
Citation: Zheng, Y.; Meng, D.; Bai, L.

PCB Network Analysis for Circuit

Partitioning. Appl. Sci. 2022, 12, 8200.

https://doi.org/10.3390/

app12168200

Academic Editor: João M. F.

Rodrigues

Received: 25 July 2022

Accepted: 12 August 2022

Published: 17 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

PCB Network Analysis for Circuit Partitioning
Yali Zheng * , Da Meng and Libing Bai *

School of Automation Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China
* Correspondence: zhengyl@uestc.edu.cn (Y.Z.); libing.bai@uestc.edu.cn (L.B.)

Abstract: The complexity of automatic placement and routing is proportional to the scale of the
circuit. Through netlist partition algorithms, printed circuit board (PCB) circuits are divided into
different submodules, and the problem scale is effectively reduced in order to obtain the optimal
automatic layout and routing. In this paper, we analyze net attributes and potential patterns in
netlists through visualization, and propose a heuristic PCB netlist partition approach based on net
attributes and potential patterns which we discover from netlists. Our partition approach takes the
netlist as input, and module partition set as output. Firstly, the modules are prepartitioned using
net attributes. Further, the special patterns in circuits are discovered, and the scattered resistors,
capacitors, and other components caused by prepartitioning would be allocated to initial modules by
three rules—classifying, matching, and force strategy. Our method is evaluated on 11 PCB netlists
which are built manually. Experimental results show that our proposed netlist partition approach
significantly outperforms the state of the art on all evaluation indices, which can achieve 80–96%
partition accuracy.

Keywords: netlist partition; net attribute; PCB; automatic placement and routing

1. Introduction

Placement and routing, also known as physical design, typically account for more than
30% of cost and time in integrated circuit (IC) or PCB design and production. If automatic
placement and routing can be implemented, it will effectively shorten the production cycle
and reduce costs, and reduce the risk of human mistake. Thus, automatic placement and
routing has been an interesting and challenging research direction in the field of electronic
design automation (EDA). However, whether it is the placement and routing inside the chip
or PCB level, the design process is very complicated. The design complexity of modern
integrated circuits has greatly increased as circuits have become larger and contain more
and more components. As we all know, the complexity of automatic placement and routing
is proportional exponentially to the scale of the circuit [1], and it is a nondeterministic poly-
nomial hard (NP-hard) problem. So far, it has not been practically applied, mainly relying
on manual implementation. Physical design usually consists of six main steps: module
partition, chip planning, placement, clock tree synthesis, routing, and timing closure [2].
The first step of circuit partition is to divide the problem into smaller submodules, which
can effectively reduce the complexity of the problem, reduce the search space for automatic
placement and routing, and obtain an optimal solution. If the module can be partitioned
correctly, it also improves the parallelism of automatic placement and routing, so as to
improve the efficiency, the stability, and quality of module placement and routing.

The netlist is the logical basis for physical design. A netlist contains components and
pin connections between components, represented as nodes, and network connections
between nodes. Components mainly include resistors, capacitors, inductors, magnetic
beads, crystal oscillators, two-pin switches, diodes, and other two-pin components, as
well as IC chips, connectors, transistors, multi-pin LEDs, multi-pin switches, and other
multi-pin components. Connections exist not only between two components, but also

Appl. Sci. 2022, 12, 8200. https://doi.org/10.3390/app12168200 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168200
https://doi.org/10.3390/app12168200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2906-7984
https://orcid.org/0000-0001-8906-0576
https://doi.org/10.3390/app12168200
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168200?type=check_update&version=1

Appl. Sci. 2022, 12, 8200 2 of 16

between multiple components. The existing circuit partition methods mainly represent the
netlist in a hypergraph. Assuming a hypergraph has node set S with K nodes, and edge
(net) set E, partition methods aim to divide the K nodes into N subsets S1, S2, . . ., SN with
set size m1, m2, . . ., mN , respectively.

Most of the existing hypergraph-based partitioning methods were proposed before
20 years ago [3,4]. Although a partition set can be obtained, the partition result is hard
to effectively evaluate, and it is far from being applied in the practical application. With
the development of electronic-aided design technology, the design process is more stan-
dardized, and potential patterns contained in the netlist are more regular. Inspired by the
manual partitioning of physical modules, in this paper we focus on the potential features
and attributes contained in the netlist, and propose a circuit module partitioning method
based on the analysis of netlist network attributes and potential patterns. The partition
algorithm takes the PCB netlist as input, and the module subsets as output. It is expected
that these partition modules can not only be physically adjacent, but also functionally
independent. The main contributions of this paper are as follows:

(1) The visualization analysis, attribute analysis, and pattern analysis of netlists are
carried out, and the potential features and attributes in netlists are discovered.

(2) Based on the potential features and attributes, a new approach to PCB netlist partition
is proposed. The method first prepartitions the PCB netlist according to the network
attributes, then presents three rules of classifying, matching, and force to redistribute
the scattered components, and finally obtains the partition subsets.

(3) The partition approach is evaluated on 11 netlists, outperforming the state of the arts
on five different metrics. Experiments show that our approach based on network
attributes and potential patterns can obtain 80–96% accuracy.

A preliminary version of this work was published in [5]. This paper improves upon [5]
in the following aspects: (1) the netlist visualization is studied to help netlist analysis,
and inspires us to develop algorithms of partition; (2) some generic circuit patterns and
repetitive patterns are analyzed, which is meaningful for netlist partition; (3) our algorithm
is analyzed at each stage using different rules, and we report the evaluation indices to show
the necessity of each stage.

