
∑

k∈N
∑

u∈M
xkuokdku

v

 (5)

where C is the unit cost of aircraft fuel, ok is the fuel consumption of flight k during taxiing
(fuel consumption is related to the type of aircraft), dku is the distance from aircraft k landing
on the runway to gate u, and v is the average taxiing speed of the aircraft on the runway.

4. Overall target model
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Although the aircraft wants to arrive at the assigned gate using the least amount of
fuel, the gate reached at this time may be a more distant gate. As a result, to maximise
the flight-to-bridge rate and the lowest fuel consumption, nonlinear normalisation must
be used to compute the fast assignment of each aircraft from the landed runway to a free
near-boarding bridge with relatively low fuel consumption. The objective function of the
total objective model is as follows.

f it = max(
[

atan(F3) ·
2
π

, atan(F4) ·
2
π

]
) (6)

F5 = min(ω1 · atan(F3) ·
2

π · f it
+ ω2 · atan(F4) ·

2
π · f it

) (7)

where ω1 and ω2 are the weight coefficients, which take the value of ω1 = ω2 = 0.5 in
this paper.

2.3. Constraints

The related constraints are illustrated as follows:

∑
u∈M

xku = 1, ∀k ∈ N (8)

fq ≤ gl + (1− xku)δ, ∀k ∈ N, u ∈ M, l ∈ M, δ ∈ R+ (9)

∆tku = ak + xku · (
diu
v
), ∀k ∈ N, u ∈ M, i = 1, 2, 3 (10)∣∣Ak − Dj
∣∣ ≥ T, ∀k, j ∈ N (11)

Equation (8) maintains that only one aircraft can be assigned to a gate at any given
moment. Equation (9) assures that the aircraft receives service from the gate according to
the flight type, where fq is the aircraft type and gl is the large gate, i.e., the type of aircraft
that can accommodate the largest size. Equation (10) calculates the entrance and exit times
for gate u and aircraft k using the taxiing distance and arrival time, where ∆tku is expressed
as the entry time of aircraft k to gate u, ak is the expected arrival time of aircraft k, and dku is
the distance from aircraft k landing on the runway to gate u. Equation (11) means that the
time interval between two adjacent flights at the same gate must be greater than the safety
interval time, where Ak is the scheduled arrival moment of aircraft k, Dj is the scheduled
departure moment of flight j, and T is the safety interval time.

3. An Improved TSA Based on Cosine Mutation and Adaptive Grouping
3.1. Tunicate Swarm Algorithm (TSA)

Tunicates are bright bio-luminescent animals and produce a pale blue-green light.
Each tunicate draws water from the surrounding sea and generates jet propulsion via atrial
syphons at its open end. Tunicates are the only animals in the ocean that move by using
fluid jets for propulsion and they survive by using jet propulsion and group behaviour. The
TSA primarily simulates two tunicate behaviours: jet propulsion and swarm intelligence.
Jet propulsion behaviour relies primarily on gravity, the advection of deep-sea currents, and
the interaction forces between individuals to achieve conflict avoidance between individual
searches. For jet propulsion behaviour, the tunicate must meet three conditions. Before jet
propulsion, the first condition is to avoid conflicts between the searching agents. The second
requirement is that the searching agents move towards the best searching agent. The third
requirement is to keep a safe distance from the best searching agent. Swarm intelligence is
concerned with updating the location of the search agent’s optimal solution, determining
the location of companions through changes in the neural perception of water flow around
the tunicate and companion luminescence, and cooperating to congregate towards the
location of the target food source for group foraging. The TSA-specific implementation
principle is illustrated below.
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3.1.1. Jet Propulsion Behaviour

Before performing the jet propulsion behaviour, the tunicate needs to avoid conflicts
with other searching agents using the vector A to calculate the new position, then

A =
G
M

(12)

G = c1 + c2 − F (13)

F = 2 · c3 (14)

where G denotes gravity, c1, c2, and c3 are random numbers taking the values [0, 1], and F
denotes the velocity of the current in the deep sea. M denotes the social force between the
searching agents, and its mathematical model description is shown.

M = bPosmin + c3(Posmax − Posmin)c (15)

where Posmin and Posmax are the initial and slave velocities of the attraction, respectively.
After avoiding the conflict between neighbours, the search agents move in the direction

of the best neighbour.
dpost = |Pbest − rand · xt| (16)

where dpost is the distance between the search agents and the food source. Pbest denotes the
location of the food source, i.e., the optimal location. xt denotes the current location of the
search agents and rand is a random number in the range [0, 1].

Thereafter, the search agent moves towards the best search agent. The mathematical
model of its movement is shown below.

xt =

{
Pt

best + A · dpost, rand ≥ 0.5
Pt

best − A · dpost, rand ≤ 0.5
(17)

where Pt
best is the position of the food source at the tth iteration, i.e., the optimal position at

the tth iteration.

3.1.2. Swarm Intelligence

The swarm intelligence behaviour of the tunicate is to update the other search agents
by the optimal search agent positions and to continuously update the positions of the other
search agents by the positions of the first two best search agents. Its mathematical model is
as follows.

xt+1 =
xt + xt−1

2 + c1
(18)

where xt−1 denotes the position of the closest food source of the previous generation of the
tunicate. c1 is a random number taking the value [0, 1].

3.2. Ideas and Strategies for Improved Adaptive TSA
3.2.1. Halton Sequence Initialisation

The tunicate is not socially organised while searching for food. The tunicate is centred
on its current position and searches randomly within a sector constructed by the differ-
ence between the current optimal position (food source position) and its current position.
The TSA uses random population initialisation, resulting in highly random populations.
However, when compared to the uniform method, random initialisation causes initial
population aggregation and overlap, resulting in a slow population search and insufficient
algorithmic diversity. This paper introduces the Halton sequence to initialise the population
in order for the TSA to traverse all possible gates within the entire airport during the initial
search. The Halton sequence [29] is a low-difference sequence sampling method with good
uniform distribution properties, allowing the initialised agents to be distributed evenly
across the search space. In the literature [30], the uniformity of sequences generated by
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Halton sequences and Rand functions was compared, and the algorithm using Halton
sequence initialisation had a more stable convergence time and better traversal.

Halton sequence sampling belongs to the extension of the proposed Monte Carlo
sequence, whose main idea is to select a prime as the base and then continuously slice it to
form a series of uniform and nonrepeating points, each with coordinates between 0 and 1.
Its mathematical formula is expressed as follows.

n =
j

∑
i=0

pi · qi = pjqj + pj−1qj−1 + · · ·+ p0 (19)

where n ∈ [1, N] is an arbitrary integer, p ≥ 2, is prime, p ∈ {0, 1, 2 . . . , q − 1} is a constant,
and q is the basic quantity of the Halton sequence. Define the sequence function α(n)
as follows.

