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Abstract: The model of bearings-only tracking is generally described by discrete–discrete filtering
systems. Discrete robust methods are also frequently used to address measurement uncertainty
problems in bearings-only tracking. The recently popular continuous–discrete filtering system
considers the state model of the target to be continuous in time, and is more suitable for bearings-only
tracking because of its higher mathematical solution accuracy. However, the sufficient evaluation
of robust methods in continuous–discrete systems is not available. In addition, in the different
continuous–discrete measurement environments, the choice of a robust algorithm also needs to be
discussed. To fill this gap, this paper firstly establishes the continuous–discrete target tracking model,
and then evaluates the performance of proposed robust square-root continuous–discrete cubature
Kalman filter algorithms in the measurement of uncertainty problems. From the simulation results,
the robust square-root continuous–discrete maximum correntropy cubature Kalman filter algorithm
and the variational Bayesian square-root continuous–discrete cubature Kalman filter algorithm have
better environmental adaptability, which provides a promising means for solving continuous–discrete
robust problems.

Keywords: cubature Kalman filter; bearings-only tracking; continuous–discrete time system; non-
gaussian noise; maximum correntropy; variational Bayesian

1. Introduction

Bearings-only tracking [1,2] uses a sequence of angle measurements to estimate the
state (position and velocity) of the target and has universal applications in the field of
navigation, especially in passive target tracking. For the system model of bearings-only
tracking, the target state is generally built as the discrete time model for convenience. In
addition, the angle measurement information for the target is discrete time. This is called
the discrete–discrete time system model. However, considering the actual situation of
target tracking, the target state is continuous in nature, and the measurement is discrete
time. Such a system model is called the continuous–discrete time system [1]. Compared
with the discrete–discrete system model, the continuous–discrete system model is closer to
the real situation, and its solutions have more advantages, such as high accuracy [3].

Based on the continuous–discrete time system, continuous–discrete filtering, whose
model is based on the covariance matrix of random errors, can be established. In [4],
the cubature criterion was introduced into the continuous–discrete time system, and the
continuous–discrete cubature Kalman filter (CD-CKF) algorithm was obtained. It uses
stochastic differential equations (SDEs) to describe the continuous-time target state model,
and the accuracy of the SDE solution greatly affects the filtering performance. In [5], Crouse
summarized the Euler-Maruyama method based on 0.5 order and the Itô-Taylor method,
which were proven to have acceptable accuracy. In order to further improve the accuracy

Appl. Sci. 2022, 12, 8167. https://doi.org/10.3390/app12168167 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168167
https://doi.org/10.3390/app12168167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0647-3277
https://doi.org/10.3390/app12168167
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168167?type=check_update&version=2


Appl. Sci. 2022, 12, 8167 2 of 15

of state estimation, high-order numerical approximation methods are used to deal with
stochastic differential equations. In [6], Crouse described the continuous-time model as
the form of its expectation and covariance and then solved the time prediction problem of
the continuous model. In [7], the nested implicit Runge-Kutta method was used for the
continuous–discrete extended Kalman filter (CD-EKF), and the corresponding application
in CD-CKF was discussed in [8]. Subsequently, adaptive methods were proposed. In [9],
Kulikova et al. used adaptive step size to further improve the accuracy. The adaptive
feedback strategy [10] reduced the impact of unpredictable errors in the prediction step by
means of covariance adjustment; thus, the performance and efficiency were both improved.

In the actual measurement environment, harsh conditions such as signal interference
will cause non-Gaussian noise [11,12] or outliers to appear. If they are not dealt with,
the Gaussian-assumed filters will be inaccurate or even divergent. For this measurement
uncertainty problem, various robust methods [13] are proposed for the discrete–discrete
time filtering systems. As a method of modification, robust methods aim to improve
robustness in the presence of outliers in the data. For instance, the Huber’s M-estimation
method [14,15] used the robust cost function to reduce the weight of abnormal data. It is
widely used and has proven effective in filtering problems [16]. Wu et al. [17,18] proposed
a more practical robust CKF algorithm based on generalized M-estimation without the
experience threshold of the weight function and statistical characteristics information
of outliers. In [19], Särkkä dealt with the time-varying noise with the variational Bayes
criterion in the case of unknown noise covariance. In [20–22], the maximum correntropy
criterion (MCC) was introduced into discrete–discrete filtering systems. The correntropy
can utilize the higher-order information of the measurements instead of the second-order
moment information of the minimum mean square error criterion, which is more suitable
for non-Gaussian systems in the presences of non-Gaussian noise.