This paper is divided into six parts. Section 2 is the related research work. Section 3
discusses the discovery of potential patterns and analysis of network attributes in the
netlist. Section 4 describes the partition method based on network attribute and patterns,
and a large number of experiments illustrate the effectiveness of the proposed method in
Section 5. Section 6 gives a discussion on experiments. Section 7 concludes and gives some
thoughts on the future work.

2. Related Work

As mentioned above, the netlist is usually represented as a graph—a point set S and
an edge set E between points and points, and the edge set E can be attached with weights to
become a weighted graph [6]. The existing netlist partitioning algorithms mainly consider
two types of problems:

(1) How to divide, that is, the partition strategy;
(2) How to reduce the time complexity of partition, that is, the partition efficiency [7].

Partition strategies can be roughly classified into four categories: methods based on
graph cut by flow [8–11], heuristic methods [1,12], eigenvector method [13], and combi-
nations of these methods [11,14–16]. Generally, the methods based on graph cut have
high time complexity, and the heuristic algorithms are relatively fast. All these types of
algorithms can be combined into a multilevel framework [3,11,17,18], which mainly divides
the partition problem into multiple levels to reduce the scale of the problem, and leads to
reduce the time complexity of partition.

Heuristic methods: Kernighan and Lin proposed a netlist partition algorithm, called
KL algorithm, which is the most classic of the heuristic methods [1]. The KL algorithm

Appl. Sci. 2022, 12, 8200 3 of 16

partitions components by evaluating a heuristic value D, which is computed from the
cost matrix, and it is a two-way partition approach applied to component partition on
circuit boards. The KL algorithm was extended to different variations. Manna et al. [19]
used the KL algorithm to partition on mesh-based network-on-chip. Rajan and Bhaiya [20]
considered a parallel KL algorithm to partition the component on very-large-scale inte-
grated circuit (VLSI) for fast solution. Manna and Teja [21] extended the KL algorithm to
3D network-on-chip, while Lei et al. extended the KL algorithm by using the balanced
bi-partition theory of graphs, and improved it by giving a reasonable initial partition in the
multilevel framework [22]. Areibi and Vannelli in [12] proposed a cluster-based heuristic
method. They extracted component attributes from netlist, including component terminal
count, common net count, the number of nets localized, common net fanout, and so on, to
identify strongly connected components to reduce the netlist complexity.

Graph cut methods: Netlists are natural graphs with nodes and connection, so the
traditional graph cut algorithms were easily taken to the netlist partition. Wei and Cheng
presented a partition method called ratio cut, and solved the ratio cut by linear program-
ming techniques via the MaxFlow [23], while Hamada et al. ultilized the ratio cut in
the hierarchical way in [11]. Fiduccia and Matteyses [14] combined the min-cut and KL
algorithm, and proposed an iterative min-cut heuristic method with a linear time, called
FM algorithm. Liu et al. [9] proposed a two-way partition strategy by solving a replication
graph cut problem. Karypis et al. [3] presented a multilevel paradigm of coarse-to-coarser
to partition hypergraph in VLSI with over 100k vertices. Caldwell et al. [4] provided an
implementation of hypergraph partition in VLSI. However, these methods only treated the
netlist as a pure graph, so only the geometric connection of the netlist was considered in
the partition process.

Eigenvector methods: Hadley et al. approximated the netlist as a weighted graph,
and initially partitioned the weighted graph into k blocks of fixed module size by the
eigenvector technique of Barnes [6]; they also gave the lower bounds on the number of cut
nets using the tightly underestimated graph approximation and the simple eigenanalysis
results [13].

Other methods: Monolithic 3D (M3D) integrated circuits are a promising technology
that improves integration density greatly, which is orders of magnitude higher than that
offered by through-silicon-vias, so the partition of M3D netlists has attracted a number of
researchers [19,24–26]. Manna et al. extended the Kernighan–Lin bi-partitioning approach
to a mesh-based network-on-chip (NoC) architecture, which optimized both communi-
cation cost and thermal variance [19]. Desai et al. represented a graph as an adjacency
matrix, and considered the problem as a layer assignment problem for 3D VLSI circuits [24].
Panth et al. considered the partitioning and placement tasks simultaneously to produce
high-quality M3D placement, and developed an O(N) min-overflow partitioner [25]. Hu et
al. solved the partitioning task for 3D FPGA circuits using a three-phase algorithm from
coarser to uncoarsening, and reduced the hyper-edge cut by a boundary greedy refinement
algorithm [26].

The method proposed in this paper starts from the perspective of engineers designing
schematic diagrams, considers the attributes of circuit connections to partition the netlist,
and discovers potential patterns in netlists, so that a more accurate partition result can
be obtained.

3. Circuit Analysis of PCB Netlists

As mentioned previously, a netlist contains various components and the connections
between component pins. As the standardization of modern circuit design, the naming
of components and network connections is regular. According to the input of netlist
information, we can visualize netlists and discover important modules in the netlist; we
can also study the distribution of signals by connecting network attributes to infer the
approximate function of each module; further, through feature extraction, we can find some
potential and fixed circuit structure, exploring modules with the same function to reduce

Appl. Sci. 2022, 12, 8200 4 of 16

the workload of layout and wiring. In this section, we conduct research and analysis on
netlist visualization, net properties, and circuit-specific patterns to aid in the design of
netlist partition algorithms.