α(n) = p0q−1 + p1q−2 + · · ·+ pjq−j−1 (20)

The final two-dimensional uniform Halton sequence H(n) can be obtained as follows.

H(n) = [α1(n), α2(n)] (21)

The distribution of agents initialised with the random population generated by the
basic TSA is given in Figure 1. Figure 2 shows the distribution of the population after the
initialisation using the Halton sequence, where the base quantities are taken as 2 and 3.
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Figure 2. Distribution map of the Halton sequence.

From the comparison of Figures 1 and 2, the population distribution obtained by the
Halton sequence is more uniform and there is no overlapping of the agents. Thus, the
initialisation with the Halton sequence can make the population quality higher and thus
improve the diversity of the algorithm.
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3.2.2. TSA Adaptive Grouping Strategy

The TSA is a group intelligence search algorithm based on the habitat of jet propulsion
and swarm intelligence. The jet propulsion phase corresponds to the global development
of the algorithm, whereas the swarm intelligence phase corresponds to the algorithm’s
local search. Because of the different positions that the tunicates are in, there is a possibility
that these agents are attracted to the local optimal solution and are prone to falling into
the local optimal solution as the number of iterations increases. To avoid this possibility,
an adaptive grouping strategy is proposed, where agents are divided into two groups
according to their fitness values from largest to smallest, with the first half of the agents
being the dominant group of the tunicate and the remaining individuals being the inferior
group of the tunicate. For the group with the lower fitness values, that is, the group
dominated by saccades, indicating a better position in the population, it is necessary to
enhance their search ability and strengthen the information exchangeability among the
agents at this time. Therefore, in this paper, inspired by the position updating method of
the arithmetic optimisation algorithm, an arithmetic optimisation strategy is proposed to
combine the TSA’s jet propulsion behaviour and swarm intelligence behaviour for one-to-
one optimisation. The group with the higher fitness values, which is the inferior saccade
group, is in a worse position. Hence, the global optimal solution is adopted to guide the
agent position update as a way to speed up the convergence of the algorithm. At the same
time, the ability of the algorithm to jump out of the local optimum is improved.

Algorithmic Optimisation Strategy

The dominant group of tunicate swarms employs arithmetic optimisation strategies
for updating position and improving interindividual information transfer. The AOA is
a metaheuristic algorithm proposed in 2021 by Abualigah et al. [31] that primarily uses
the calculation of arithmetic operators in mathematics, such as multiplication and division
operators, as well as addition and subtraction operators. The specific implementation
process is divided into two phases: exploration and development.

In the exploration phase, the AOA uses highly decentralised multiplication or di-
vision operators to extensively explore the search space and find a better position. The
mathematical model of the AOA exploration phase implementation is described as follows.

xi
t+1 =

{
Pi

best ÷ (MOP + α) · (λ(UBi − LBi) + LBi), r2 < 0.5
Pi

best ×MOP · ((UBi − LBi)× λ + LBi), otherwise
(22)

where xt+1 denotes the agent solution after the next iteration, Pbest denotes the optimal
solution of the current iteration, UBi and LBi denote the upper and lower bounds of the
ith position, respectively, α is the defined integer, λ is the control parameter to adjust the
search process, and the value of λ in the basic AOA is 0.5. MOP is the probability function,
where the mathematical model is described as follows.

MOP = 1− tε

Tε
max

(23)

where ε = 5, a sensitivity factor, defines the search accuracy of the iterations.
During the development phase, AOA are developed using high-density additive

or subtractive arithmetic. The additive and subtractive operators can easily approach
the target due to their low spatial span. Therefore, it is easier to derive the optimal
solution after several iterations. The mathematical model of the AOA development process
implementation is as follows.

xi
t+1 =

{
Pi

best −MOP× ((UBi − LBi)× λ + LBi), r3 < 0.5
Pi

best + MOP× ((UBi − LBi)× λ + LBi), otherwise
(24)

where r3 takes the value [0, 1] as a random number.
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In the exploration and exploitation phases, the arithmetic optimisation algorithm
performs position updating using operators with different characteristics for different
states of the population. This process not only aids in the discovery of the optimal solution
during the exploration phase but also preserves the diversity of other candidate optimal
solutions. The TSA is a random search based on jet propulsion and swarms intelligence
behaviour centred on agent tunicates and because of this single search mode, the TSA lacks
dynamism, easily falls into a local optimum, and has low solution accuracy. Therefore,
the AOA multiplication and division operator is introduced in the TSA jet propulsion
behaviour phase to assist the TSA in increasing the search range, improving the mining
ability of the TSA and the global search ability during TSA jet propulsion. The AOA
multiplication and division operator is introduced in the group behaviour phase of the
TSA to target the algorithm’s local exploitation ability and improve the algorithm’s overall
search accuracy and convergence speed.

Global Optimal Solution Guidance Strategy

For the inferior group of the tunicates with relatively poor exploration and exploitation
abilities, the global optimal solution guidance strategy is used. By keeping the current
solution away from a randomly selected candidate solution from the agents, the guidance-
based global optimal solution is generated, and the captive group’s search opportunity
for the optimal solution in the neighbourhood is increased, speeding up the algorithm’s
convergence. The formula for updating the inferior group position after the introduction of
the global optimal solution guidance strategy is shown below.

xt+1 = xt + rand× (Pt
best − xt) (25)

where xt is the current position of the capsule agent and Pbest is the optimal position of the
current capsule agent, which is the global optimal position. The change in the number of
iterations can guide the capsule group to perform a locality search, which is beneficial for
increasing the algorithm diversity and improving the convergence accuracy.

3.2.3. Cosine Mutation Strategy

This paper, which was inspired by the literature [32], proposes a sinusoidal mutation
strategy based on the cosine function to guide the current optimal agent to make a local
jump in order to improve the ability of the agents after TSA grouping to jump out of the
local optimal solution at a later stage. When dealing with the boarding gate assignment
problem, it also prevents the TSA from being limited to the optimisation performance of
one objective while ignoring the solving ability of the other objectives and it moves closer
to the theoretical optimum. For the cosine function, its value on the range interval [0, 2π]
is [−1, 1], which can make the grouped algorithm perform a small search for the current
global optimum position. Thus, it can make the algorithm tend to search better for the
optimum in a certain search space. The TSA position update formula with the introduction
of the cosine mutation is as follows.

Pt+1
best = cos(2π × rand(1, 30)) · Pt

best (26)

Pt
best =

{
Pt+1

best , i f (Pt
best) < T

Pt
best, otherwise

(27)

where Pbest is the global optimal position as shown in Equation (26) and Equation (27). If
the adaptation of the agent after cosine sinusoid is better, the mutation result is selected.
Conversely, the original position is chosen to be kept.