The above robust methods are successfully used in the discrete–discrete time sys-
tems, but sufficient evaluation of the continuous–discrete time systems is not available.
Moreover, how to balance the accuracy and robust performance of the continuous–discrete
filtering algorithms is of great significance. Therefore, this paper proposes the square-root
continuous–discrete cubature Kalman filter (SRCD-CKF) with Huber’s method, maximum
correntropy criterion, and variational Bayesian criterion, and analyzes their filtering per-
formance in the measurement of uncertainty problems. The CD-CKF is chosen because it
is derivative-free and generally more accurate than the CD-EKF. Additionally, compared
with the continuous–discrete unscented Kalman filter (CD-UKF), CD-CKF has the smaller
computational burden. The square-root technique can also improve the stability of the filter.
Compared with the proposed robust algorithms, the robust square-root continuous–discrete
maximum correntropy cubature Kalman filter (RSRCD-MCCKF) algorithm and the varia-
tional Bayesian square-root continuous–discrete cubature Kalman filter (VBSRCD-CKF)
algorithm have higher accuracy and stronger robustness.

To sum up, in this paper, the robust estimation methods based on a continuous–discrete
system are proposed to solve the problem of sufficient evaluation of continuous–discrete
robust algorithms. Compared with the discrete–discrete filtering system, considering the
continuous–discrete filtering system can effectively ensure the accuracy of bearings-only
tracking, while the robust methods are used to improve the robustness of the tracking. From
the perspective of improving accuracy and robustness, the proposed algorithms have excel-
lent performance in continuous–discrete systems. Another contribution is that the article
compares the performance of the algorithms in different continuous–discrete measurement
environments, fully considering the environmental adaptability of the algorithms.

The structure of the rest of the article is as follows: Section 2 reviews the target
tracking model of the continuous–discrete system and the algorithm of SRCD-CKF, Section 3
proposes the robust SRCD-CKF algorithms with Huber’s method, the RSRCD-MCCKF
algorithm, and the VBSRCD-CKF algorithm, Section 4 shows the results of the simulation,
and Section 5 summarizes the main work of this paper.
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2. Continuous–Discrete System Model and Square-Root Continuous–Discrete
Cubature Kalman Filter Algorithm for Target Tracking
2.1. Continuous–Discrete System Model

In a continuous–discrete target tracking system, the target state model is continuous
time, and the measurement model is discrete time. Considering the random disturbance, the
continuous-time target state model can be described as the following stochastic differential
equation form [1]:

dx(t) = f(x(t), t)dt +
√

Qdw(t), (1)

where x(t) is the n-dimensional state vector, f is known as the drift function, w(t) is the
zero-mean Gaussian white-noise process, and Q represents the covariance matrix of the
zero-mean Gaussian white-noise process.

In order to deal with the continuous time model, the target model of the continuous–
discrete system can be described by the moment differential equations (MDEs) [9], which
are shown as

dx̂(t)
dt

= F(x̂(t)), (2)

dP(t)
dt

= J(x̂(t))P(t) + P(t)JT(x̂(t)) + Q, (3)

where x̂(t) is the expectation of x(t) at time t, P(t) represents the error covariance matrix
at time t, F(x̂(t)) is the state equation of the system, and the Jacobian matrix of F(x̂(t)) is
J(x̂(t)), that is, J(x̂(t)) = ∂F(x̂(t))/∂x̂(t).

The discrete time measurement model is

zk = h(xk, k) + rk, (4)

where zk is the actual observation value, h is the observation function, and rk is the obser-
vation noise, which refers to Gaussian or non-Gaussian noise. The specific noise form of rk
is defined by the measurement scenario, and its covariance matrix is Rk. Here, k refers to
discrete time measurement points.

2.2. Square-Root Continuous–Discrete Cubature Kalman Filter Algorithm

In order to ensure the positive definiteness and symmetry of the error covariance
matrix, the square-root continuous–discrete cubature Kalman filter is introduced here.
Similar to the typical CKF method, the continuous–discrete time system is combined with
the cubature criterion, which is also divided into two steps: time update and measurement
update.

In the SRCD-CKF algorithm, the state cubature points can be defined as [23]

Xi(t) = S(t)ξi + x̂(t), (5)

where S(t) is the lower triangular matrix of the covariance matrix, satisfying P(t) = S(t)ST(t),
and ξi is the cubature point set, which is defined as

ξi(t) =
{

l
√

nηi i = 1, · · · , n√
nηi−n i = n + 1, · · · , 2n

(6)

where ηi is the i-th coordinate column-vector in Rn.
Based on the cubature criterion, its expectation and covariance can be re-expressed as

dx̂(t)
dt

= F(X(t))ε, (7)

dP(t)
dt

= X(t)WFT(X(t)) + F(X(t))XT(t) + Q(t). (8)
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The parameters of ε and W are defined as follows:{
ε = 1

2n
W = (I2n − 1T ⊗ ε)diag[1/(2n), · · · , 1/(2n)](I2n − 1T ⊗ ε)

T , (9)

where I2n represents a unit matrix with a dimension of 2n, 1 is a unit column vector, and ⊗
represents the Kronecker tensor.

