
����������
�������

Citation: Yu, J.; Sun, H.; Sun, J.

Improved Twin Delayed Deep

Deterministic Policy Gradient

Algorithm Based Real-Time

Trajectory Planning for Parafoil

under Complicated Constraints. Appl.

Sci. 2022, 12, 8189. https://

doi.org/10.3390/app12168189

Academic Editor: Giancarlo Mauri

Received: 3 July 2022

Accepted: 14 August 2022

Published: 16 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Improved Twin Delayed Deep Deterministic Policy Gradient
Algorithm Based Real-Time Trajectory Planning for Parafoil
under Complicated Constraints
Jiaming Yu 1 , Hao Sun 2,* and Junqing Sun 1

1 School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
2 College of Artificial Intelligence, Nankai University, Tianjin 300350, China
* Correspondence: sunh@nankai.edu.cn; Tel.: +86-18502256348

Abstract: A parafoil delivery system has usually been used in the fields of military and civilian
airdrop supply and aircraft recovery in recent years. However, since the altitude of the unpowered
parafoil is monotonically decreasing, it is limited by the initial flight altitude. Thus, combining
the multiple constraints, such as the ground obstacle avoidance and flight time, it puts forward a
more stringent standard for the real-time performance of trajectory planning of the parafoil delivery
system. Thus, to enhance the real-time performance, we propose a new parafoil trajectory planning
method based on an improved twin delayed deep deterministic policy gradient. In this method, by
pre-evaluating the value of the action, a scale of noise will be dynamically selected for improving
the globality and randomness, especially for the actions with a low value. Furthermore, not like the
traditional numerical computation algorithm, by building the planning model in advance, the deep
reinforcement learning method does not recalculate the optimal flight trajectory of the system when
the parafoil delivery system is launched at different initial positions. In this condition, the trajectory
planning method of deep reinforcement learning has greatly improved in real-time performance.
Finally, several groups of simulation data show that the trajectory planning theory in this paper is
feasible and correct. Compared with the traditional twin delayed deep deterministic policy gradient
and deep deterministic policy gradient, the landing accuracy and success rate of the proposed method
are improved greatly.

Keywords: parafoil delivery system; trajectory planning; homing control; twin delayed deep
deterministic policy gradient

1. Introduction

A parafoil delivery system is a special precision air conveying system [1–4]. By
controlling the shape of the parafoil canopy, this system can change the flight direction
and achieve precise landing, which is hard to realize by the traditional parachute system.
Based on this advantage, parafoil has broad prospects in the fields of military and civilian
airdrop supply and aircraft recovery. For example, NASA applied a 689 m2 parafoil to
recovery X-38 aircraft [5,6]. The German Aerospace Center (DLR) has also developed a
small and widely instrumented aircraft Alex (a parafoil delivery system), and proposed
the application of the GNC algorithm in autonomous landing [7,8]. Other research, such
as [9,10], explored the modeling approach for ram-air parachutes. Ref. [11] proposed pods
that provide distributed sensors in the whole parachute canopy and a fusion algorithm to
merge the pod data into useful canopy state estimation, which improves the accuracy of
canopy state estimation. Ref. [12] presented a feasibility study on the engine and engine
frame recovery system of an existing expendable heavy launch vehicle.

By analyzing the dynamic features of parafoil, it can be observed that its vertical
velocity is nearly uncontrollable for the unpowered parafoil. Due to this feature, the flight
time of parafoil trajectory planning depends mainly on the initial launching altitude. The
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initial altitude of the parafoil determines that the flight time and the adjustment time for
trajectory change in the flight process is very limited. Parafoil has two research directions
of trajectory planning: the optimal trajectory planning and the multiple trajectory planning.
Based on the above two research directions, the trajectory planning of the parafoil delivery
system is studied by many scholars. The reference flight trajectory is usually composed of
standard straight lines and arcs. In [7], a GNC algorithm based on T-Approach is applied
to multi-trajectory planning. Meanwhile, the trajectory of optimal trajectory planning
is an irregular curve. In the early research on the multiple planning method, Ref. [13]
proposed a simplified 6-DOF model predictive control strategy for autonomous control
of parafoil. The trajectory of this method is composed by many short straight lines. Then,
Refs. [14–16] proposed the terminal guidance strategy of autonomous parafoil, which has
good robustness. The trajectory of this method is the arc in the terminal planning strategy.
Refs. [17,18] proposed the robust trajectory planning of parafoil in uncertain wind envi-
ronments. Ref. [19] proposed a hybrid trajectory planning strategy, which is suitable for a
class of parafoils. Using this method, the generated trajectory consists of multiple straight
lines and arcs. Ref. [20] proposed a terminal trajectory planning method in the form of a
Bézier curve. The path of this method is composed of straight lines and circles. Ref. [21]
explored the direct multiple shooting method to obtain the optimal trajectories. In [22],
parafoil guidance used the Line of Sight guidance algorithm. In [23], multiple parafoils
coordinate and navigate autonomously according to the trajectory, which is a Dubins path
composed of straight lines and arcs. For the multi system planning method, Refs. [24,25]
explored the coordinated trajectory tracking method of multi parafoils to realize the accu-
rate airdrop of multiple parafoils. Different from the traditional multi trajectory planning,
the flight trajectory of the optimal trajectory planning is an irregular curve. Therefore,
the optimal trajectory planning method can satisfy more complex constraints, such as
terrain avoidance and multi-objective global optimization of control quantities [26–28]. For
example, Refs. [29,30] applied multivariable control to the autonomous attitude optimal
control system of parafoil. Meanwhile, unlike the fully autonomous airdrops, Ref. [31]
explored a semi-autonomous Human-in-the-loop control method for precise landing. How-
ever, by analysing all the above research, we can observe that most planning methods
have to recalculate the trajectory after changing the initial position or target position.
Therefore, the lack of computing power will seriously limit the real-time performance of
trajectory planning.