3.3. CG-TSA Implementation Process

The flow chart of the CG-TSA implementation is shown below, see Figure 3.
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4. Simulation Experiment Analysis

This section describes the test functions used to evaluate the performance of the CG-
TSA. The Whale Optimisation Algorithm (WOA) [33], Grey Wolf Optimiser (GWO) [34],
Sine Cosine Algorithm (SCA) [35], AOA, and the basic TSA were selected for the function-
finding comparison for the CG-TSA. To ensure the fairness of the comparison between
the algorithms, the basic parameters of the algorithms were set to the same values includ-
ing the population size N = 30, the maximum number of iterations Tmax = 500, and the
dimensionality d = 30/500/1000. The internal parameters of each algorithm were set as
shown in Table 1. The experiments were conducted with 10 benchmark test functions
for the CG-TSA to compare the search performance, including single-peak test functions
F1–F6 and complex multipeak test functions F7–F10, and the description of the benchmark
test function information is shown in Table 2. The experimental running environment was
Windows 10, the CPU was a 3.4 GHz Intel Core i7-6500U with 8 GB of memory and a 64-bit
OS, and the model was built on MATLAB R2021(a).

Table 1. Algorithm parameter setting.

Algorithm Parameter

WOA \
GWO \
SCA \
AOA MOP_Max = 1, MOP_Min = 0.2, α = 5, µ = 0.49
TSA Pmax = 4, Pmin = 1

CG-TSA Pmax = 4, Pmin = 1
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Table 2. Introduction to benchmark functions.

Fun No. Name Range Dim Optimal Value

F1 Sphere [−100, 100] 30/500/1000 0
F2 Schwefel.2.22 [−10, 10] 30/500/1000 0
F3 Schwefel.1.2 [−100, 100] 30/500/1000 0
F4 Schwefel.2.21 [−100, 100] 30/500/1000 0
F5 Step Function [−100, 100] 30/500/1000 0
F6 Quartic Function [−1.28, 1.28] 30/500/1000 0
F7 Rastrigin [−5.12, 5.12] 30/500/1000 0
F8 Ackley [−32, 32] 30/500/1000 0
F9 Criewank [−600, 600] 30/500/1000 0
F10 Penalized 1 [−50, 50] 30/500/1000 0

4.1. Comparative Analysis of CG-TSA Benchmarking Function Search

To verify the advantages of the CG-TSA for benchmark test function seeking and
to analyse the simulation experimental results more intuitively, the WOA, GWO algo-
rithm, SCA, AOA, and basic TSA were selected for the benchmarking function finding
performance comparison experiments with the CG-TSA. Each algorithm was run 30 times
independently. Figure 4 shows the average convergence curves of some of the benchmark
functions. The horizontal coordinate is the number of iterations, and the vertical coordinate
is the fitness value.

As seen in Figure 4, the CG-TSA achieved theoretical optima for both unimodal
and complex multimodal functions. In particular, for the unimodal F3 function, the CG-
TSA expanded the search range in the early stage and accelerated the convergence of the
algorithm in later stages, indicating that the CG-TSA introducing the Halton sequence had
advantages in finding the optimal accuracy of the basic function. For the single-peaked
F6 function, the CG-TSA jumped out of the local optimal solution, which indicated that
the introduced cosine mutation effectively helped the algorithm to jump out of the local
extremum. As seen in the multipeaked F7–F10, the CG-TSA converged to the theoretical
optimum quickly compared with the other algorithms under the same number of iterations.
Based on the above analysis, the grouping improvement strategy of the cosine mutation
introduced in this paper effectively helped the TSA to show obvious advantages in the
basic function optimisation and improve the convergence accuracy of the algorithm.

4.2. CG-TSA High-Dimensional Function Finding Performance Comparison Analysis

To further validate the processing capability of the CG-TSA for high-dimensional op-
timisation problems, the basic TSA, WOA, GWO algorithm, and SCA were selected and
compared with the CG-TSA for 500-dimensional and 1000-dimensional simulation experi-
ments of the benchmark test functions. For each test function, the dimensionality d = 500/1000,
the population size N = 30, and the number of iterations Tmax = 500. Each algorithm was
run 30 times independently, and the mean and standard deviation were taken to judge the
performance of the optimisation algorithm. The optimisation search results of each algorithm
for the high-dimensional benchmark test functions are shown in Table 3.



Appl. Sci. 2022, 12, 8203 13 of 23
Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 25 
 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4. Cont.



Appl. Sci. 2022, 12, 8203 14 of 23
Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 25 
 

  

(g) (h) 

  

(i) (j) 

Figure 4. Partial convergence curves of the proposed CG-TSA and other metaheuristic algorithms 

of the benchmark test functions: (a) Convergence curve of F1; (b) Convergence curve of F2; (c) Con-

vergence curve of F3; (d) Convergence curve of F4; (e) Convergence curve of F5; (f) Convergence 

curve of F6; (g) Convergence curve of F7; (h) Convergence curve of F8; (i) Convergence curve of F9; 

(j) Convergence curve of F10. 

4.2. CG-TSA High-Dimensional Function Finding Performance Comparison Analysis 

To further validate the processing capability of the CG-TSA for high-dimensional op-

timisation problems, the basic TSA, WOA, GWO algorithm, and SCA were selected and 

compared with the CG-TSA for 500-dimensional and 1000-dimensional simulation exper-

iments of the benchmark test functions. For each test function, the dimensionality d = 

500/1000, the population size N = 30, and the number of iterations Tmax = 500. Each algo-

rithm was run 30 times independently, and the mean and standard deviation were taken 

to judge the performance of the optimisation algorithm. The optimisation search results 

of each algorithm for the high-dimensional benchmark test functions are shown in Table 

3. 

It is clear from the comparison results in Table 3 that the CG-TSA had clear ad-

vantages when handling high-dimensional optimisation problems. The CG-TSA results 

were similar in the 500-dimensional and 1000-dimensional search spaces for the single-

peaked test functions F1–F4 and the multipeaked test functions F7 and F8, and globally 

Figure 4. Partial convergence curves of the proposed CG-TSA and other metaheuristic algorithms
of the benchmark test functions: (a) Convergence curve of F1; (b) Convergence curve of F2; (c) Con-
vergence curve of F3; (d) Convergence curve of F4; (e) Convergence curve of F5; (f) Convergence
curve of F6; (g) Convergence curve of F7; (h) Convergence curve of F8; (i) Convergence curve of F9;
(j) Convergence curve of F10.