For the calculation of covariance propagation, the square-root covariance calculation
method proposed in [24] is used. Meanwhile, the high-order numerical approximation
method is used to deal with the problem:

dS(t)
dt

= S(t)Φ(B), (10)

Φ(B) =


Bi,j if i > j

1
2 Bi,j if i = j

0 if i < j
, (11)

where Bi,j is the element in the i-th row and j-th column of Φ(B). The definition of B(t)
matrix is

B(t) = S−1(t)
[
X(t)WFT(X(t)) + F(X(t))XT(t) + Q(t)

]
S−T(t). (12)

Based on this, the predicted state cubature point X∗i (t) can be obtained. The specific
SRCD-CKF Algorithm 1 is as follows:

Algorithm 1: SRCD-CKF.

Time update
Step 1 Expectation and covariance matrix initialization: x̂(tk) = x̂k−1|k−1, P(tk) = Pk−1|k−1.
Step 2.1 Covariance decomposition: P(tk) = S(tk)S

T(tk).
Step 2.2 Calculate the state cubature point: Xi(tk) = S(tk)ξi + x̂(tk).

Step 2.3 State cubature point propagation:


x̂′(t) = F(X(t))ε

S′(t) = S(t)Φ(B(t))
.

Step 2.4 Calculate the state prediction value: x̂k|k−1 =
(
X∗1(tk) + · · ·+ X∗2n(tk)

)
/2n.

Step 2.5 Calculate the predicted square-root covariance:
S(tk) =

[
S1(tk) S2(tk) · · · S2n(tk)

]
,

where Si(tk) represents a sin gle column vector, Si(tk) =
(

X∗i (tk)− x̂k|k−1

)
/
√

n.
Measurement update
Step 3.1 Calculate the state cubature point: Sk|k−1 = S(tk), Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1.
Step 3.2 Measure the spread of cubature points: Zi,k|k−1 = h(Xi,k|k−1, k).

Step 3.3 Calculate the predicted value of the measurement: ẑk|k−1 = 1
2n

2n
∑

i=1
Zi,k|k−1.

Step 3.4 Construct the measurement weighted center matrix:

Zk|k−1 = 1√
2n

[
Z1,k|k−1 − ẑk|k−1 , · · · , Z2n,k|k−1 − ẑk|k−1

]
.

Step 3.5 Calculate the innovation covariance matrix: Pzz,k|k−1 = Zk|k−1ZT
k|k−1 + Rk.

Step 3.6 Construct the state weighted center matrix:

Xk|k−1 = 1√
2n

[
X1,k|k−1 − x̂k|k−1 , · · · , X2n,k|k−1 − x̂k|k−1

]
.

Step 3.7 Calculate the cross covariance matrix: Pxz,k|k−1 = Xk|k−1ZT
k|k−1.

Step 3.8 The continuous–discrete cubature gain is: Kk = Pxz,k|k−1P−1
zz,k|k−1.

Step 3.9 Calculate the state estimate: x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1).
Step 3.10 Update the covariance matrix: Pk|k = Pk|k−1 −KkPzz,k|k−1KT

k .

Remark 1. The above method gives the square root form of the prediction covariance and uses it
for the measurement update process. The algorithm has effectively guaranteed the stability of the
filtering. At the same time, a more thorough square-root version is also available.
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Here we redefine the cross-covariance matrix Pxz,k|k−1, the innovations covariance

square-root R1/2
e,k , and the filtering covariance square-root Sk|k by QR decomposition:

qr

[
Zk|k−1 R1/2

k
Xk|k−1 0

]
=

[
R1/2

e,k 0
Pxz,k|k−1 Sk|k

]
, (13)

where 0 is the zero-block of a proper size, R1/2
k is the measurement noise covariance square-

root obtained by Cholesky factorization, and R1/2
e,k and Sk|k are lower triangular matrices.

On this basis, we can obtain the update state and covariance. In addition, the robust
estimation methods under this square-root version can be obtained according to our idea.

3. Robust Square-Root Continuous–Discrete Cubature Kalman Filter Algorithms
3.1. Robust SRCD-CKF with Huber’s Method

The robust SRCD-CKF algorithms are used to correct the abnormal measurements.
Huber’s method uses the robust cost function to reduce the weight of abnormal data.
Among them, the most common weight reduction functions are the two-stage weight
function based on Huber and the three-stage weight function based on p-Huber. The
Huber weight function usually includes two parts. This means that the measurement
data are divided into normal data and abnormal data. When the absolute value of the
standardized residual exceeds the critical value, the data are considered abnormal and the
weight is reduced.

µk =


1,
∣∣∣λ̃b

∣∣∣ < c

c/
∣∣∣λ̃b

∣∣∣, ∣∣∣λ̃b

∣∣∣ ≥ c
, (14)

where
∣∣∣λ̃b

∣∣∣ is the absolute value of the standardized residuals, and c is the critical value of
abnormal error discrimination. The Huber robust square-root continuous–discrete cubature
Kalman filter (HRSRCD-CKF) Algorithm 2 is as follows:

Algorithm 2: HRSRCD-CKF.