3.1. Network Attribute Analysis

The network in the netlist refers to the connection between components. The con-
nection can be between nodes or among multiple nodes. The main networks in the PCB
netlist are usually divided into the following types according to the signal properties:
signal network, power network, ground network, and clock network. The signal network
can be subdivided into three types: data network, address network, and control network.
Networks with different attributes also show different characteristics. Among all networks,
the largest is the ground network, which has the largest number of connected components;
the second largest are various power networks, because IC chips are generally active chips
powered by power supplies; then there are various clock networks and signal networks.
The data network and the address network are multiple parallel lines connected from one
chip to another or a multi-pin connector. Chips also need clock signal. The attributes of
networks are summarized as follows:

GND nets
Power nets

Signal nets

Data signal nets
Address signal nets
Control signal nets

Clock nets

3.2. Visualization for PCB Netlists

A netlist usually contains hundreds or thousands of components and connections, but
it is usually of interest to ICs with more pins and important connections. In order to better
view the connection relationship of each node in the entire netlist and analyze the functional
structure of the entire netlist, it is necessary to visualize the netlist. Because the module
partition is centered on the IC chip, in order to simplify the visualization of the netlist,
only the connections between the IC chips in the netlist are considered. Among them,
IC chips include memory chips, CPU, FPGA, power chip, DSP (digital signal processor),
AD/DA, MCU (microcontroller), MEMS, active crystal oscillator, etc., as well as various
customized SOCs. Our netlist visualization focuses on the topology structure obtained after
ignoring power nets, GND nets, and other two-pin components and non-active multi-pin
components in the netlist, and retaining the core components and core networks. The
visual analysis of the netlist can highlight the dependencies between the core components
in the netlist and inspire hierarchical module partition. As shown in Figure 1, the solid
ellipse is the core component IC, and its size is proportional to the number of pins of the
component, and the black solid line is the connection relationship. Components with more
pins are in the center with close connection to the rest, and components with fewer pins are
scattered around the edges of the graph. For example, in Figure 1, the largest U2 chip is
an FPGA, the second largest, U32 and U37, are AD chips, and U3, U4, U19, U20, U21, and
U22 are memory chips. Through such simplification for the netlist, it can be seen that the
connection between IC and IC is a node-to-node association. Therefore, it can be considered
to simplify the netlist into a plane graph instead of a hypergraph, which effectively reduces
the complexity of netlist partition.

Appl. Sci. 2022, 12, 8200 5 of 16

Figure 1. Schematic diagram for initial partitioning by cutting important attribute networks.

3.3. Circuit Pattern Analysis

Repetitive pattern: It is also found that there are often many identical or similar
modules in the netlist. First, from the netlist visualization, the same or similar modules can
be roughly inferred based on the size of the circle representing the IC. Secondly, we can also
find the same module from the connecting circuit around each IC. The surrounding circuits
of these same modules are not only partitioned the same, but the layout and routing can
also be reused; see Figure 2. There are so many cases where the same submodule appears in
the netlist. We give the statistics of the same modules in 11 netlists to show the importance
of repetitive pattern recognition in Section 5.1. This pattern will be used later by the netlist
partition method.

Generic circuit pattern: There are many generic circuit patterns in both digital and
analog circuits. Here, we take the filtering circuit for example. The voltage output by the
rectifier circuit is a one-way pulsating voltage that cannot be used directly for the electronic
circuit. Therefore, the output voltage should be filtered to eliminate the alternating current
(AC) component in the voltage, and then it will be used by the electronic circuit after
becoming direct current (DC). In the filter circuit, components with special impedance
characteristics to AC are mainly used, such as capacitors and inductors. Therefore, there
are some fixed circuit structures to filter various electrical signals. Different filtering
processes have different characteristics and adapt to different situations. As shown in
Figure 3, there are eight kinds of filter circuits, in which R represents resistance, C represents
capacitance, L represents inductance, Q represents triode, and D represents diode. These
fixed circuit structures are summarized and become fixed patterns. These patterns are not
explicit in the netlist, but require to be further discovered. If these fixed patterns can be
discovered from the netlist, it would be very useful undoubtedly for the design of circuit
partitioning algorithms.

Appl. Sci. 2022, 12, 8200 6 of 16

Figure 2. Repetitive pattern. Panels (a,b) are two of the same IC modules from a single netlist, U25
and U27, in green blocks. The capacitors in red blocks between the power net and GND net are
scattered, and would be allocated equally by IC module matching in Section 4.5.

Appl. Sci. 2022, 12, 8200 7 of 16

L

C C

(a) LC-filter (b) CC-filter

C’

L

C’

L’

CC

(e) π-filter

L

(f) T-filter

R

C’C

R’

C’

VCC

GND

L

R’R

(d) LR-filter(c) RC-filter

Q

R C’C
D

Q

R C’C

(g) QRCD-filter (h) QRC-filter

Figure 3. Eight different structures of filtering.

4. Circuit Partitioning Based on Net Attributes and Patterns

In this section, we introduce the proposed method in detail. First, ICs are selected as
key components, and the partition sets are initialized by cutting the attribute networks. Scat-
tered components are allocated by classifying, matching, and force according to different
circuit patterns.

4.1. Key Component Selecting and Initial Partitioning

As the development of circuit design technology progresses, the standardization of
circuit design becomes better. It is observed that the nets are always specified by keywords.
These keywords could help engineers to examine the information source flow. As men-
tioned in Section 3.1, networks include signal network, clock network, power network, and
GND network. The data network generally includes keywords such as DATA and D, and
some communication protocols, such as SPI and I2C, also belong to data networks. The
address network generally includes keywords such as ADRESS, A, and Add, and the clock
network generally includes CLOCK, CLK, CK; the power network mainly provides power
for the components, generally including VCC, VDD, VEE, VPPPOWER; GND represents
the ground network. When engineers design circuits, they often label important nets, called
net attributes. The net attributes help us to discover the logical structure in netlists, and
inspire us to propose the system initial partition based on net attributes.