In recent years, deep reinforcement learning has been applied to autonomous tra-
jectory optimization with its powerful learning ability. The deep reinforcement learning
model is trained under the condition that the simulation environment and initial position
are completely random. The simulation environment should include wind disturbance
(including horizontal wind and vertical wind) and terrain change. Using the optimization
model built by deep reinforcement learning, it can be launched at different initial positions
without recalculating the flight trajectory. Based on this advantage, it is widely used in
Unmanned Aerial Vehicles (UAVs) [32–36], automobile [37], and robots [38,39]. Ref. [40]
explored an online path planning method based on deep reinforcement learning for UAV
maneuvering target tracking and obstacle avoidance control. Ref. [41] explored an approach
based on deep reinforcement learning to enable drones to perform navigation tasks in a
multi-obstacle environment with randomness and dynamics. Ref. [42] explored a path
planning method based on a deep neural network to solve the autonomous flight problem
of quadrotor aircraft in unknown environments. In [43], an improved dual-delay determin-
istic strategy gradient is proposed for UAV energy-saving path planning. However, due to
the monotonously decreasing height and fixed flight time of the parafoil system, it can be
found from the above studies that ordinary UAV planning methods are not suitable for the
parafoil system. Ref. [44] obtained a large number of training samples according to Kane
equation (KE) and genetic algorithm (GA), and trained them by Back Propagation Neural
Network (BPNN) by establishing the database of falling point trajectories. The trained
neural network is used to calculate the trajectory parameters of airdrop under specific flight
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conditions. However, this method needs to prepare a large number of parameter samples
in advance for network training, and requires samples to be effective. In contrast, deep
reinforcement learning does not need to build a sample database in advance. Furthermore,
by analyzing the simulation results of the above research, although the traditional rein-
forcement learning method is improved in real time, the landing accuracy is not as good as
the traditional numerical computation method.

Thus, we propose a real-time flight trajectory optimization method for a parafoil
delivery system, which was based on an improved twin delayed deep deterministic policy
gradient. First, based on the analysis of the actual flight data, combined with the flight
environment and the characteristics of the parafoil, a 4-DOF model of the parafoil delivery
system is built. Then, in the section of the optimization, we first introduce the principle
of Deep Deterministic Policy Gradient (DDPG), explain the disadvantages of the DDPG
algorithm, and introduce the improvement of Twin Delayed Deep Deterministic Policy
Gradient (TD3) compared with DDPG. Based on the principle of TD3, the reason why the
algorithm still leads to poor landing accuracy is explained. In order to reduce the impact
of noise uncertainty on the exploration strategy and make better use of the good strategy
of agent exploration, the existing TD3 method is improved by dynamically selecting the
scale of noise in the action. By pre-evaluating the reward value of the action, different noise
scales are selected according to the size of the pre-evaluated reward value. Simulation
results show that the proposed method satisfies all trajectory constraints and shows the
comparison results with the DDPG and TD3 algorithms. This method can achieve better
real-time performance without losing landing accuracy.

2. Model of the Parafoil Delivery System

The parafoil delivery system is a very precise system, which has a unique structure.
As shown in Figure 1, the parafoil consists of two parts: a flexible parafoil canopy and a
payload. These two structures are connected by the lifting ropes and two controllable ropes.
The controllable ropes are attached to the rear of the canopy. The shape of the canopy can
be changed by manipulating the length of the controllable ropes. This phenomenon is
so-called flap deflection. This method is used as the control input in the horizontal direction
during the flight of the parafoil delivery system. With the flap deflection, the yaw angle of
the parafoil delivery system can be controlled. Due to its good maneuverability, the parafoil
delivery system has greatly improved the landing accuracy than the traditional parachute.

Figure 1. Parafoil delivery system.

The four main processes of flight tests are shown in Figure 2. The UAV system first
carries the parafoil to the target altitude, and when it reaches the target altitude, the UAV
releases it in the air. The whole flight process of the parafoil is controlled by the remote
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control device. Data during flight, such as control quantities and yaw angles, are used to
analyze the dynamics of parafoil. The physical parameters of the parafoil are shown in
Table 1.