It is clear from the comparison results in Table 3 that the CG-TSA had clear advantages
when handling high-dimensional optimisation problems. The CG-TSA results were similar
in the 500-dimensional and 1000-dimensional search spaces for the single-peaked test
functions F1–F4 and the multipeaked test functions F7 and F8, and globally optimal values
were found for F1–F4 and F7. The search results for the other 1000-dimensional test
functions were remarkably similar to the data at 500 dimensions. The search results were
superior to those of other algorithms, despite the fact that the theoretical optimal value was
not found. It can be concluded that the CG-TSA had superior search capability and better
robustness than the other algorithms for the search for high-dimensional functions. The
proposed CG-TSA is a better optimiser for solving global optimisation problems.
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Table 3. Comparison of optimisation results of each algorithm.

Fun No. Dim
TSA WOA GWO SCA CG-TSA

Mean Std Mean Std Mean Std Mean Std Mean Std

F1
d = 500 2.89 × 10−21 5.33 × 10−21 1.86 × 10−73 5.72 × 10−73 5.54 × 10−28 6.86 × 10−28 1.30 × 101 2.20 × 101 0 0

d = 1000 7.74 × 10−22 6.69 × 10−22 3.73 × 10−73 1.16 × 10−72 1.38 × 10−27 3.34 × 10−27 1.72 × 101 4.13 × 101 0 0

F2
d = 500 1.27 × 10−13 8.68 × 10−13 1.69 × 10−52 2.45 × 10−52 8.12 × 10−17 7.31 × 10−17 2.64 × 10−2 3.86 × 10−2 0 0

d = 1000 7.62 × 10−14 8.92 × 10−14 7.32 × 10−52 1.78 × 10−51 1.63 × 10−16 8.99 × 10−17 1.83 × 10−2 3.14 × 10−2 0 0

F3
d = 500 3.35 × 10−4 1.01 × 10−3 3.87 × 104 1.16 × 104 8.15 × 10−6 1.55 × 10−5 9.61 × 103 5.84 × 103 0 0
d = 1000 2.59 × 10−5 3.53 × 10−5 4.06 × 104 9.04 × 103 4.14 × 10−6 5.80 × 10−6 6.76 × 103 7.16 × 103 0 0

F4
d = 500 3.16 × 10−1 2.66 × 10−1 5.47 × 101 3.61 × 101 5.64 × 10−7 3.76 × 10−7 3.41 × 101 1.30 × 101 0 0
d = 1000 2.77 × 10−1 2.55 × 10−1 5.62 × 101 2.06 × 101 5.96 × 10−7 3.81 × 10−7 3.65 × 101 1.34 × 101 0 0

F5
d = 500 3.72 × 100 4.01 × 10−1 5.58 × 10−1 2.93 × 10−1 6.26 × 10−1 4.75 × 10−1 1.50 × 101 1.20 × 101 2.01 × 10−2 3.24 × 10−3

d = 1000 3.95 × 100 6.12 × 10−1 4.10 × 10−1 2.12 × 10−1 1.05 × 100 3.69 × 10−1 2.10 × 101 1.99 × 101 2.07 × 10−2 2.56 × 10−3

F6
d = 500 1.19 × 10−2 5.22 × 10−3 1.32 × 10−3 1.48 × 10−3 2.03 × 10−3 1.17 × 10−3 1.16 × 10−1 5.17 × 10−2 5.04 × 10−5 7.83 × 10−5

d = 1000 8.48 × 10−3 4.53 × 10−3 6.08 × 10−3 4.53 × 10−3 2.58 × 10−3 1.18 × 10−3 1.51 × 10−1 2.11 × 10−1 6.46 × 10−5 4.73 × 10−5

F7
d = 500 2.00 × 102 3.43 × 101 0 0 3.62 × 100 3.54 × 100 5.57 × 101 3.23 × 100 0 0
d = 1000 1.95 × 102 4.75 × 101 0 0 2.75 × 100 3.82 × 100 4.62 × 101 4.58 × 101 0 0

F8
d = 500 1.86 × 100 1.62 × 100 4.08 × 10−15 4.25 × 10−15 9.75 × 10−14 1.18 × 10−14 1.26 × 101 9.77 × 100 8.88 × 10−16 0

d = 1000 1.58 × 100 1.67 × 100 5.50 × 10−15 2.39 × 10−15 1.02 × 10−13 1.83 × 10−14 1.47 × 101 8.80 × 100 8.88 × 10−16 0

F9
d = 500 1.16 × 10−2 9.26 × 10−3 3.82 × 10−2 8.07 × 10−2 3.77 × 10−3 8.68 × 10−3 8.85 × 10−1 3.17 × 10−1 1.46 × 10−5 9.57 × 10−6

d = 1000 6.56 × 10−3 8.60 × 10−3 2.46 × 10−2 7.79 × 10−2 1.38 × 10−3 4.37 × 10−3 7.39 × 10−1 3.77 × 10−1 0 0

F10
d = 500 6.81 × 100 3.64 × 100 2.64 × 10−2 1.92 × 10−2 9.72 × 10−1 1.63 × 10−1 1.11 × 104 3.49 × 104 4.46 × 10−3 8.43 × 10−3

d = 1000 5.51 × 100 4.45 × 100 7.22 × 10−1 1.61 × 10−1 4.23 × 100 2.58 × 100 1.02 × 104 3.19 × 104 1.21 × 10−2 1.10 × 10−2

4.3. Wilcoxon Rank-Sum Test

From the analysis of each experiment above, it can be concluded that the CG-TSA
performed well in the benchmark test function search. To reflect the algorithm’s perfor-
mance more comprehensively, the CG-TSA was compared with the basic TSA and the other
algorithms in terms of the optimisation-seeking effect. Wilcoxon nonparametric statistical
tests were performed at the 0.05 significance level.

The results of the CG-TSA run for the 10 benchmark test functions in Table 2 were
selected to perform the Wilcoxon rank-sum tests and calculate the p values with the TSA
after adding the Halton initialisation (HTSA), TSA after grouping improvements (FTSA),
TSA after adding the cosine variation (CTSA), and the results of the GWO algorithm and
SCA runs. When p < 5%, it was considered a strong validation of the rejection of the
null hypothesis [36]. The experimental results NaN indicated that there were no data
for comparison and +, =, and − indicated that the CG-TSA outperformed, equalled, and
underperformed the compared algorithms, respectively. The results of the Wilcoxon rank-
sum tests are shown in Table 4.

Table 4. Wilcoxon rank-sum test results.