First, we select ICs as key components, for which the most characteristic is that the
number of pins are greater than three. A network usually connects multiple IC modules.
Each module centers around an IC chip, and many components are connected to serve the
IC chip, which should belong to the module. Cutting off the attribute network can form a
natural and basic module partition, as shown in Figure 4. Since these components are closely

Appl. Sci. 2022, 12, 8200 8 of 16

related to the IC chip, there is no significant network attribute labeling on the connection
relationship, so they will be automatically divided into the IC module. Assuming that each
IC chip is the center, initial partition subsets, denoted by {S1, S2, . . ., SN}, are formed by
cutting important networks, which include the closely related components around them.
It is noted that the number of pins of junctors and multi-pin switches are also more than
three, but they are ignored in our algorithm since they are passive components and cannot
be the center of modules.

Figure 4. Schematic diagram for initial partitioning by cutting important attribute networks, better
viewed in color.

4.2. Scattered Components Description

Unfortunately, some components that are between important networks will be scat-
tered without affiliation to any subset of the IC chip. As shown in Figure 5, scattered
components, for example, capacitors C455 and C456, are located between the power supply
network S_IMGD + 3.3V and GND. When the important networks are cut, C455 and
C456 are scattered because they could belong to any module, similar to C456, C447, and
C430. The problem is that we do not know the affiliation for these capacitors just from
the netlist; however, some clues are found from the schematic diagram of circuits. Let NS,
NP, NG represent the sets of signal net, power supply net, and GND net, respectively. We
summarize the scattered components into the following categories:

(1) Components scattered between signal network NS and signal network NS, denoted
by XSS.

(2) Components scattered between signal network NS and power supply network NP
denoted by XSP.

(3) Components scattered between signal network NS and GND ground network NG,
denoted by XSG.

(4) Components scattered between power network NP and GND ground network NG,
denoted by XPG.

In actuality, the cases would be more complicated, because XSS, XSP, XSG, and XPG
could have intersection. Here, we just simplify the description. Scattered components in
the netlists mainly include capacitors, resistors, inductors, and others. The numbers of
capacitors and resistors are the most. Capacitors between the power network and GND
network mainly play four roles: filtering, voltage regulation, energy storage, and bypass
energy storage, while resistors mainly play the role of bleeder resistance effect. Assuming
that the scattered components between the mth net and the nth net are adjacent, denoted

Appl. Sci. 2022, 12, 8200 9 of 16

by {xmn
1 , xmn

2 , . . ., xmn
N } ∈ Xmn, we introduce three rules to perform assignment of these

scattered components to modules.

Figure 5. The examples of scattered components in schematic diagram of the circuit. Components in
red blocks are scattered after initial partition.

4.3. Scattered Components Allocation by Classifying

It can be observed from some circuit schematic diagrams those that have been de-
signed by human: according to the design habits of engineers, the resistors and capacitors
in the same module are usually named similarly or closed. As shown in Figure 5, the
scattered components can be allocated by nearest neighbor classifier due to the special
circuit structure. Let Xmn = {xmn

1 , xmn
2 , . . ., xmn

P } be the candidate set to be allocated, which
connects multiple IC module sets {S1, S2, . . ., SN1}. Let xmn

p represent the pth component
to be allocated between the net Nn and Nm by matching with the nearest neighbor method.
dn1 is short for d(xmn

p , Sn1) which represents the distance between the component xmn
p and

the subset Sn1 , and it is calculated according to the string of scattered components. We
summarize the allocated Rule (1) as follows:

If dP(xmn
p , SP) = min(d1, d2, . . ., dN1) & dP(xmn

p , SP) < T1
Then SP ← {xmn

p , SP},
(1)

in which SP refers to the closest set between the component xmn
p and the subsets {S1, S2, . . . ,

SN1}, and P ∈ [1, 2, . . ., N1], X ∈ {XSS, XSP, XSG}. T1 is the threshold set in advance.

4.4. Scattered Components Allocating by Force

If there still exists some components un-allocated between two nets Nn and Nm, they
will be allocated by force, which is heuristic. So far, each module set contains a certain
number of components. It is observed that the bigger IC modules have more capability
to host the rest components. Assume the module set Si has mi components in it, which
determines the force to attract the rest of the component. They can be allocated by Rule (2)
as follows:

IF |SR| = max{|S1|, |S2|, . . ., |SN3 |}
Then SR ← {xmn

r , SR}
(2)

in which {S1, S2, . . ., SN3} are connected modules by a certain net. The magnitude of force
F is proportional to the number of components in the module set. The bigger the number
of components, the greater the force.

Appl. Sci. 2022, 12, 8200 10 of 16

4.5. Scattered Components Allocating by Module Matching

It is observed that a netlist always contains many of the same modules, and then they
have the same electrical specification; see Figure 2. If some scattered components are located
between two or multiple IC chip modules, which are the same or closed modules, then the
peripheral circuits of the same IC module are almost the same. Thus, it is reasonable to
think that the surrounding components are also the same. If the parameters of the scattered
components among them are the same, they should be evenly allocated to these closed
or the same multiple IC modules. Therefore, we first detect IC chips if they are closed or
the same on an individual important network through IC parameters. These parameters
include the number of pins and the statistics in the module set such as the number of
capacitors, resistors, inductors, others, and volume.