Step 1 Repeat Step 1 of the SRCD-CKF algorithm.
Steps 2.1–3.7 are equivalent to Steps 2.1–3.7 of the SRCD-CKF algorithm.
Step 3.8 The innovation covariance matrix is redefined: Pzz,k|k−1 = Zk|k−1ZT

k|k−1 + µ−1
k Rk.

Step 3.9–3.11 are equivalent to Steps 3.8–3.10 of the SRCD-CKF algorithm.

The weight function based on the Mahalanobis distance is also called the p-Huber
three-stage weight function. Compared with the Huber function, the p-Huber function uses
the α quantile of the chi-square distribution to adjust the critical value of abnormal error
discrimination, which is more reasonable than the empirical value. The discriminant value
is defined as follows:

dk = M2
k = (zk − ẑk|k−1)

T
(

Pzz,k|k−1

)−1
(zk − ẑk|k−1). (15)

In Equation (15), Mk =

√
(zk − ẑk|k−1)

T
(

Pzz,k|k−1

)−1
(zk − ẑk|k−1) is the Mahalanobis

distance. The new three-stage weight function is

µk =


1, dk < χα1√

χα1/dk, χα1 ≤ dk <

0, dk ≥ χα2

χα2, (16)
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where χα is the quantile of the chi-square distribution. When dk exceeds χα1, it is consid-
ered that there is an outlier in the measurement, and its weight needs to be reduced. At
the same time, in order to further eliminate the influence of large outliers, when dk ≥ χα2,
they will be eliminated. The M-estimation–based robust square-root continuous–discrete
cubature Kalman filter (MRSRCD-CKF) Algorithm 3 is as follows:

Algorithm 3: MRSRCD-CKF.

Step 1 Repeat Step 1 of the SRCD-CKF algorithm.
Steps 2.1–3.7 are equivalent to Steps 2.1–3.7 of the SRCD-CKF algorithm.
Steps 3.8–3.11 are equivalent to Steps 3.8–3.11 of the HRSRCD-CKF algorithm, and µk is
calculated by Equation (16).

3.2. RSRCD-MCCKF Algorithm Based on Maximum Correntropy Criterion

Correntropy is a new method used to measure the similarity between two random
variables. Given the random variables X and Y, their joint probability density function is
FX,Y(x, y). The correntropy can be defined as follows [22]:

V(X, Y) = E[κ(X, Y)] =
x

κ(x, y)dFX,Y(x, y), (17)

where E[·] is the mathematical expectation, and κ(·) is the Messer-type positive definite
kernel function. In this paper, we select the Gaussian kernel as the kernel function of the
correntropy, which is defined as follows:

κ(x, y) = Gσ(e) = exp
(
− e2

2σ2

)
, (18)

where e = x− y, and σ > 0 is the kernel bandwidth of the kernel function.
In practice, the joint probability density function is usually difficult to obtain, and the

data sampling points are also limited. Therefore, the correntropy can be estimated by the
approach of T data sampling points:

V̂(X, Y) =
1
T

T

∑
i=1

Gσ(e(i)). (19)

where e(i) = x(i)− y(i), {x(i), y(i)}T
i=1 represents the related sampling point sequence of

the joint probability density function FX,Y(x, y). Expanding the Gaussian kernel function
using the Taylor series, we can obtain

V(X, Y) =
∞

∑
n=0

(−1)n

2nσ2nn!
E
[
(X−Y)2n

]
. (20)

It can be seen from Equation (20) that the correntropy information contains all the even-
order moments of the random variable error X−Y. Therefore, as long as the appropriate
kernel bandwidth is selected, higher-order information can be obtained. For the systems
contaminated by noise, compared with the minimum mean square error criterion, the
correntropy can be used to describe its statistical information.

On this basis, this paper introduces MCC into the continuous–discrete system. Firstly,
Hk is defined as the pseudo-measurement matrix, Rk is the estimated covariance matrix of
the observation noise, and their calculation methods are as follows:

Hk = PT
xz,k|k−1P−1

k|k−1, (21)

Rk = Pzz,k|k−1 −HkPk|k−1HT
k . (22)
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The cost function based on the MCC filtering can be defined by

JMCC = Gσ

(∥∥∥xk − x̂k|k−1

∥∥∥2

P−1
k|k−1

)
+ Gσ

(∥∥∥zk −Hkxk − ẑk|k−1 + Hkx̂k|k−1

∥∥∥
R−1

k

)
. (23)

In this paper, the process noise is assumed to be Gaussian, and we modify the cost
function as follows:

JMCC = γ
∥∥∥xk − x̂k|k−1

∥∥∥2

P−1
k|k−1

− βGσ

(∥∥∥zk −Hkxk − ẑk|k−1 + Hkx̂k|k−1

∥∥∥
R−1

k

)
, (24)

where γ and β are adjusting weights, and ‖x‖2
A = xTAx. Then, the optimal estimation of xk is

x̂k = argminJMCC
xk

. (25)