Fun No. TSA (p1) HTSA (p2) FTSA (p3) CTSA (p4) GWO (p5) SCA (p6)

F1 1.34 × 10−16 1.34 × 10−16 3.31 × 10−20 3.31 × 10−20 9.91 × 10−16 7.06 × 10−18

F2 3.31 × 10−20 3.31 × 10−20 3.31 × 10−20 NaN 3.31 × 10−20 3.31 × 10−20

F3 4.55 × 10−4 3.46 × 10−14 3.06 × 10−10 3.31 × 10−20 6.85 × 10−4 7.06 × 10−18

F4 2.94 × 10−13 7.67 × 10−15 7.06 × 10−18 3.31 × 10−20 7.77 × 10−4 7.06 × 10−18

F5 7.55 × 10−6 5.37 × 10−10 7.06 × 10−18 1.09 × 10−1 7.50 × 10−18 7.50 × 10−18

F6 7.06 × 10−18 7.06 × 10−18 3.83 × 10−1 2.26 × 10−2 7.06 × 10−18 7.06 × 10−18

F7 3.31 × 10−20 3.31 × 10−20 2.80 × 10−11 NaN 3.17 × 10−20 3.31 × 10−20

F8 3.31 × 10−20 2.62 × 10−23 3.27 × 10−1 9.46 × 10−9 2.97 × 10−20 3.31 × 10−20

F9 1.51 × 10−14 4.07 × 10−15 3.31 × 10−20 3.31 × 10−20 2.33 × 10−17 7.96 × 10−18

F10 7.06 × 10−18 1.34 × 10−16 7.06 × 10−18 1.63 × 10−17 8.00 × 10−17 7.96 × 10−18

+/=/− 10/0/0 10/0/0 8/0/2 7/2/1 10/0/0 10/0/0

According to the results of the Wilcoxon rank-sum statistics in Table 4, except for the
absence of data comparison, the Wilcoxon rank-sum test p values of the CG-TSA were
less than 5%, and the performance of the CG-TSA was better than the various algorithms
compared. This shows that the optimal performance advantage of the CG-TSA for basic
functions was obvious.
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4.4. Experimental Analysis of the CEC2017 Test Function

To verify the processing capability of the CG-TSA for complex feature functions and its
applicability to different complex optimisation problems, this study used the CEC2017 test
function [37] to test its performance. The CEC2017 test function was introduced as shown
in Table 5, where the function types contain Simple Multimodal Functions (SMF), Hybrid
Functions (HF), and Composition Functions (CF). In this paper, the proposed CG-TSA was
compared with the standard PSO algorithm, GWO, SCA, and TSA for the performance of
the search. The experimental parameters were taken as population size N = 100, dimension
d = 10, and the maximum number of iterations Tmax = 5000, and each function was run
50 times independently to obtain the mean and standard deviation. The comparison of the
results of each algorithm run is shown in Table 6.

Table 5. Part of the CEC2017 test function.

Fun No. Dim Function Type Range Optimal Value

CEC04 10 SMF [−100, 100] 400
CEC05 10 SMF [−100, 100] 500
CEC06 10 SMF [−100, 100] 600
CEC07 10 SMF [−100, 100] 700
CEC08 10 SMF [−100, 100] 800
CEC09 10 SMF [−100, 100] 900
CEC10 10 SMF [−100, 100] 1000

CEC11 10 HF [−100, 100] 1100
CEC13 10 HF [−100, 100] 1300
CEC16 10 HF [−100, 100] 1600
CEC17 10 HF [−100, 100] 1700
CEC20 10 HF [−100, 100] 2000

CEC21 10 CF [−100, 100] 2100
CEC22 10 CF [−100, 100] 2200
CEC23 10 CF [−100, 100] 2300
CEC24 10 CF [−100, 100] 2400
CEC25 10 CF [−100, 100] 2500
CEC26 10 CF [−100, 100] 2600
CEC27 10 CF [−100, 100] 2700
CEC28 10 CF [−100, 100] 2800
CEC29 10 CF [−100, 100] 2900

As seen in Table 6, the standard PSO algorithm performed well on single peaks, but
for multipeak, mixed, and composite functions, the CG-TSA had a clear advantage. In
particular, for CEC09, CEC11, CEC16, CEC17, and CEC20, the CG-TSA was able to converge
to near the theoretical value. The CG-TSA mean was lower and closer to the theoretical
value for higher dimensions on CEC23, CEC24, CEC25, CEC26, CEC28, and CEC29 than
the other algorithms. Overall, the proposed algorithm had a more prominent advantage in
the CEC2017 test function compared to the other four algorithms.
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Table 6. CEC2017 function optimisation comparison.

Fun No. Dim
TSA GWO PSO SCA CG-TSA

Mean Std Mean Std Mean Std Mean Std Mean Std

CEC04
d = 10 4.58 × 102 6.21 × 101 4.77 × 102 7.72 × 101 4.54 × 102 6.86 × 102 4.52 × 102 5.92 × 101 4.32 × 102 4.92 × 101

d = 30 2.58 × 103 1.03 × 103 5.63 × 102 4.39 × 101 4.76 × 102 4.25 × 100 1.47 × 103 2.18 × 102 6.58 × 102 3.49 × 101

d = 50 9.14 × 103 1.50 × 103 9.70 × 102 1.45 × 102 5.96 × 102 5.16 × 101 7.22 × 103 8.48 × 102 4.93 × 102 3.93 × 102

CEC05
d = 10 5.96 × 102 3.52 × 101 5.98 × 102 3.46 × 101 5.16 × 102 4.85 × 100 5.34 × 102 6.49 × 101 5.38 × 102 1.44 × 101

d = 30 8.07 × 102 4.62 × 101 5.91 × 102 1.73 × 101 6.07 × 102 2.82 × 100 7.68 × 103 2.56 × 102 5.58 × 102 1.91 × 101

d = 50 1.09 × 103 7.24 × 101 6.89 × 102 2.33 × 101 7.02 × 102 3.16 × 101 1.07 × 103 3.02 × 101 6.69 × 102 2.94 × 101

CEC06
d = 10 6.31 × 102 1.15 × 101 6.92 × 102 3.47 × 101 6.00 × 102 3.71 × 100 6.49 × 102 1.63 × 101 6.25 × 102 1.19 × 101

d = 30 6.70 × 102 1.46 × 101 6.74 × 102 2.26 × 101 6.48 × 102 5.67 × 100 6.78 × 102 4.60 × 102 6.24 × 102 8.43 × 100

d = 50 6.82 × 102 1.38 × 101 6.93 × 102 3.00 × 101 6.94 × 102 5.15 × 100 6.79 × 102 3.35 × 100 6.75 × 102 7.14 × 100

CEC07
d = 10 7.85 × 102 2.61 × 101 7.94 × 102 1.67 × 101 7.47 × 102 4.69 × 100 7.99 × 102 2.86 × 100 7.17 × 102 1.67 × 101

d = 30 1.19 × 103 7.53 × 103 8.43 × 102 3.51 × 101 8.17 × 102 2.88 × 101 1.12 × 104 3.30 × 102 7.28 × 102 2.96 × 101

d = 50 1.80 × 103 1.79 × 102 1.03 × 103 4.64 × 101 1.01 × 103 4.71 × 101 1.57 × 103 4.02 × 101 8.75 × 102 4.96 × 101