(a) Lift with UAV (b) Release parafoil

(c) Remote control (d) Landing

Figure 2. Process of flight test.

Table 1. Physical parameters of parafoil.

Parameter Value/Unit

Span 2/m
Chord 0.8/m

Area of canopy 3/m2

Length of suspending ropes 1.4/m
Mass of payload 12.5/kg
Mass of canopy 0.9/kg

Figure 3 records the data of a real flight trajectory of the parafoil. Figure 3a,b visually
show the horizontal trajectory and 3D trajectory of the parafoil, respectively. The data in
Figure 3c records the horizontal and vertical flight velocities of the parafoil at different times.
The glide-ratio data are recorded in Figure 3d, and glide-ratio is defined as the ratio between
the forward distance and the altitude drop during flight. The results show that, during the
whole parafoil flight, the average vertical velocity and horizontal velocity are 3.7 m/s and
7.5 m/s, respectively. The average glide-ratio during flight is 2.1. The minimum turning
radius of parafoil delivery system is 20 m. By analyzing the above real parafoil flight data,
we built a 4-DOF model of parafoil:
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ẋ = vxy cos ϕ + vwx
ẏ = vxy sin ϕ + vwy

ẏ = vz
ϕ̇ = ω + u

(1)

where [x, y, z] denotes the position of the parafoil system,
[
vwx, vwy, vwz

]
represents the

component of wind velocity on the x-axis, y-axis, and z-axis, vxy denotes the horizontal
velocity, and vz represents the vertical velocity of the parafoil system. In this work, it is
assumed that the value of the component vwz of wind speed on the z-axis is equal to 0,
so z = vz. ϕ represents the yaw angle of the parafoil system, ϕ̇ is the angular velocity, ω
represents the accumulated angular velocity of the parafoil, and u represents the control
input of parafoil system during flight, which is the angular acceleration.

(a) Horizontal trajectory (b) 3D trajectory

(c) Flight velocity (d) Glide-ratio

Figure 3. Results of the flight test.

3. Trajectory Optimization Method Based on Improved Twin Delayed Deep
Deterministic Policy Gradient
3.1. Deep Deterministic Policy Gradient Algorithm

The DDPG algorithm is proposed by the Google DeepMind team for realizing contin-
uous action space control. It is composed of an Actor–Critic structure, combined with the
Deep Q-learning Network (DQN) algorithm.

Figure 4 shows that the Actor–Critic structure consists of two parts: the actor network
and the critic network. Among them, the actor represents the strategy network, which takes
the current state as input and then generates the action under the current state through
the analysis of neural networks. It takes advantage of Policy Gradient’s ability to select
actions in a continuous interval, and then selects actions randomly based on the learned
action distribution. However, DDPG is different from Policy Gradient in that it generates
deterministic actions based on the output of the actor, instead of generating according to
Policy Gradient. The critic is the value network with a single step update. This update
method solves the problem of low learning efficiency caused by the strategy gradient of
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round update. Through the reward function to guide the learning direction of the network,
the critic can obtain the potential rewards of the current state, and it takes the action output
from the actor network as the input and outputs the evaluation value. Critic evaluates the
action selected by the actor and guides the update direction of the network parameters of
the actor, so that the actor after updating the network parameters can choose actions with a
higher value as much as possible. The evaluation value Q is the reward for taking action ai
under Si. The formula is as follows:

Q(Si, ai|θQ) (2)

where θQ denotes the parameter of the critic network.
The behavior of each state directly obtains a certain action value through the deter-

ministic policy function µ:
at = µ(St|θµ) (3)

where µ represents the deterministic behavior policy, which is defined as a function and
simulated by a neural network, θµ represents the parameter of policy network, which is
used to generate the determination action. at is the change rate of angular velocity in state
St, and the control input u in (1) is changed by at.

In order to make the DDPG algorithm more random and learning coverage, it is
necessary to add random noise to the selected action to make the value of the action
fluctuate. The action after adding noise can be expressed as:

at ∼ clip(N(µ(St|θµ), σ2), alow, ahigh) (4)

where N denotes the gaussian noise, and the noise follows the normal distribution, where
at is the expectation and σ is the variance, alow is the minimum value of the action, and
ahigh is the maximum value of the action.

Figure 4. Schematic diagram of the Deep Deterministic Policy Gradient algorithm.

The design of DDPG is based on the off-policy approach, which separates the behav-
ioral strategies from the evaluation strategies. There are estimated networks and target
networks in the actor and the critic. Their estimated network parameters need to be trained,
and the target network is soft-updated. Therefore, the two network structures of the actor
and the critic are the same, but the network parameters are updated asynchronously. The
soft update formula of the target network of the actor and the critic is as follows:{

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′ (5)
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where τ represents the soft update rate, θQ and θµ are the estimated network parameters of
the actor and the critic, and θQ′ and θµ′ are the target network parameters of the actor and
the critic.