The optimal solution of the above equation can be obtained by solving the derivative

∂JMCC
∂xk

= γP−1
k|k−1

(
xk − x̂k|k−1

)
− βLkHT

k R−1
k

−2σ2

(
zk −Hkxk − ẑk|k−1 + Hkx̂k|k−1

)
= 0 (26)

With

Lk = Gσ

(∥∥∥zk −Hkxk − ẑk|k−1 + Hkx̂k|k−1

∥∥∥
R−1

k

)
. (27)

This correntropy criterion follows the idea of M-estimation, applying the Gaussian
kernel into each element of the estimation error matrix. The adjustment factor obtained by
the Gaussian kernel function (denoted as Lk) will be a scalar, which is easily separated and
avoids the numerical calculation problem of zero matrix inversion.

When σ→ ∞ , in order to guarantee the algorithm can converge to the traditional
CD-CKF algorithm, we set γ = 1, β = −2σ2 in this paper. Then, the state estimate and the
new filter gain can be obtained by the fixed-point iteration method:

x̂k|k = x̂k|k−1 +
=
Kk

(
zk − ẑk|k−1

)
, (28)

=
Kk = LkPk|k−1HT

k

(
Rk + LkHkPk|k−1HT

k

)−1
. (29)

The update of the error covariance matrix can be calculated by the following equation:

Pk|k = (I−
=
KkHk)Pk|k−1. (30)

Considering that in the fixed-point iteration, Hkxk can be replaced by Hkx̂k|k−1 [20], Lk
can be rewritten as

Lk = Gσ

(∥∥∥zk − ẑk|k−1

∥∥∥
R−1

k

)
, (31)

where Gσ(·) can be calculated by Equation (18).
Therefore, the RSRCD-MCCKF Algorithm 4 can be summarized as follows:

Algorithm 4: RSRCD-MCCKF.

Step 1 Repeat Step 1 of the SRCD-CKF algorithm.
Steps 2.1–3.7 are equivalent to Steps 2.1–3.7 of the SRCD-CKF algorithm.
Step 3.8 Calculate Hk, Rk, Lk using Equations (21), (22), and (31).

Step 3.9 Obtain the new Kalman filter gain
=
Kk using Equation (29).

Step 3.10 Complete the estimation of the state value and the update of the error covariance matrix
using Equations (28) and (30).
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In the RSRCD-MCCKF, note that the Gaussian kernel bandwidth σ greatly affects the
accuracy of the filtering algorithm. Studies have shown that [25] when σ is small, it is more
robust to non-Gaussian measurement noise; however, when σ is too small, the filtering
performance of the algorithm will be more severely degraded, and the filtering may even
diverge. For the actual situation of continuous–discrete systems, how to select the proper
value of σ according to different scenarios is also of great significance.

3.3. VBSRCD-CKF Algorithm Based on Variational Bayes Criterion

Variational Bayesian approximation is an iterative optimization algorithm that approx-
imates the posterior probability distribution of parameters [26]. The VB-based filter uses
VB approximation to estimate the joint posterior distribution of the state and covariance
p(xk, Rk|z1:k ), as follows:

p(xk, Rk|z1:k ) ≈ Qx(xk)QR(Rk), (32)

where Qx(xk) and QR(Rk) are the yet unknown approximating densities.
Unlike the correntropy, the Kullback-Leibler (KL) divergence compares the closeness of

two probability distributions. It is now possible to form a VB approximation by minimizing
the KL divergence between the separable approximation and the true posterior:

KL[Qx(xk)QR(Rk)‖p(xk, Rk|z1:k ) ] =
∫

Qx(xk)QR(Rk)× log
(

Qx(xk)QR(Rk)

p(xk, Rk|z1:k )

)
dxkdRk. (33)

Minimizing the KL divergence associated with the probability densities Qx(xk) and
QR(Rk) in turn, while keeping the other fixed, we can obtain the following equations:

Qx(xk) ∝ exp
(∫

log p(zk, xk, Rk|z1:k )QR(Rk)dRk

)
, (34)

QR(Rk) ∝ exp
(∫

log p(zk, xk, Rk|z1:k )Qx(xk)dxk

)
. (35)

Computing the above equations, we can obtain the following densities [19]:

Qx(xk) = N(xk|x̂k, Pk ), (36)

QR(Rk) = IW(Rk|vk, Vk ), (37)

where IW(·) represents the inverse Wishart (IW) distribution, and the parameters x̂k, Pk,
vk and Vk can be calculated by Kalman-type filters. The VBSRCD-CKF Algorithm 5 is as
follows:

Algorithm 5: VBSRCD-CKF.