Let F be a feature function of IC modules {S1, S2, . . ., SN2}. P(xmn
q) represents the

parameters function of the scattered component xmn
q including type and volume, in which

xmn
q refers to the rest components between netNn andNm after the first round of allocation

by Rules (1) and (2). Assume S = {S1, S2, . . ., SN2}, and SJ is a subset in which the modules
are closed or the same from S. We summarize the allocating Rule (3) as follows:

If P(xmn
q) = P(xmn

q′) & |F(Sj)− F(Sj′)| < T2 & |XQ |
|SJ |
∈ N,

Then Allocate them equally.
Else Allocate them roughly equally.

(3)

where XQ is the set of candidate components to be allocated, SJ is the set of candidate
subsets, |XQ| and |SJ | are the cardinality of the set XQ and SJ , respectively. N is the set of
natural numbers, T2 is the threshold set in advance.

4.6. The Proposed Algorithm

We summarize the whole algorithm in Algorithm 1. Our method requires a PCB netlist
and thresholds T1 and T2 as input, and takes the PCB netlist partition sets {S1, S2, . . ., SN}
as output. T1 and T2 are two thresholds which need to be set in advance. T1 is a tuning
parameter and is empirically set. We set less than five through our experiments. Each
component has to be allocated to a certain partition subset, and every subset has one IC as
the center since all resistors, capacitors, inductors, transistors, and other non-IC components
are supposed to serve the IC. Of course, some connectors and switches may be independent
functionally; they are allocated to the nearest module through our algorithm. Partition
initial sets are obtained in Section 4.1. Rules (1), (2), and (3) are explained in Sections 4.3,
4.5 and 4.4, respectively. XS∗, XP∗ refer to the sets connected to XS, XP, respectively, and
they are denoted as follows:

XS∗ = {XSS, XSP, XSG},

XP∗ = {XP1G, . . ., XPiG, . . .}, i = 1, 2, . . ., N′.

N′ is the number of nets NPG connected to power nets and GND net. Since our
algorithm is heuristic, the time complexity is quite low compared with graph cut algorithms.
The time complexity of the initial partition is O(1), and the time complexity of the second
part—allocating scattered components by Rules (1)–(3)—is O(K), where K is the number
of components.

Appl. Sci. 2022, 12, 8200 11 of 16

Algorithm 1 The algorithm of circuit partitioning for PCB netlist based on net attributes

Require: a PCB netlist with K components, the thresholds T1,T2;
Ensure: PCB partition sets {S1, S2, . . ., SN};

Select IC as key components;
Obtain Partition initial sets {Sini

1 , Sini
2 , . . ., Sini

N } as in Section 4.1;
/*Allocating scattered components by Rule (1);*/—Stage 1
repeat
xp ← select one element from XS∗;
Check module subsets {S1, . . ., SN1} of xp connected;
If dP(xp, SP) = min(d1, d2, . . ., dN1) & dP(xp, SP) < T1

Then SP ← {xp, SP}
XS∗ ← XS∗ − {xp};
n← n + 1;

until X(n)
S∗ = X(n+1)

S∗ .
/*Allocating scattered components by Rule (2);*/—Stage 2
if XS∗ 6= ∅

repeat
xr ← select one element from XS∗;
Check module subsets {S1, . . ., SN3} of xp connected;
If|SR| = max{|S1|, |S2|, . . ., |SN3 |}

Then SR ← {xmn
r , SR};

XS∗ ← XS∗ − {xp};
endif
until XS∗ = ∅;

endif
/*Allocating scattered components by Rule (3);*/—Stage 3
N′ = |{NPG}|;
repeat
Ni ← select one net from NPG;
N′ = N′ − 1;
Check module subsets {S1, S2, . . ., SN2} of Ni connected, and components in XPiG;

If ∃ q, q′, j, j′, s.t. xq, xq′ , XQ ∈ XPiG, Sj, Sj′ ∈ {S1, S2, . . ., SN2};
s. t. P(xq) = P(xq′) & |F(Sj)− F(Sj′)| < T2 & |XQ |

|SJ |
∈ N,

Then Allocate them equally;
Else Allocate them roughly equally;

until N′ = 0.

5. Experimental Results

In the experimental section, we introduce our datasets and evaluation indices, and
analyze comparison results.

5.1. Datasets

Since few netlist datasets are public, we build 11 PCB netlist datasets and partition
the netlists into subsets manually. The number of components in 11 netlists is from dozens
to 200+, and the total number of pins in netlists is from hundreds to tens of thousands.
In addition to IC chips, there are mainly resistors and capacitors, which account for more
than 80% of the total number of components, so that the scattered components are mainly
resistors and capacitors. The statistics of resistors, capacitors, and inductors are shown in
Figure 6, and the statistics of components, pins, and edges for the PCB netlist datasets are
shown in Figure 7. We also report the total number of subsets in our datasets, and make
statistics for the same modules in each netlist, which are shown from the third column to
the twelfth column in Table 1. It can be seen that each netlist has multiple same modules.
We test the proposed algorithm on the netlist datasets.

Appl. Sci. 2022, 12, 8200 12 of 16

N
um

s
1950

185

693
909

1307

2414

518

989
10981176

972

Figure 6. The statistics of resistors, capacitors, inductors, and others for the datasets.

Figure 7. The statistics of components, pins, and edges for the PCB netlist datasets.

Appl. Sci. 2022, 12, 8200 13 of 16

Table 1. The statistics of the number of subsets and repetitive modules in each netlist dataset.