The action selected by the target network of the actor and the observation value of
the environmental state are used as the input of the target network of the critic, which
determines the update direction of the target network parameters of the critic. The update
formula of the critic network parameters is:

yi = ri + γQ′(Si+1, µ′(Si+1|θµ′))|θQ′)) (6)

L =
1
n

n

∑
i
(yi −Q(Si, ai|θQ))

2
(7)

where yi represents the real evaluation value which is calculated by the target network, Si
indicates environment status, ri represents the real reward, ai indicates the selected action
under Si, µ represents deterministic policy function, and γ denotes the reward decay rate,
which controls the influence of the reward value of the future step on the evaluation value
of the current step. Larger γ indicates that the critic pays more attention to future rewards,
and smaller γ indicates that the critic pays more attention to current rewards. L denotes
the loss function, which is the sum of squared errors between the actual value yi and the
estimated value.

The update of the actor network parameters follows the deterministic strategy, whose
formula is:

∇θµ J =
1
n

n

∑
i
∇aQ(S, a|θQ)|S=Si ,a=µ(Si)

∇θµ µ(S|θµ)|Si (8)

where ∇Q is from the critic, which is the update direction of the actor’s network param-
eters, so that the actor with updated parameters can choose the action to obtain a higher
evaluation value from the critic. ∇µ is from the actor, which indicates the update direction
of the parameters of the actor, so that the actor after updating the parameters is more likely
to select the above action.

3.2. Improved Twin Delayed Deep Deterministic Policy Gradient Algorithm

Since DDPG is an off-policy method based on the DQN algorithm, each time it selects
the highest value in the current state instead of using the actual action of the next interaction,
there may be an overestimation. In the Actor–Critic framework of continuous action control,
if each step is estimated in this way, the error will accumulate step by step, resulting in
failure to find the optimal strategy and, ultimately, making the algorithm unable to converge.
The twin delayed deep deterministic policy gradient (TD3) algorithm is optimized for
mitigating the overestimation error of the DDPG algorithm.

The actor has two networks, an estimation network and a target network. The critic has
two estimation networks and two target networks, respectively, as schematically illustrated
in Figure 5. Thus, the critic has four networks with the same structure. The state quantity
and action are the input of the critic network, and the output value is the value generated by
the action executed in the current environment state. Regarding the optimization algorithm,
TD3 adopts the Actor–Critic architecture similar to DDPG and is used to solve the problems
in continuous action space. The improvement of the TD3 algorithm relative to the DDPG is
mainly reflected in the following three aspects:

The first is the double critic network structure. In TD3, the critic’s estimated network
and target network have two, respectively. The smaller value of the target network is
selected as the update target to update Estimated Critic1 and Estimated Critic2, which
can alleviate the phenomenon of overestimation. TD3 uses the same method as DDPG to
construct the loss function:

yi = ri + γ min
j=1,2

Q′(Si+1, a′i|θQj′) (9)
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L =
1
n

n

∑
i
(yi−Q(Si, ai|θQ))2 (10)

S and Si+1 are state quantities, as the input of the actor, and the output is the actions ai and
a′i generated in the current environment.

The second is to delay updating the actor. In the TD3 algorithm, the critic network
is updated once every step, the parameters of the actor are updated in a delayed manner,
with a lower update frequency than the critic, that is, after the critic is updated multiple
times, update the actor once. On the one hand, delaying updating the actor can reduce
unnecessary repeated updates. On the other hand, it can also reduce errors accumulated in
multiple updates.

The third is the smooth regularization of the target strategy. By adding noise based on
the normal distribution to the action of the target network selection as (11):

a′i=µ′(Si+1|θµ′) + clip(N(0, σ),−c, c) (11)

the value function is updated more smoothly, the network is more robust, and the robust-
ness of the algorithm is improved.

TD3 solves the problem of overvaluation of DDPG and facilitates the exploration of
better strategies to improve the success rate and landing accuracy. However, applying the
TD3 algorithm to the trajectory planning of the parafoil delivery system, combined with
our existing simulation results and analyzing the experimental data, it is found that TD3
still has a larger landing error than the traditional trajectory optimization algorithm. This
is difficult to solve only by increasing the number of training because the parafoil does
not necessarily explore a better policy each time, or even a worse policy than the existing
one, and stores it in the experience pool. This is due to the uncertainty of adding noise
to the action. In the DDPG and the TD3 algorithms, in order to increase the randomness
of the algorithm and the coverage of learning, they adopt the way of adding noise to the
action to make it produce a certain fluctuation, hoping to explore more strategies. However,
the action after increasing the noise is not necessarily better; it may make the action after
increasing the noise obtain a lower reward value, thus storing a poor experience in the
experience pool, which is not conducive to the algorithm learning a better strategy.

To solve this problem, we propose an improved twin delayed deep deterministic
policy gradient algorithm, which dynamically changes the scale of noise to be added by
evaluating the reward value of the selected action in advance. This method can effectively
reduce the negative impact of noise uncertainty on strategy exploration, and make full use
of excellent strategies.