Step 1 At Step 1 of the SRCD-CKF algorithm, the initialization of vk and Vk are included.
Steps 2.1–2.5 are equivalent to Steps 2.1–2.5 of the SRCD-CKF algorithm.
Step 2.6 Calculate the parameters of the IW distribution of measurement noise covariance:
vk|k−1 = ρ(vk−1 − n− 1) + n+1, Vk|k−1 = CVk−1CT , where ρ is a scale factor that 0 < ρ ≤ 1 and C
is a matrix that 0 < |C| ≤ 1 with a reasonable choice for the matrix C =

√
ρId. Id is an identity

matrix, and d is the dimension of the measurement.

Step 3.1 Before calculating the state cubature point, first let x̂(0)k = x̂k|k−1, V(0)
k = Vk|k−1, and

vk = 1 + vk|k−1.
Steps 3.2–3.8 are equivalent to Steps 3.1–3.7 of the SRCD-CKF algorithm.
Step 3.9 For j = 1:M, iterate the following steps (M is the times of algorithm iteration).

Step 3.9.1 Calculate the measurement noise covariance matrix: R(j)
k = (vk − n− 1)−1V(j−1)

k .

Step 3.9.2 Update the innovation covariance matrix: P(j)
zz,k|k−1 = Zk|k−1ZT

k|k−1 + R(j)
k .

Step 3.9.3 Calculate the continuous–discrete filter gain: K(j)
k = Pxz,k|k−1

(
P(j)

zz,k|k−1

)−1
.
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Step 3.9.4 Calculate the state estimate and update the covariance:

x̂(j)
k = x̂k|k−1 + K(j)

k (zk − ẑk|k−1),

P(j)
k = Pk|k−1 −K(j)

k P(j)
zz,k|k−1

(
K(j)

k

)T
.

Step 3.9.5 Calculate the updated parameter of the IW distribution of measurement noise
covariance:

X(j)
i,k = S(j)

k ξi + x̂(j)
k ,

V(j)
k = Vk|k−1 +

1
2n

2n
∑

i=1

(
zk − h(X(j)

i,k , k)
)(

zk − h(X(j)
i,k , k)

)T
.

Step 3.10 Until j = M, output x̂k|k = x̂(M), Pk|k = P(M)
k , and Vk = V(M)

k .

4. Numerical Simulation

To evaluate the performance of the proposed methods, the remote distance passive
target tracking scenario [27] is considered. The motion model of the target is the coordinated
turn, analyzing the performance changes of the four continuous–discrete robust algorithms
proposed in this paper for data with Gaussian noise (Section 4.1), non-Gaussian noise
(Section 4.2), or corrupted by outliers (Section 4.3). When considering random interference,
coordinated turn motion is a typical nonlinear motion. The continuous-time motion model
can be expressed by stochastic differential equation.

The state vector of the target is x(t) =
[
x(t)

.
x(t) y(t)

.
y(t) ω

]T; x(t) and y(t),
.
x(t) and

.
y(t) are the position and velocity of the target in the Cartesian coordinate system,

respectively; andω is a constant turn rate, which is 0.01 rad/s. The motion of single observer
in the CA model with the initial state is [0km,−0.025km/s, 0km, 0.02km/s]T. The state
equation of the system is F(x(t)) = [

.
x(t),−ω .

y(t),
.
y(t),ω

.
x(t), 0]T. The random noise term

is w(t) = [w1(t), w2(t), w3(t), w4(t), w5(t)]
T, where its increment and state are independent

of each other. Initial covariance matrix Q = diag[0 τ1 0 τ1 τ2], where τ1 =
√

2 and
τ2 = 7× 10−6. The initial state x(t0) = [40km, 0km/s, 50km, 0.2km/s, 0.01rad/s]T, and
the initial covariance matrix P(t0) = diag[0.01 0.01 0.01 0.01 0]. The measurement
sampling interval is 1 min. The number of Monte Carlo simulations is 200. The experiment
is based on the MATLAB simulation software with an Intel(R) Core (TM) i7-10750H CPU @
2.60 GHz 2.59 GHz.

Among them, the critical value of abnormal error discrimination in the HRSRCD-CKF
algorithm is c = 1.345, the α quantile of the chi-square distribution in the MRSRCD-CKF
algorithm is α1 = 0.1,α2 = 0.1%, the Gaussian kernel bandwidth σ in the RSRCD-MCCKF
algorithm is selected according to the simulation scenarios, the initial parameters in the
VBSRCD-CKF algorithm are v0 = 600, V0 = 0.01, ρ = 1− exp(−4), and the number of
internal loops of the algorithm is M = 10.

The discrete-time nonlinear measurement model is

zk =
[
tan−1(yr(tk)/xr(tk))

]
+ rk, (38)

where xr(tk) and yr(tk) are the relative position of the target and the observer at time k,
rk is the measurement noise, and the specific expression form is defined according to the
simulation scenarios.