CEC08
d = 10 8.35 × 102 1.30 × 101 8.89 × 102 5.82 × 100 8.89 × 102 2.99 × 10−1 8.53 × 102 2.64 × 100 8.29 × 102 6.66 × 101

d = 30 1.06 × 103 4.61 × 103 8.74 × 102 1.16 × 101 8.81 × 102 1.69 × 101 1.04 × 104 1.92 × 102 8.66 × 102 3.58 × 101

d = 50 1.44 × 103 8.13 × 102 9.56 × 103 2.38 × 101 9.92 × 102 1.89 × 101 1.34 × 103 2.94 × 101 9.11 × 102 3.16 × 101

CEC09
d = 10 1.03 × 103 1.54 × 102 9.87 × 102 5.98 × 100 9.89 × 102 1.99 × 10−3 9.44 × 102 1.64 × 101 9.03 × 102 4.91 × 100

d = 30 9.72 × 103 3.43 × 103 1.38 × 104 3.34 × 102 1.83 × 104 4.61 × 102 5.92 × 104 9.48 × 102 1.19 × 104 5.43 × 102

d = 50 3.74 × 104 1.17 × 104 4.12 × 103 2.03 × 103 8.06 × 103 1.50 × 103 2.31 × 104 6.03 × 103 1.52 × 103 2.59 × 102

CEC10
d = 10 1.85 × 103 1.99 × 102 2.47 × 104 2.67 × 102 1.56 × 103 2.46 × 102 1.98 × 103 1.15 × 102 1.41 × 103 2.25 × 102

d = 30 6.71 × 103 6.70 × 102 4.63 × 103 3.34 × 102 1.83 × 103 4.61 × 102 5.92 × 103 9.48 × 102 1.19 × 103 5.43 × 102

d = 50 1.37 × 104 9.74 × 104 6.50 × 103 5.93 × 102 6.94 × 103 9.46 × 102 1.49 × 104 3.76 × 102 1.33 × 103 8.90 × 102

CEC11
d = 10 3.41 × 103 4.04 × 101 1.11 × 103 9.98 × 100 1.20 × 104 3.65 × 100 1.14 × 103 7.59 × 100 1.11 × 103 4.04 × 100

d = 30 4.87 × 103 1.17 × 103 1.36 × 103 8.55 × 102 1.19 × 104 2.83 × 101 2.12 × 103 2.06 × 102 1.17 × 103 9.95 × 100

d = 50 1.21 × 104 2.97 × 103 3.59 × 103 1.23 × 103 1.31 × 103 2.41 × 102 6.86 × 103 8.59 × 102 1.23 × 103 4.69 × 102

CEC13
d = 10 5.99 × 103 3.74 × 103 5.39 × 103 2.53 × 103 4.21 × 103 1.92 × 103 6.21 × 103 2.80 × 104 1.34 × 103 4.04 × 103

d = 30 1.31 × 109 3.81 × 109 4.02 × 105 1.00 × 106 2.20 × 104 2.02 × 104 4.25 × 108 1.40 × 108 1.65 × 104 2.54 × 105

d = 50 1.21 × 104 2.97 × 103 3.59 × 103 1.23 × 103 1.31 × 103 2.41 × 102 6.86 × 103 8.59 × 102 1.23 × 103 4.69 × 102

CEC16
d = 10 1.86 × 103 2.31 × 102 1.72 × 103 1.31 × 102 1.69 × 103 8.33 × 101 1.65 × 103 1.74 × 101 1.67 × 103 7.33 × 101

d = 30 3.33 × 103 5.42 × 102 2.37 × 103 3.57 × 102 2.52 × 103 1.87 × 102 3.67 × 103 1.64 × 102 1.75 × 103 6.92 × 102

d = 50 4.54 × 103 5.72 × 102 2.78 × 103 4.12 × 102 2.94 × 103 2.63 × 102 5.56 × 103 6.15 × 102 2.11 × 103 5.57 × 102

CEC17
d = 10 1.91 × 103 1.10 × 102 1.73 × 103 1.27 × 101 1.72 × 103 1.41 × 101 1.75 × 103 7.17 × 100 1.72 × 103 1.34 × 100

d = 30 2.33 × 103 2.59 × 102 1.91 × 103 1.45 × 102 2.05 × 103 1.89 × 102 2.47 × 103 1.25 × 102 1.81 × 103 2.78 × 102

d = 50 4.08 × 103 7.34 × 102 2.58 × 103 2.16 × 102 2.80 × 103 1.59 × 102 4.31 × 103 4.30 × 102 1.96 × 103 2.80 × 102

CEC20
d = 10 2.14 × 103 6.62 × 101 2.05 × 103 5.01 × 101 2.04 × 103 5.67 × 100 2.06 × 103 9.19 × 100 2.02 × 103 4.64 × 100

d = 30 2.69 × 103 1.72 × 102 2.35 × 103 1.45 × 102 2.38 × 103 1.31 × 102 2.69 × 103 1.35 × 102 2.03 × 103 2.72 × 102

d = 50 3.53 × 103 4.10 × 102 2.82 × 103 1.98 × 102 3.04 × 103 4.51 × 102 3.79 × 103 1.52 × 102 2.11 × 103 3.88 × 102

CEC21
d = 10 2.31 × 103 6.44 × 101 2.05 × 103 5.01 × 101 2.04 × 103 5.67 × 100 2.06 × 103 9.19 × 100 2.02 × 103 4.64 × 100

d = 30 2.60 × 103 3.67 × 101 2.37 × 103 1.28 × 102 2.39 × 103 1.71 × 102 2.55 × 103 2.35 × 102 2.17 × 103 6.17 × 101

d = 50 2.94 × 103 8.86 × 101 2.47 × 103 2.95 × 101 2.52 × 103 1.81 × 101 2.87 × 103 3.62 × 101 2.23 × 103 4.42 × 101

CEC22
d = 10 2.39 × 103 1.07 × 102 2.30 × 103 5.34 × 101 2.25 × 103 4.52 × 101 2.32 × 103 2.49 × 101 2.29 × 103 4.72 × 102

d = 30 7.68 × 103 7.25 × 101 3.96 × 103 1.69 × 103 2.30 × 103 1.22 × 100 8.95 × 103 1.91 × 103 2.28 × 103 8.08 × 101

d = 50 1.47 × 104 6.36 × 102 8.67 × 103 8.25 × 102 8.50 × 103 9.69 × 102 1.63 × 104 3.71 × 102 5.97 × 103 9.92 × 101