Figure 5. Schematic diagram of the Improved Twin Delayed Deep Deterministic Policy Gradient
algorithm.
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The action µ(St) selected in the St state will first obtain the reward value rpredict of
environmental feedback without adding any noise, so as to pre-evaluate the value of the
action. The purpose of pre-evaluation is to judge whether the action is an excellent strategy.
If the action has a high value, reduce the scale of noise and maintain this strategy as much
as possible. If the action has a low value, the scale of noise should be increased to explore
better strategies. The variance σ of Gaussian noise is determined by rpredict. The higher the
reward rpredict is, the smaller the variance σ of noise is, the lower the reward rpredict is, and
the more the variance σ of noise is. In this work, the maximum value of σ is limited to 2,
and the minimum value is 0.4. If the real-time reward value is less than 0, the exploration
intensity should be increased, so σ of negative action is 2. When the real-time reward value
is greater than 0, σ decreases along the positive direction of the x-axis, and the variation
amplitude of σ gradually decreases, but σ cannot be reduced to 0, and a small amount
of noise still needs to be retained to maintain the exploration. The agent uses action at
after adding noise to explore. This makes better use of the good strategies explored by the
agents and, to some extent, avoids storing the worse explored steps in the experience pool.
In (12), the scale of variance σ is selected according to the pre-evaluated reward value. The
improved TD3 algorithm is described in Algorithm 1, where the additional step 6 reflects
our proposed modification:

σ =

{
1

0.8rpredict+0.5 , i f rpredict > 0

2, otherwise
(12)

Algorithm 1 Improved TD3

1: Initial estimated critic network parameters θQ1,θQ2, and estimated actor network pa-
rameter θµ

2: Initial target networks parameters θQ1′ ← θQ1,θQ2′ ← θQ2

3: Set initial values of hyper-parameters according to the task requirements: experience
playback buffer pool B, mini-batch size n, actor network learning rate la, critic network
learning rate lc, maximum episode E, soft update rate τ

4: for t = 1 to T do
5: Select action at = µ(St|θµ)
6: According to pre-evaluated reward value of action at, select the size of noise variance

σ, and add noise N to new action at ∼ clip(N(µ(St|θµ), σ2), alow, ahigh) with noise,
and observe reward rt in current state and new state St+1

7: Store transition tuple (St, at, rt, St+1) of this step in B
8: Sample mini-batch of n transactions (Si, ai, ri, Si+1) from B
9: Compute target actions a′i=µ′(Si+1|θµ′) + clip(N (0, σ),−c, c)

10: Compute Q-targets yi = ri + γ min
j=1,2

Q′(Si+1, a′i|θQ′ j)

11: Update estimated network parameters of the critic by minimizing loss: L =

1
n

n
∑
i
(yi−Q(Si, ai|θQ))2

12: if t mod d then
13: Update the actor policy using sampled policy gradient:

14: ∇θµ J = 1
n

n
∑
i
∇aQ(S, a|θQ)|S=Si ,a=µ(Si)

∇θµ µ(S|θµ)|Si

15: Update parameters of target network of the critic and the actor:
16: θQj′ ← τθQj + (1− τ)θQj′ for j = 1,2
17: θµ′ ← τθµ + (1− τ)θµ′

18: end if
19: end for
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4. Trajectory Constraints and Reward Design
4.1. Trajectory Constraints

Trajectory constraints determine the optimization direction of the algorithm. Accord-
ing to the simulation environment of this work, the trajectory constraints include initial
and terminal values. The initial value constraints of the parafoil delivery system are:

x(t0) = x0
y(t0) = y0
z(t0) = z0
ϕ(t0) = ϕ0

(13)

where t0 represents the initial time, and its value is 0, [x0, y0, z0] denotes the initial position,
which is a random value, ϕ0 denotes the initial yaw angle, which is also a random value.
The terminal value constraints of parafoil delivery system are:

t f =
z0−z f

vz
x(t f ) = x f
y(t f ) = y f
z(t f ) = z f

(14)

where t f denotes the terminal time. In this work, z f = 0 is assumed, so the value of t f is
determined by the initial height z0 and the vertical velocity vz. It can be seen from (1) that
the vertical velocity is constant, so the terminal time is a fixed time.

[
x f , y f

]
denotes the

terminal location.
The parafoil in trajectory planning also needs to consider real-time path constraints,

control input constraints, and terrain avoidance. In this article, these constraints will be
considered in the reward design.

4.2. Reward Design

The system obtains rewards and punishments by interacting with the external envi-
ronment. In this work, a positive value represents a reward and a negative value represents
a punishment. First, each step of the whole flight must be rewarded and punished, so
the horizontal difference between the remaining flying distance of the system and the
distance to the destination should be calculated at each step, and consider the size of the
control input. The optimization objective in the whole flight process is to minimize the
horizontal error between the target position and the terminal position of the parafoil. Thus,
the reward function is required to reflect the final landing result of the parafoil, and the
terminal reward guides the parafoil to obtain higher landing accuracy. Then, the reward
must consider the terrain avoidance. If the flight trajectory encounters a no-fly zone or
exceeds the flyable area, a penalty will be given.