Netlist ID No. of Subsets
No. of Same Modules

2 3 4 5 6 7 10 12 13 20

ANDZ 57 7 1 1 0 0 1 2 2 0 0
N1 36 3 0 2 0 0 0 0 0 0 0
N2 147 2 0 1 0 0 1 0 0 0 0
N3 120 5 4 0 0 0 0 0 0 0 0
N4 152 7 3 2 0 3 0 0 0 0 0
N5 123 9 0 1 1 2 0 0 0 0 0
N6 144 10 3 0 2 0 1 0 0 0 0
N7 53 1 0 8 0 0 0 0 0 0 0
N8 94 6 1 3 1 0 1 0 0 0 0
N9 46 5 1 0 0 1 0 0 0 0 0

N10 90 14 2 9 0 1 0 2 1 1 2

5.2. Evaluation Indices

Since the netlist partition is treated as a segmentation-like problem, the evaluation
indices are borrowed from the image processing field. We compute partition accuracy
(ACC), Dice similarity coefficient (Dice), intersection over union (IOU), sensitivity (SE),
and precision (PR). These evaluation indices are computed from true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) [27]. Figure 8 shows how to
compute TP, TN, FP, and FN in our case, in which

TP = A ∩ B

FN = A− A ∩ B

FP = B− A ∩ B

TN = C− A ∪ B

The ground truth set is in the green block, the partition set from the proposed method
is in the red block, and components set in the gray block are the whole possible set.

ACC =
TP + TN

TP + TN + FP + FN
(4)

Dice =
2TP

FP + 2TP + FN
(5)

IOU =
TP

FP + TP + FN
(6)

SE =
TP

TP + FN
(7)

PR =
TP

TP + FP
(8)

A is the ground truth set, B is the partition set, C is the whole candidate set, and A,
B, and C are shown in Figure 8. Since we have multiple partition subsets in each netlist,
the final evaluation is a weighted index through all subsets. The equation expression is
as follows:

I =
N

∑
i=1

|Si|
|S| · Ii (9)

in which N is the number of partition sets obtained from the method, Si is the ith partition
subset, S is the whole set, and Ii = [ACC, Dice, IOU, SE, PR] is the score vector for the ith
partition subset.

Appl. Sci. 2022, 12, 8200 14 of 16

Figure 8. How to compute TP, FN, FP, and TN. Ground truth set A is in the green block, partition
set B from the proposed method is in the red block, and components set in the gray block are the
whole candidate set C. Better viewed in color. TP = A ∩ B, FN = A − A ∩ B, FP = B − A ∩ B,
TN = C− A ∪ B.

5.3. Comparison Results

We compare our method with the MaxFlow algorithm [10]. The MaxFlow algo-
rithm is a popular method for graph cut. We report the comparison results in Table 2.
It can be seen that our proposed algorithm can achieve 82.8–96.8% on partition accu-
racy, 80.2–93.0% on Dice, 72.9–89.5% on IOU, 80.6–94.2% on SE, and 79.8–93.9% on pre-
cision, while MaxFlow only has 11.4–39.2% on partition accuracy, 15.2–68.5% on Dice,
10.4–59.4% on IOU, 19.4–55.8% on sensitivity, and 12.5–63.6% on precision. This is because
the MaxFlow method only considers the geometric attributes, while our method considers
not only the geometric connection but also the circuit network attributes, and discovers the
potential patterns to help partition algorithm, so it outperforms the MaxFlow algorithm
significantly through all netlist datasets. Especially for N2, N3, N4, N5, and N6, netlists
that have more than 100 subsets, the partition results from our method are also as good
as those netlists that have fewer than 100 subsets, such as ANDZ, N1, N7, N8, N9, and
N10. That means our proposed method is universal for the datasets and can be applied to
different netlists.

Table 2. Comparison results. Results are compared with MaxFlow [10] in terms of ACC, Dice, IOU,
SE, and PR.

Datasets
ACC Dice IOU SE PR

MaxFlow Ours MaxFlow Ours MaxFlow Ours MaxFlow Ours MaxFlow Ours

ANDZ 11.4 96.8 22.4 91.4 15.6 87.7 28.7 89.0 18.4 93.9
N1 37.1 86.9 26.3 85.8 17.7 77.1 35.3 87.2 21.5 84.4
N2 39.2 84.9 53.2 88.4 40.5 80.8 55.8 88.9 50.8 87.9
N3 34.3 91.6 44.8 88.7 32.9 82.7 50.1 86.8 40.5 90.7
N4 34.5 84.4 32.9 80.2 23.1 72.9 35.7 80.6 30.5 79.8
N5 35.7 86.6 41.8 81.1 31.6 73.3 41.4 80.6 42.2 81.6
N6 30.0 89.3 33.9 84.9 23.5 77.7 35.0 85.0 32.9 84.8
N7 17.6 88.8 15.2 93.0 10.4 89.5 19.4 94.2 12.5 91.8
N8 22.9 84.9 38.6 82.7 29.2 76.2 43.4 84.3 34.8 81.2
N9 53.6 82.8 68.5 91.1 59.4 85.8 74.2 91.2 63.6 91.0

N10 38.0 89.8 55.1 92.8 44.6 88.4 54.6 93.1 55.6 92.5

6. Discussion

We also analyze the three rules proposed in this paper, and report results on Stage 1,
Stage 2, and Stage 3 of the algorithm in terms of ACC, Dice, IOU, SE, and PR in Table 3.
The scattered components in XS∗ are allocated by Rule (1) in the first stage, and the rest
of the components in XS∗ are allocated by Rule (3). The scattered components in XP∗ are
allocated by Rule (2). Rule (1) is useful for the components allocated between signal net and

Appl. Sci. 2022, 12, 8200 15 of 16

power net, and between signal nets. Rule (2) is useful to allocate the scattered components
between power nets and GND net, which are usually repetitive modules. It can be seen that
the results are improved one by one from Stage 1 to Stage 3, which means that the three
rules summarized from our observation are meaningful. Rule (2) significantly improves
the results from Stage 2 to Stage 3. It shows that a lot of repetitive modules exist in netlists.
Even with a simple pattern discovered, the partition results are improved a lot.