CEC23
d = 10 2.66 × 103 2.65 × 102 2.61 × 103 5.86 × 100 2.63 × 103 9.25 × 100 2.64 × 103 7.38 × 100 2.41 × 103 3.28 × 101

d = 30 3.06 × 103 3.44 × 101 2.72 × 103 2.06 × 101 2.89 × 103 4.43 × 101 3.01 × 103 2.96 × 101 2.33 × 103 8.46 × 101

d = 50 3.89 × 103 1.28 × 102 2.91 × 103 2.92 × 102 3.29 × 103 1.46 × 102 3.53 × 103 1.00 × 102 2.37 × 103 9.83 × 101

CEC24
d = 10 2.69 × 103 1.14 × 102 2.74 × 103 1.05 × 101 2.60 × 103 1.31 × 102 2.77 × 103 9.92 × 100 2.53 × 103 1.84 × 100

d = 30 3.31 × 103 8.87 × 101 2.93 × 103 5.28 × 101 3.13 × 103 7.74 × 101 3.16 × 103 3.30 × 101 2.49 × 103 1.12 × 102

d = 50 3.98 × 103 1.56 × 102 3.06 × 103 3.06 × 102 3.46 × 103 1.25 × 102 3.69 × 103 3.47 × 102 2.45 × 103 1.76 × 101

CEC25
d = 10 3.04 × 103 1.93 × 102 2.91 × 103 2.11 × 101 2.91 × 103 2.21 × 101 2.94 × 103 1.61 × 101 2.60 × 103 3.20 × 101

d = 30 3.39 × 103 1.62 × 102 2.94 × 103 3.21 × 101 2.89 × 103 1.07 × 101 3.29 × 103 1.09 × 102 2.78 × 103 3.27 × 102

d = 50 6.33 × 103 1.23 × 103 3.33 × 103 2.12 × 102 3.01 × 103 2.51 × 101 6.08 × 103 6.50 × 102 2.68 × 103 8.46 × 102

CEC26
d = 10 3.33 × 103 4.55 × 102 2.92 × 103 3.61 × 101 2.87 × 103 9.48 × 101 3.09 × 103 1.51 × 101 2.63 × 103 5.95 × 101

d = 30 8.13 × 103 6.45 × 102 4.38 × 103 2.14 × 102 4.13 × 103 1.69 × 103 7.08 × 103 2.29 × 102 2.64 × 103 1.20 × 102

d = 50 1.30 × 104 1.85 × 103 5.93 × 103 4.83 × 102 9.26 × 103 7.46 × 101 1.18 × 104 6.15 × 102 3.31 × 103 1.51 × 103

CEC27
d = 10 3.14 × 103 3.19 × 102 3.09 × 103 3.42 × 100 3.11 × 103 2.62 × 100 3.10 × 103 1.35 × 100 2.78 × 103 4.70 × 101

d = 30 3.60 × 103 2.00 × 102 3.23 × 103 1.56 × 101 3.33 × 103 1.00 × 102 3.42 × 103 5.79 × 101 2.89 × 103 1.53 × 102

d = 50 4.32 × 103 2.53 × 101 3.51 × 103 4.83 × 102 4.20 × 103 3.67 × 102 4.53 × 103 1.14 × 102 2.76 × 103 5.97 × 102

CEC28
d = 10 3.41 × 103 1.59 × 102 3.29 × 103 1.24 × 102 3.11 × 103 5.91 × 101 3.23 × 103 1.83 × 101 2.85 × 103 8.59 × 101

d = 30 4.27 × 103 4.10 × 102 3.37 × 103 4.41 × 101 3.20 × 103 7.86 × 100 3.97 × 103 1.82 × 102 3.11 × 103 2.08 × 102

d = 50 6.75 × 103 1.25 × 101 4.07 × 103 4.85 × 102 3.34 × 103 1.22 × 101 6.81 × 103 7.49 × 102 3.41 × 103 9.09 × 102

CEC29
d = 10 3.25 × 103 5.37 × 101 3.17 × 103 3.79 × 101 3.18 × 103 2.96 × 101 3.19 × 103 1.14 × 101 3.11 × 103 2.06 × 102

d = 30 4.58 × 103 3.62 × 102 3.63 × 103 1.05 × 102 3.81 × 103 1.76 × 102 4.68 × 103 1.66 × 102 3.52 × 103 4.08 × 102

d = 50 6.48 × 103 4.07 × 101 4.25 × 103 1.22 × 102 4.60 × 103 1.11 × 101 7.54 × 103 6.45 × 102 2.99 × 103 8.93 × 102

5. Data Simulation and Analysis
5.1. Test Environment and Experimental Data

The proposed CG-TSA was used to solve the problem of airport gate assignment. To
test and simulate the scenario, 10 gates for 40 flights between 0:00 and 24:00 were used
based on a typical airport flight schedule for a day. Gates 1–10 were numbered. Gate 1,
Gate 6, Gate 7, and Gate 9 were the four big gates. The five medium gates were Gate 2–Gate
3, Gate 5, Gate 8, and Gate 10, and the one small gate was Gate 4. Gates 1–4 and Gates 6–7
were located near the bridge. Gate 5 and Gates 8–10 were located off the bridge. Large gates
can be assigned to all types of aircraft, medium gates can be assigned to medium and small
aircraft, and small gates can only be assigned to small aircraft. Table 7 contains information
about the boarding gate (where “1” indicates that the gate is close to the boarding bridge
and “2” indicates that the gate is far away from the boarding bridge). Table 8 contains
details of flight information. The information described includes the flight number, the
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serial number of the flight number in order of arrival time, the aircraft type (represented
by 1–8 in this document), the matching gate type (1–3 for small, medium, and large gates,
respectively), and the landing runway (there are three landing runways represented by
A, B, and C, respectively). The safe time between two adjacent flights at the same gate
is 20 min. Table 9 contains information on fuel consumption. The described information
includes the fuel-consuming reference models as well as the average fuel consumption per
minute. Table 10 contains information on runway-to-gate distances. The distance between
the aircraft number and each runway is specified (in this paper, runways A, B, and C).

Table 7. Detailed information on gates.

Gates Type Near the Boarding Bridge

Gate1 large 1
Gate2 medium 1
Gate3 medium 1
Gate4 small 1
Gate5 medium 2
Gate6 large 1
Gate7 large 1
Gate8 medium 2
Gate9 large 2
Gate10 medium 2

5.2. Experimental Results and Analysis of Airport Gate Assignment

In this paper, the proposed CG-TSA was run 20 times independently to solve the gate
assignment problem. To assess the efficacy of the CG-TSA and the optimisation model,
an optimal gate assignment system was used. Figure 5 depicts the Gantt chart of the
optimal gate assignment results. The horizontal coordinate in Figure 5 represents the
moment, the vertical coordinate the gate serial number, and the rectangle a designated
flight. The corresponding flight, which is used to indicate the positioned flight, is marked
on the aircraft number. The plan is visible for parking at Gates 1–10 with no overlap. The
robust multiobjective optimisation model for maximising real-time flights for boarding gate
assignments can handle dynamic changes such as flight conflicts, delays, and so on. The
proposed CG-TSA solved the multiobjective optimisation model for the gate assignment
problem quickly and efficiently. It demonstrated better optimisation capability in complex
optimisation problems.
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Table 8. Detailed information on flights.