First, the setting of reward value should guide the optimization direction of each step
in the trajectory planning process. The real-time trajectory constraints are:

Dt =
√
(xt − x f )

2 + (yt − y f )
2 (15)

d = | zt

vz
× vxy − Dt| (16)

ru = 1− |at| −
∣∣at − at

′∣∣ (17)

rd =

{
2, i f d < 1 and d′ < 1
0.1× (d′ − d), otherwise

(18)

rt = rd + 0.5× ru (19)



Appl. Sci. 2022, 12, 8189 11 of 25

Dt denotes the horizontal distance between the parafoil and the target point under St. d and
d′ are the difference between the remaining flying distance of the system and the distance
to the destination under St and St+1, respectively, rd represents the constraint of real-time
distance under St, the range of 0.1× (d′ − d) is −1.5 to 1.5, so the maximum reward value
when d < 1 and d′ < 1 is set to 2. ru represents the constraint of real-time control input
at St. Therefore, rt represents the reward of real-time constraints. In order to prevent the
landing accuracy from decreasing due to excessive constraint control input, ru should be
multiplied by the weight coefficient of 0.5 to appropriately reduce the weight. Under these
real-time trajectory constraints, the optimization objective is to minimize the landing error
in the whole flight process.

In addition, the parafoil will obtain a reward value r f in the terminal state, which is
expressed as:

D f =
√
(xt f − x f )

2 + (yt f − y f )
2 (20)

r f =


K−D f

2 , t = t f , D f ≤ 5
K−D f

4 , t = t f , D f ≤ 20
K−D f

6 , t = t f , D f ≤ 50
M, t = t f , D f > 50

(21)

where
[

xt f , yt f

]
represents the final landing position of the parafoil, D f represents the

landing error that is meant to be minimized, K is a constant greater than 50, and M is a
negative constant. From (21), the formula shows that the value of r f increases with the
decrease of landing error. The range of rt is −1.5 to 2.5, so it is necessary to avoid diluting
the terminal reward value r f by the rt, the value of K should be selected in combination
with reward decay rate γ. When the landing error is different, the weight of the terminal
reward value is different. When the landing error is less than 5 m, the weight of the terminal
reward is the highest, and the parafoil pays more attention to the terminal reward value.
When the landing error is large, the weight of the terminal reward value will be reduced,
and the parafoil pays more attention to real-time reward values in order to obtain better
planning strategies. If D f > 50 indicates that the landing error is too large, the flight
mission is deemed to have failed, and the reward value is M.

Finally, the reward function should also guide the parafoil to avoid multiple circular
no-fly zones and limit the parafoil within the flying zone. Terrain avoidance reward
function can be expressed as:

di =

√
(xt − xi)

2 + (yt − yi)
2 (22)

ra =

{
M, di < radius
M, xt < xmin or xt > xmax or yt < ymin or yt > ymax

(23)

where [xi, yi] represents the central coordinate of no-fly zone, and radius represents the
radius (minimum safe distance of parafoil) of the no-fly zone. xmin, xmax, ymin and ymax
indicates the range of the flying region. The M indicates the penalty of flight failure.
The higher the absolute value of negative number M, the greater the impact on this strategy,
and the less likely the parafoil will adopt this strategy in the future. In (23), the formula
indicates that, if the parafoil reaches the no-fly zone or exceeds the flying zone, it will be
punished and the flight will be judged as a failure immediately.

5. Comparison
5.1. Simulation Environment

Figure 6 shows the main task space, which is a three-dimensional cube shaped region
with a size of 500 × 500 × 500 m. The initial point of the parafoil is initialized randomly
in the region for each episode, and the red target point is set to [400,400,0]. The initial
flying altitude of the parafoil is set at 500 m. There are three no-fly zones within the
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flight area. They are cylinders with a radius of 50 m and a height of 500 m centered on
[100,200], [250,400], and [300,100]. In addition, we also use another environment to test the
performance of the improved TD3 algorithm in the wind disturbed environment. As shown
in Figure 7, the centers of the three no-fly zones are [400,100], [200,200], and [300,400],
respectively. The components of wind velocity in the positive direction of the x-axis, y-axis,
and z-axis are −2 m/s, −1 m/s and 0 m/s, respectively.

Figure 6. The simulation environment 1.

Figure 7. The simulation environment 2.

5.2. Training and Results

The DDPG, TD3 and improved TD3 algorithms have the same parameters during
training. Table 2 shows the main super parameters of the three algorithms. The max
episodes of the algorithm is 3000, which represents the maximum number of episodes of
the three algorithms. γranges from 0 to 1, the larger the value of γ, the greater the impact
of the reward value of future steps on the current state. τ is the soft update factor in (5).
The learning rate setting should not be too large or too small to avoid failing to converge
or falling into local optimization. Reply buffer size represents the maximum number of
experiences that can be stored; when the reply buffer is full, the newly stored experience
will replace the earliest experience. Batch size is the number of samples taken from the reply
buffer during each training. In this work, the value of delay step is 3, which means that
the parameter of the actor is updated only once after the parameter of the critic is updated
three times. As shown in Figure 8, the initial point of each episode is initialized randomly
in the task area to ensure that the training process covers as many positions as possible.
The episode ends when the parafoil flight time ends or the parafoil touches the restricted
zone or crosses the boundary. DDPG, TD3, and the improved TD3 algorithm are used to
train the parafoil delivery system in the task area. Both the actor and the critic networks
use the multilayer perceptron (MLP) network structure. Figure 9 shows the changes of
the average reward values of the three algorithms during the training of 3000 episodes in
simulation environment 1.
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Table 2. Parameters of the training experiment.