Table 3. Comparison results on each stage in terms of ACC, Dice, IOU, SE, and PR. Each stage
corresponds to each step in Algorithm 1.

Datasets
Stage 1 Stage 2 Stage 3

ACC Dice IOU SE PR ACC Dice IOU SE PR ACC Dice IOU SE PR
ANDZ 91.2 86.9 80.5 81.6 92.9 93.5 89.7 84.8 85.2 94.7 96.8 91.4 87.7 89.0 93.9

N1 53.8 62.2 48.9 51.5 78.5 55.2 64.0 51.1 55.5 75.6 86.9 85.8 77.1 87.2 84.4
N2 33.0 48.0 35.3 35.4 74.5 43.5 61.6 49.0 51.0 77.8 84.9 88.4 80.8 88.9 87.9
N3 67.5 72.3 60.9 61.0 88.7 74.7 81.6 72.5 73.3 92.0 91.6 88.7 82.7 86.8 90.7
N4 49.4 55.9 46.4 47.2 68.5 63.2 65.5 56.7 58.8 73.9 88.4 80.2 72.9 80.6 79.8
N5 41.4 50.2 39.6 39.8 68.0 48.4 59.9 50.0 50.3 74.0 86.6 81.1 73.3 80.6 81.6
N6 62.1 68.3 58.6 59.4 80.3 71.5 74.5 65.3 68.5 81.7 89.3 84.9 77.7 85.0 84.8
N7 64.4 76.4 65.2 65.2 92.2 67.5 78.3 67.3 68.7 91.0 88.8 93.0 89.5 94.2 91.8
N8 54.3 64.8 53.8 55.7 77.5 59.7 70.5 60.5 63.5 79.2 84.9 82.7 76.2 84.3 81.2
N9 40.2 48.5 41.5 41.5 58.3 43.3 62.8 55.3 56.0 71.5 82.8 91.1 85.8 91.2 91.0

N10 66.9 77.1 67.6 68.5 88.2 78.2 85.2 78.2 80.3 90.7 89.8 92.8 88.4 93.1 92.5

7. Conclusions

In this paper we analyzed the potential features in netlists through visualization, and
proposed a partition algorithm with consideration of net attributes and potential patterns
in circuits for PCB netlists. We extracted the net attributes from netlist first, and initially
partitioned netlists. Three rules were discovered from our observation of special circuit
structures. The proposed algorithm is a heuristic approach. Compared with other existing
heuristic methods, our approach tries to discover the potential patterns in the netlists. The
proposed algorithm outperforms the MaxFlow algorithm which is a graph cut method in
the evaluation indices of accuracy, Dice, IOU, SE, and PR. In the future work, more potential
circuit patterns will be studied, and they will provide more clues for module partitioning.

Author Contributions: Conceptualization, Y.Z. and L.B.; methodology, Y.Z. and D.M.; software,
D.M.; validation, Y.Z. and D.M.; formal analysis, Y.Z. and D.M.; investigation, Y.Z.; resources, Y.Z.;
data curation, D.M.; writing—original draft preparation, Y.Z.; writing—review and editing, Y.Z. and
L.B.; visualization, D.M.; supervision, Y.Z. and L.B.; project administration, Y.Z. and L.B.; funding
acquisition, Y.Z. and L.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC
No. 61971106).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors express their sincere appreciation and profound gratitude to Jian
Yang (JUJN TECH Company Limited) for his valuable suggestions and paper proofing, and to
research assistants Pingyou Jia and Hongtao Jiao for data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kernighan, B.W.; Lin, S. An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 1970, 49, 291–307. [CrossRef]
2. Kahng, B.K.; Lienig, L.; Markov, I.L. VLSI Physical Design: From Graph Partitioning to Timing Closure; Springer: Berlin/Heidelberg,

Germany, 2011.

http://doi.org/10.1002/j.1538-7305.1970.tb01770.x

Appl. Sci. 2022, 12, 8200 16 of 16

3. Karypis, G.; Aggarwal, R.; Kumar, V.; Shekhar, S. Multilevel hypergraph partitioning: Applications in VLSI domain. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 1999, 7, 69–79. [CrossRef]

4. Caldwell, A.E.; Kahng, A.B.; Markov, I.L. Design and implementation of move-based heuristics for VLSI hypergraph partitioning.
J. Exp. Algorithmics (JEA) 2000, 5, 5-es. [CrossRef]

5. Meng, D.; Zheng, Y.L. Circuit Partitioning for PCB Netlist Based on Net Attributes. In Proceedings of the International Conference
on Machine Learning and Cybernetics, Toyama, Japan, 9–11 September 2022.

6. Barnes, E.R. An algorithm for partitioning the nodes of a graph. Algebr. Discret. Methods Siam J. 1982, 3, 541–550. [CrossRef]
7. Nayak, S.; Panda, S.; Panda, M. Circuit Partitioning optimization using Parallel refinement algorithm. In Proceedings of the

International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC), Bhubaneswar, India,
22–24 October 2018.