In order to evaluate the performance of filtering, the Root Mean Square Error (RMSE)
of the position state and the velocity state are respectively defined as

RMSEpos(tk) =

(
1
N

N

∑
i=1

∥∥∥x(tk)− x̂i(tk)
∥∥∥2

2

)1/2

, (39)

RMSEvel(tk) =

(
1
N

N

∑
i=1

∥∥∥∥ .
x(tk)−

.̂
x

i
(tk)

∥∥∥∥2

2

)1/2

, (40)
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where N is the number of Monte Carlo simulations, x̂i(tk) and
.̂
x

i
(tk) are the results of the

i-th Monte Carlo state estimation, and x(tk),
.
x(tk) are the true position state and velocity

state of the target, respectively. The trajectory of target and observer is shown in Figure 1.
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Figure 1. The trajectory of target and observer.

As shown in Figure 1, the bearings-only tracking scenario is tracking a two-dimensional
target that is moving in a coordinated turn at a constant turn rate. The observer is ma-
neuvered to achieve observability. In addition, it should be noted that the target tracked
in this paper is the interference source on the ground, and the purpose of this paper is to
improve the accuracy and robustness of this tracking process in different measurement
environments through the continuous–discrete robust method.

4.1. Gaussian Noise

The measurement noise rk satisfies the Gaussian distribution with zero mean, that is,
rk ∼ N(0, Rk). The initial value of Rk is a one-dimensional constant value of 0.001 rad.
Before comparing the proposed algorithms, the influence of Gaussian kernel bandwidth σ
on the algorithm RSRCD-MCCKF is discussed. The RMSEpos and RMSEvel of the algorithm
at the final time instant are shown in Table 1.

Table 1. Algorithm accuracy under Gaussian noise when kernel bandwidth is different.

Algorithms RMSEpos [km] RMSEvel [km·s-1]

RSRCD-MCCKF (σ = 0.1) — —
RSRCD-MCCKF (σ = 1) 0.0528 0.000205
RSRCD-MCCKF (σ = 2) 0.0449 0.000188
RSRCD-MCCKF (σ = 5) 0.0482 0.000179

RSRCD-MCCKF (σ = 10) 0.0645 0.000211
RSRCD-MCCKF (σ = 50) 0.0771 0.000239

SRCD-CKF 0.0784 0.000247

As shown in Table 1, when the Gaussian kernel bandwidth σ changes, the algorithm
shows different performance. When the value of σ is too small or too large, the filtering
accuracy will be reduced. Among them, — refers to the filtering as diverged. When the
value of σ increases gradually, its filtering performance has approached the SRCD-CKF
algorithm, which is in line with the previous theoretical derivation. But under the premise
of σ = 50, its filtering accuracy is still higher than the SRCD-CKF algorithm. In other words,
as long as the proper value of σ is selected, the filtering accuracy of the RSRCD-MCCKF
algorithm is higher than the traditional algorithm.

On this basis, the Gaussian kernel bandwidth σ = 5 is selected, and we can see the
RMSEpos and RMSEvel comparison of each algorithm in Figure 2.
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As shown in Figure 2, when the measurement noise is Gaussian noise, the previous
trends of each algorithm are roughly the same, and they all tend to converge as the
time increases. Among them, HRSRCD-CKF and MRSRCD-CKF have small fluctuations
compared with the SRCD-CKF algorithm, and the accuracy is basically the same under
normal measurement conditions. The accuracy of the VBSRCD-CKF algorithm is slightly
higher than that of HRSRCD-CKF and MRSRCD-CKF; this reflects the higher accuracy
of the variational Bayesian method in approximate estimation. The RSRCD-MCCKF has
higher accuracy than the above algorithms, because the maximum correntropy criterion can
utilize higher-order information of measurements, applying the Gaussian kernel to each
element of the estimation error matrix, which has a better combination with SRCD-CKF.

4.2. Gaussian Mixture Noise

The measurement noise is Gaussian mixed noise. Gaussian mixed noise is a typi-
cal non-Gaussian distribution, rk ∼ 0.99N(0, Rk) + 0.01N(0,500 ∗Rk). The RMSEpos and
RMSEvel of the RSRCD-MCCKF algorithm at the final time instant, when the kernel band-
width σ changes in the non-Gaussian noise environment, are shown in Table 2.

Table 2. Algorithm accuracy under non-Gaussian noise when kernel bandwidth is different.

Algorithms RMSEpos [km] RMSEvel [km·s-1]

RSRCD-MCCKF (σ = 2) — 0.0349
RSRCD-MCCKF (σ = 3) 1.0829 0.0043
RSRCD-MCCKF (σ = 5) 0.4716 0.0014
RSRCD-MCCKF (σ = 7) 0.4813 0.0014

RSRCD-MCCKF (σ = 10) 0.5375 0.0016
SRCD-CKF 0.6679 0.0019

As shown in Table 2, the value of σ that can suppress the non-Gaussian noise has
changed. Compared with the Gaussian conditions, the filtering accuracy of the algorithms
is reduced, but the appropriate σ can still suppress the non-Gaussian noise that appears
in the measurement. Therefore, it is more important to adaptively select the value of σ
according to different scenarios.