Parameter Value

Max Episodes 3000
Discount Factor γ 0.99

Soft Update Factor τ 0.01
Critic Learning Rate 0.0005
Actor Leaning Rate 0.001
Reply Buffer Size 5× 105

Batch Size 256
Delay Steps 3

Figure 8. The initial positions of 3000 episodes.

Figure 9. Average reward value of 3000 episodes.

As shown in Figure 9, the parafoil has not learned excellent strategies at the initial
stage, so the probability of touching the no-fly zone or exceeding the flying region is high.
It can be seen that the average return of the parafoil random exploration in the environment
is low, usually a negative reward value. When the playback buffer size reaches a certain
amount, the parafoil starts to train the network to update the policy. Using the method in
this work, the noise to be added is selected according to the pre-evaluated reward value
after the action is selected, and the noise decreases with the increase of times. It can be



Appl. Sci. 2022, 12, 8189 14 of 25

observed that, with the increase of episodes, the parafoil delivery system gradually learns
excellent strategies for trajectory planning, so the average reward value gradually increases.
The model trained by neural network can cover all the initial positions in the environment.

5.3. Testing and Results

Five indicators were used to evaluate the training results, including landing errors
LR10, LR20 and LR50, crash rate, and average landing errors. LR10, LR20, and LR50
represent the percentage of episodes that the distance between the final landing point
of the parafoil, and the target point is less than 10 m, 20 m and 50 m after 100 tests,
respectively. Crash rate is the percentage of times the parafoil hits the no-fly zone or
exceeds the flying zone after 100 tests. The average landing error is the sum of the total
errors of successful landing divided by the number of successful landings. The lower the
crash rate is, the higher the success rate of the model is. The lower the average landing error
is, the higher the landing accuracy of the model is. In the simulation environment 1 shown
in Figure 6, the test results of DDPG, TD3, and improved TD3 after testing 100 episodes are
shown in Table 3. In the simulation environment 2 shown in Figure 7, the test results of
DDPG, TD3, and improved TD3 after testing 100 episodes are shown in Table 4.

Table 3. Results of 100 tests using DDPG, TD3, and improved TD3 in the simulation environment 1.

Algorithm LR10 LR20 LR50 Crash Average Landing Errors

DDPG 1% 19% 63% 20% 33.8 m
TD3 17% 74% 92% 13% 16.6 m

Improved TD3 89% 92% 93% 5% 5.7 m

Table 4. Results of 100 tests using DDPG, TD3, and improved TD3.

Algorithm LR10 LR20 LR50 Crash Average Landing Errors

DDPG 5% 41% 60% 33% 37.7 m
TD3 8% 48% 82% 15% 21.8 m

Improved TD3 76% 91% 94% 4% 6.4 m

It can be seen from Table 3 that the average landing error of the improved TD3
algorithm is 5.7 m, and the value of LR10 is 89%, which is much higher than the other
two algorithms. The average landing error of the DDPG algorithm and TD3 algorithm are
33.8 m and 16.6 m. Thus, the improved TD3 algorithm has the highest landing accuracy.
In addition, the crash rate of the improved TD3 algorithm is only 5%, while the crash
rates of the DDPG algorithm and TD3 algorithm are 20% and 13%, respectively. Thus,
the improved TD3 algorithm also has the highest success rate and the lowest crash rate. In
Table 4, the improved TD3 algorithm also has the highest landing accuracy and success rate.

Figures 10–13 show four typical cases of successfully reaching the target point using
the improved TD3 algorithm in simulation environment 1. Their initial positions were
[150,150], [100,400], [250,250], and [400,130], and the initial height is 500 m. Parafoil landing
positions are [399.2,395.3], [401.8,395.6], [399.6,395], and [402.7,404.2]. The flight time of
parafoil is determined by its initial altitude, which is 150 s. The range of control input is −1
to 1. The yaw angle is recorded as 0◦ to 360◦. From these cases, we can see that the parafoil
delivery system has high landing accuracy, and the fluctuation of control input and the
value of control input have also been controlled. From the reference trajectory, it can be
seen that the parafoil has learned excellent strategies. When d is small and the remaining
flight time is large, the parafoil can hover in the air and consume altitude.