Flight No. Flight Serial
No. Flight Type Match Type Landing Strip

4317 24 3 1 C
1580 37 1 1 C
3402 8 4 1 A
4369 35 7 2 B
3688 39 7 2 C
3225 33 6 2 C
1983 28 2 1 B
1685 21 7 2 C
3811 31 8 3 B
2067 20 4 1 A
1515 15 6 2 A
3490 1 5 2 A
4288 13 5 2 A
1188 14 2 1 A
3234 3 2 1 B
1078 5 4 1 A
3991 19 6 2 A
4892 36 8 3 C
2624 26 4 1 C
3538 10 7 2 A
3739 32 7 2 C
1762 18 7 2 C
4154 7 2 1 C
4349 16 7 2 C
4193 6 2 1 C
3503 29 2 1 A
3607 25 2 1 A
3577 34 5 2 C
3557 30 5 2 C
3507 12 4 1 C
4645 23 7 2 B
3218 27 2 1 C
2799 2 8 3 C
1819 38 7 2 A
4407 22 1 1 A
2028 17 6 2 C
2657 2 7 2 C
2788 4 2 1 C
4927 11 5 2 B
1111 40 5 2 A

Table 9. Detailed information on fuel consumption.

Flight Type Fuel Consumption (kg/min)

Flight 1 500
Flight 2 738
Flight 3 928
Flight 4 1506
Flight 5 1850
Flight 6 2438
Flight 7 2627
Flight 8 3137
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Table 10. Detailed information on runway-to-gate distances.

Gates Runway A Runway B Runway C

Gates 1 1.355 8.156 1.668
Gates 2 8.137 3.312 1.467
Gates 3 2.470 2.254 7.107
Gates 4 3.143 8.039 7.857
Gates 5 9.086 0.452 0.688
Gates 6 3.657 1.013 7.732
Gates 7 9.088 6.734 5.557
Gates 8 4.145 8.802 2.079
Gates 9 4.027 2.574 7.904
Gates 10 1.171 9.112 5.951

Considering passenger convenience and satisfaction, as well as airport fuel costs,
the boarding bridge rate and burning fuel costs were optimised as the objective func-
tions. The GA [38], basic TSA, and CG-TSA were used to test and compare the objective
optimisation model. The experimental results are shown in Figures 6 and 7. In Fig-
ure 6, the horizontal coordinate indicates the number of iterations, and the vertical
coordinate indicates the boarding bridge rate. As shown in Figure 6, the basic TSA
helped flights to stop at the boarding bridge with a boarding bridge rate of approxi-
mately 82% as the number of iterations increased. The GA commonly used for gate
assignment achieved an approximately 91.5% bridging rate, and the proposed CG-TSA
helped the bridging rate of flights to reach approximately 97.5%. Thus, the proposed
CG-TSA in this paper had high optimisation efficiency and better search results than
the traditional GA and basic TSA. The results obtained by CG-TSA were very close to
the ideal solution to meet the needs of airport authorities. In Figure 7, the horizontal
coordinate indicates the number of iterations, and the vertical coordinate indicates
the total fuel consumption (kg). As shown in Figure 7, as a continuum of the iterative
process, the convergence rate of the algorithm gradually decreased, and the minimised
fuel consumption was continuously optimised. After 140 iterations, the basic TSA
curve stabilised, and the minimum optimal value point of fuel consumption explored
was approximately 2.19 × 106 kg. After 150 iterations, the conventional GA curve
stabilised, and the minimised fuel consumption value reached was approximately
1.95 × 106 kg. The proposed CG-TSA stabilised after 190 iterations, and the achieved
minimised fuel consumption value was approximately 1.61 × 106 kg. The proposed
CG-TSA jumped out at the local minima and effectively reduced fuel consumption in
the gate assignment.
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To further analyse the effectiveness of the CG-TSA for multiobjective optimisation
problems, the boarding bridge rate and the cost of burning fuel were optimised as a total
objective function based on the maximum probability of the flight being allocated to the
bridge and saving fuel consumption. The multiobjective optimisation model was tested
and compared using GA, basic TSA, and CG-TSA and the experimental results are shown
in Figure 8. In Figure 8, the horizontal coordinate indicates the number of iterations, and
the vertical coordinate indicates the total objective fitness value. As shown in Figure 8, after
80 iterations, the basic TSA curve fell into the local extrema and found an optimal value
of 0.86 after 195 iterations. After 120 iterations, the genetic algorithm curve converged
and found an optimal value of 0.86. The proposed CG-TSA curve converged and found
an optimal value of 0.85 after 140 iterations. Compared with the GA and basic TSA, the
CG-TSA had better multiobjective optimisation capability and was able to provide an
effective and reasonable method for airport gate assignments.
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6. Conclusions

In this paper, a new multiobjective optimised gate assignment problem model is
developed by minimising real-time flight conflicts, maximising the boarding bridge rate,
and minimising aircraft taxiing fuel consumption. Furthermore, an improved tunicate
swarm algorithm based on cosine mutation and adaptive grouping (CG-TSA) is proposed,
which uses Halton sequences to initialise agent positions, improves the algorithm’s initial
traversal and allocation efficiency, and classifies agent adaptations into dominant and
inferior groups based on the size of the fitness value. Using the AOA concept, a cosine
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mutation strategy is introduced to solve the multiobjective optimisation model for gate
assignments using the global optimal solution as a guide to avoid the objective falling
into the local extrema in order to efficiently and reasonably allocate gates, improve airport
operational efficiency, and relieve airport fuel cost pressures. The CG-TSA is validated
using benchmark test functions, Wilcoxon rank-sum detection, and CEC2017 complex test
functions, with the results compared to other metaheuristic and improved algorithms.
The experimental results show that the improved CG-TSA is competitive and superior in
terms of search accuracy, convergence speed, and stability. Finally, the genetic algorithm,
basic TSA, and CG-TSA are chosen to solve the gate assignment optimisation model. The
experimental results show that the CG-TSA outperforms the GA and basic TSA in solving
the single-objective learning rate, fuel consumption, and multiobjective problems and that
it is better suited for solving the gate assignment problem. Other airport gate assignment
factors will be considered in future work, and the performance of the TSA in solving
multiobjective problems will be improved.
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