Here, the Gaussian kernel bandwidth σ = 5 is also selected under the condition of
non-Gaussian noise. The RMSEpos and RMSEvel comparison of each algorithm is shown in
Figure 3.
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It can be seen from Figure 3 that when the measurement noise is non-Gaussian
noise, the errors of each algorithm increase slightly. The HRSRCD-CKF algorithm and the
MRSRCD-CKF algorithm cannot effectively suppress the non-Gaussian measurement noise,
and the algorithm basically fails. The VBSRCD-CKF algorithm and the RSRCD-MCCKF
algorithm can suppress non-Gaussian noise to a certain extent. The filtering performance
of the two algorithms is basically equivalent and finally shows relatively high convergence
accuracy, which reflects their ability to deal with non-Gaussian noise problems.

4.3. Gaussian Noise Together with Shot Noise

The measurement noise satisfies the Gaussian distribution with zero mean, and the
measurement covariance matrix changes suddenly to 30 times the original at t = 10 min,
R10

k = 30Rk. Considering that when σ = 5, the filtering performance in RSRCD-MCCKF is
good regardless of Gaussian noise or non-Gaussian noise; consequently, we still choose
σ = 5 here. The RMSEpos and RMSEvel of each algorithm are shown in Figure 4.
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As shown in Figure 4, when the measurement is abnormal, the error of the SRCD-CKF
algorithm increases abruptly, which is not robust. While the other algorithms effectively
resist the abnormal measurement. Among them, the VBSRCD-CKF algorithm shows better
robustness, and it has the most obvious effect on abnormal measurement suppression; the
RSRCD-MCCKF algorithm is second only to the VBSRCD-CKF algorithm and shows good
robustness with high accuracy, while the suppression effect of the HRSRCD-CKF algorithm
and the MRSRCD-CKF algorithm is slightly worse, indicating that the RSRCD-MCCKF
algorithm and the VBSRCD-MCCKF algorithm are more effective in dealing with abnormal
measurement problems.

4.4. Computational Complexity

When comparing the computational complexity of each algorithm, the parameter
settings are the same as in Sections 4.1 and 4.3, respectively. The relative computation time
of SRCD-CKF is set to “1”. The relative computation time of each algorithm is shown in
Table 3.

Table 3. The relative computation time of each algorithm.

Algorithms Computation Time
(Scenario 4.1)

Computation Time
(Scenario 4.3)

SRCD-CKF 1 1
HRSRCD-CKF 1.029 1.034
MRSRCD-CKF 1.005 1.018

RSRCD-MCCKF 1.076 1.080
VBSRCD-CKF 1.068 1.071

As shown in Table 3, the four robust algorithms all take longer than the initial SRCD-
CKF algorithm, but their difference is not obvious. In addition, it can be observed that the
computation time of each algorithm increases when interference is encountered, but the
computation time has not increased much. Among them, the HRSRCD-CKF algorithm
and the MRSRCD-CKF algorithm are relatively low in complexity. The computation time
of the VBSRCD-CKF algorithm increases due to a certain number of inner loops. The
computation time of the RSRCD-MCCKF is the longest because the calculation process
includes more matrix inversion operations and exponential operations of Gaussian kernel
function. However, considering the accuracy of the algorithm and application scenarios, it
is acceptable within a similar time period.

Furthermore, it can be seen that the computation time of the proposed algorithms are
longer than initial algorithm, but its improvement in accuracy and robustness is critical,
which is the focus of this research. At the same time, considering that the increase in comput-
ing time is not obvious, the proposed algorithms can be used for other filtering problems.

5. Conclusions

In this paper, in order to evaluate the performance of robust methods in continuous–
discrete tracking systems, four robust square-root continuous–discrete cubature Kalman
filter algorithms are proposed. From the results, we can draw the following conclusions:

(1) The effectiveness of the algorithms in this paper is evaluated through a remote distance
passive target tracking scenario, and the simulation results demonstrate the better
environmental adaptability of the proposed algorithms in solving continuous-discrete
robust problems. What’s more, this paper aims to solve the slow tracking problem
in remote distance passive target tracking, and the proposed algorithms can also be
used in other navigation domains.

(2) As a common tool for data processing, Huber’s estimation has a wide range of appli-
cations. The RSRCD-MCCKF algorithm and the VBSRCD-CKF algorithm proposed in
this paper are better than the Huber’s estimator, which provides an alternative means
for the field of robust estimation.
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(3) In the simulation results, we can see that the filtering performance of the algorithm
without robustness is very poor. Therefore, when the system’s data are contaminated
by outliers, the relevant robust estimation method is indispensable.
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