Figures 14–17 show four typical cases of successfully reaching the target point using
the improved TD3 algorithm in simulation environment 2. Their initial positions are
randomly selected as [198,432], [115,234], [232,56], and [338,456], and the initial height is
500 m. Parafoil landing positions are [403.4,402.6], [401.1,401.5], [399,400.9], and [403.6,399].
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Different from simulation environment 1, the horizontal velocity of parafoil will change
in different directions due to the influence of wind velocity. If the horizontal velocity
decreases, the parafoil may not have redundant height. The control input needs to ensure
that the parafoil flies directly to the target point as far as possible without consuming height.
This is the reason why the control input in simulation environment 2 fluctuates frequently,
but the improved TD3 algorithm can still constrain the size of the control input to make the
control input as small as possible.

The experimental results of the three algorithms under random initial points are
also compared. Figures 18–20 show the initial positions of parafoil under simulation
environment 1 as [439,299], [72,312], and [339,452], DDPG, TD3, and improved TD3 were
used for testing, respectively. Figures 21 and 22 show the initial positions of parafoil
in simulation environment 2 as [432,325] and [165,99]. The landing errors of the three
algorithms are shown in Table 5. It can be seen from Figure 19c that, because the learning
ability of the DDPG is poor compared with the other two algorithms, it can not learn a better
input control strategy, resulting in a high input control oscillation frequency of the DDPG.
The oscillations in Figure 19d are due to the fact that 360° and 0° are considered equal
in this work. When the initial positions are [439,299] and [72,312], the landing accuracy
of improved TD3 is obviously better than DDPG and TD3. When the initial position is
[339,452], although the landing accuracy of the improved TD3 is slightly worse than that
of TD3, it can be seen from Figure 20 that the trajectory of the improved TD3 algorithm
is more consistent with the setting of the reward function and can effectively consume
altitude, and the control input value is smaller, thus proving that the training effect of the
improved TD3 is better.

(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 10. Improved TD3-Case1 in simulation environment 1.
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(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 11. Improved TD3-Case2 in simulation environment 1.

(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 12. Improved TD3-Case3 in simulation environment 1.
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(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 13. Improved TD3-Case4 in simulation environment 1.

(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 14. Improved TD3-Case1 in simulation environment 2.
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(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 15. Improved TD3-Case2 in simulation environment 2.

(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 16. Improved TD3-Case3 in simulation environment 2.
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(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 17. Improved TD3-Case4 in simulation environment 2.

(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 18. Comparison results of three algorithms when the initial point is [434,299].
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(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 19. Comparison results of three algorithms when the initial point is [72,312].

(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 20. Comparison results of three algorithms when the initial point is [339,452].
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(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 21. Comparison results of three algorithms when the initial point is [432,325].

(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 22. Comparison results of three algorithms when the initial point is [165,99].
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Table 5. Results of three cases using DDPG, TD3, and improved TD3.

Initial Position
DDPG TD3 Improved TD3

Final Position Landing Error Final Position Landing Error Final Position Landing Error

[434,299] [398.8,426.7] 26.7 m [415.4,400.5] 15.4 m [399.7,397.6] 2.4 m
[72,312] [412,383.9] 20 m [407.4,407.5] 10.5 m [400.3,398.4] 1.6 m

[339,452] [408,416.5] 18.3 m [400,400.1] 0.1 m [400.9,397.8] 2.4 m
[432,325] [414.2,408.5] 16.5 m [415.4,414.7] 21.2 m [402,409.6] 9.8 m
[165,99] [385.6,364.4] 38.4 m [386.6,393] 15.1 m [401.6,396.5] 3.8 m

In addition, Figure 23 shows that, in simulation environment 1, when the initial point
is the extreme case of [20,180], receiving strong interference from the terrain, all three
algorithms fail. Figure 24 shows that, when the initial position is [120,440], the improved
TD3 algorithm succeeds, but the DDPG and the TD3 fail.

(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 23. All three algorithms fail.
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(a) Horizontal trajectory (b) 3D trajectory

(c) Control input (d) Yaw angle

Figure 24. Only the improved TD3 algorithm is successful.

6. Conclusions

In this work, a trajectory planning method based on deep reinforcement learning is
proposed, which enables the parafoil to meet the autonomous trajectory planning under
complex constraints. It proposes a new method of selecting noise according to the pre-
evaluation reward value to improve the Twin Delayed Deep Deterministic Policy Gradient
algorithm. It solves the problem in which the agent explores poor strategies due to the
randomness of noise. Firstly, by analyzing the actual flight data of the parafoil system,
combined with the mission environment and the characteristics of the parafoil, a 4-DOF
model is built. Then, based on the Improved Twin Delayed Deep Deterministic Policy
Gradient, the parafoil trajectory planning method is described in detail. Simulation results
show that the Improved Twin Delayed Deep Deterministic Policy Gradient algorithm
can realize trajectory planning at different initial positions, and the landing accuracy and
success rate are significantly improved compared with Deep Deterministic Policy Gradient
and Twin Delayed Deep Deterministic Policy Gradient. The method in this paper improves
the negative impact of noise uncertainty on exploration; due to the randomness of the
extraction experience, the bad experience that has been stored in the reply buffer may
still be extracted and learned. The next work can use the experience of the first playback
mechanism to improve this defect.
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