8. Ford, L.R.; Fulkerson, D.R. Flows in Networks; Princeton University Press: Princeton, NJ, USA, 1962; p. 11.
9. Liu, L.T.; Kuo, M.T.; Cheng, C.K.; Hu, T.C. A replication cut for two-way partitioning. IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst. 1995, 14, 623–630.
10. Boykov, Y.; Kolmogorov, V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision.

IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1124–1137. [CrossRef]
11. Hamada, T.; Cheng, C.K.; Chau, P.M. An efficient multilevel placement technique using hierarchical partition. In Proceedings of

the IEEE International Sympoisum on Circuits and Systems, Singapore, 11–14 June 1991.
12. Areibi, S.; Vannelli, A. An efficient clustering technique for circuit partitioning. In Proceedings of the IEEE International

Symposium on Circuits and Systems. Circuits and Systems Connecting the World (ISCAS), Atlanta, GA, USA, 12–15 May 1996.
13. Hadley, S.W.; Mark, B.L.; Vannelli, A. An efficient eigenvector approach for finding netlist partitions. IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst. 1992, 11, 885–892. [CrossRef]
14. Fiduccia, C.M.; Mattheyses, R.M. A linear-time heuristic for improving network partitionse. In Proceedings of the Design

Automation Conference, Las Vegas, NV, USA, 14–16 June 1982; pp. 175–181.
15. Sinha, B.; Laskar, N.M.; Sen, R.; Baishnab, K.L. Heuristics in Physical Design Partitioning: A Review. In Proceedings of the IEEE

International Conference on Innovations in Information Embedded and Communication Systems (ICIIECS), Coimbatore, India,
19–20 March 2015.

16. Yeh, C.W.; Cheng, C.K.; Lin, T.T. A general purpose, multiple-way partitioning algorithm. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 1994, 13, 1480–1488.

17. Cong, J.; Lim, S.L. Edge Separability-Based Circuit Clustering With Application to Multilevel Circuit Partitioning. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2004, 23, 346–357. [CrossRef]

18. Cherng, J.S.; Chen, S.J. An efficient multilevel partitioning algorithm for VLSI circuits. In Proceedings of the IEEE International
Conference on VLSI Design, New Delhi, India, 4–8 January 2003.

19. Manna, K.; Choubey, V.; Chattopadhyay, S.; Sengupta, I. Thermal variance-aware application mapping for mesh based network-
on-chip design using Kernighan-Lin partitioning. In Proceedings of the International Conference on Parallel, Distributed and
Grid Computing, Solan, India, 11–13 December 2014; pp. 274–279.

20. Rajan, A.K.; Bhaiya, D. VLSI partitioning using parallel kernighan lin algorithm. In Proceedings of the International Conference
on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; pp. 1897–1901.

21. Manna, K.; Teja, V.S.; Chattopadhyay, S.; Sengupta, I. TSV Placement and Core Mapping for 3D Mesh Based Network-on-Chip
Design Using Extended Kernighan-Lin Partitioning. ACM Trans. Embed. Comput. Syst. (TECS) 2016, 16, 1–25. [CrossRef]

22. Lei, X.; Liang, W.; Li, K.C.; Luo, H.; Hu, L.; Cai, J.; Li, Y. A New Multilevel Circuit Partitioning Algorithm Based on the Improved
KL Algorithm. In Proceedings of the IEEE International Conference on Big Data Security on Cloud (BigDataSecurity), Washington,
DC, USA, 27–29 May 2019.

23. Wei, Y.; Cheng, C.K. Ratio cut partitioning for hierarchical designs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1991, 10,
911–921. [CrossRef]

24. Desai, S.M.; Gambhi, S.; Sharma, P. An Improved and Optimized Layer Assignment Partitioning Algorithm. In Proceedings of
the IEEE International Conference Cloud System and Big Data Engineering, Noida, India, 14–15 January 2016.

25. Panth, S.; Member, S.; Samadi, K.; Du, Y.; Lim, S.K. Placement-Driven Partitioning for Congestion Mitigation in Monolithic 3D IC
Designs. IEEE Trans. Comput.-Aided Des. Integr. Circuit Syst. 2015, 34, 540–553. [CrossRef]

26. Hu, L.R.; Duan, Q.; Qi, Z.; Wang, J.; Lai, J.M.; Yang, M. A new hyper-graph partitioning for 3D-FPGA. In Proceedings of the IEEE
International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 31 October–3 November 2018.

27. Zhou, Z.H. Machine Learning; Tsinghua University Press: Beijing, China, 2016.

http://dx.doi.org/10.1109/92.748202
http://dx.doi.org/10.1145/351827.384247
http://dx.doi.org/10.1137/0603056
http://dx.doi.org/10.1109/TPAMI.2004.60
http://dx.doi.org/10.1109/43.144852
http://dx.doi.org/10.1109/TCAD.2004.823353
http://dx.doi.org/10.1145/2968446
http://dx.doi.org/10.1109/43.87601
http://dx.doi.org/10.1109/TCAD.2014.2387827

	Introduction
	Related Work
	Circuit Analysis of PCB Netlists
	Network Attribute Analysis
	Visualization for PCB Netlists
	Circuit Pattern Analysis

	Circuit Partitioning Based on Net Attributes and Patterns
	Key Component Selecting and Initial Partitioning
	Scattered Components Description
	Scattered Components Allocation by Classifying
	Scattered Components Allocating by Force
	Scattered Components Allocating by Module Matching
	The Proposed Algorithm

	Experimental Results
	Datasets
	Evaluation Indices
	Comparison Results

	Discussion
	Conclusions
	References

