
Citation: Rahman, G.; Wen, C.C.

Omega Network Pseudorandom Key

Generation Based on DNA

Cryptography. Appl. Sci. 2022, 12,

8141. https://doi.org/10.3390/

app12168141

Academic Editor:

Arcangelo Castiglione

Received: 20 June 2022

Accepted: 29 July 2022

Published: 14 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Omega Network Pseudorandom Key Generation Based on
DNA Cryptography
Gohar Rahman 1 and Chuah Chai Wen 2,*

1 Faculty of Computer Science, Information Technology, University Tun Hussein Onn Malaysia,
Batu Pahat 86400, Johor, Malaysia

2 Center for Information Security Research, Faculty of Computer Science, Information Technology,
University Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia

* Correspondence: cwchuah@uthm.edu.my

Abstract: Eliminating the risk of bugs and external decryption in cryptographic keys has always
been a challenge for researchers. The current research is based on a new design that uses an Omega
network-based pseudorandom DNA key generation method to produce cryptographic keys for
symmetric key systems. The designed algorithm initially takes two random binary numbers as inputs
to the Omega network design, generating an output of 256 symmetric keys. The Omega network
uses the concept of the central dogma of molecular biology (DNA and RNA properties), including
DNA replication (for DNA) and the transcription process (for RNA). The NIST test suite is applied to
test the security properties of the proposed design. According to the study’s findings, the suggested
design is significantly suited to achieve the NIST test security properties and passes all of the NIST
recommended tests.

Keywords: DNA; DNA cryptography; central dogma of molecular biology; key generation; random-
ness; NIST

1. Introduction

Deoxyribonucleic acid (DNA) cryptography is the most recent advancement in cryp-
tographic approaches. The natural process of DNA synthesis or production is exploited
to encrypt data and later decrypt it [1,2]. DNA cryptography explains how DNA can be
used as an information carrier and how the current science of biotechnology can transform
plaintext to ciphertext. In addition, the primary aim of DNA cryptography is to provide
greater secrecy than traditional cryptography by combining biological and computational
properties [3]. DNA cryptography uses DNA computing, while DNA computing has
several benefits, such as high parallelism, lower power consumption, and massive data
storage. Based on these characteristics, DNA cryptography has a unique advantage in
massively parallel data encryption applications, with less real-time demand, secure data
storage, authentication, digital signature, and information hiding [1]. DNA cryptography
transmits a message between a sender and a receiver such that an eavesdropper cannot
comprehend it. A strong algorithm and strong key generation are needed to accomplish
this task [4].

Numerous studies have been conducted on data security, particularly in DNA cryp-
tography, to make data safe by encrypting it during transmission and using a specific key
generation algorithm [5]. For example, the authors of [6] propose a key generation algo-
rithm based on DNA cryptography and Linear Congruential Generator (LCG) sequences.
The proposed algorithm uses unique biological characteristics and a pseudorandom gener-
ator to build a novel key generator. It was concluded that this algorithm only passed seven
of the NIST tests.

The authors of [7] generated a 128-bit key by combining DNA cryptography and the
Hill cipher algorithm. They claimed that the proposed technique could make the system

Appl. Sci. 2022, 12, 8141. https://doi.org/10.3390/app12168141 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168141
https://doi.org/10.3390/app12168141
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0800-0147
https://doi.org/10.3390/app12168141
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168141?type=check_update&version=2

Appl. Sci. 2022, 12, 8141 2 of 19

unbreakable and ensure a better and more secure cloud-distributed environment. The
authors of [8] proposed hybrid methods combining DNA computing and mathematical
division. The encryption and decryption are based on DNA computing; the key generation
is based on mathematical division. Firstly, the initial key is a word with any length of
characters. These characters are transformed into ASCII codes. Next, a random prime
integer is triggered, greater than 255. Thirdly, each character’s ASCII code is divided by
the random prime number. These calculations produce the remainders. The same random
prime number is divided by each character’s ASCII code to obtain quotients. The final,
newly generated key contains the random prime number, remainders, and quotients.

The authors of [9] proposed a cipher algorithm using biological processes and math-
ematical operations. The DNA sequence of nucleotides known as DNA-OTP represents
the generated OTP key. Initially, the message is taken as input. The length of the message
is computed, and a DNA nucleotide sequence is randomly assigned accordingly. The
annealing process then produces a double helix DNA-OTP key. The transcription process
converts the key to the mRNA sequence in the next step. Finally, the translation process
creates a protein key from the mRNA sequence. The output is tested through the NIST test,
which passes 13 out of 15 NIST tests.

Analyzing the techniques mentioned above, one may conclude that the techniques
mentioned [6,9] partially fulfil the NIST random test. The research in [9] revealed a linear
operation and neglected the NIST random tests. The authors of [8] used the mathematical
division technique, not purely DNA-based key generation. In this context, most research
work utilizes machine-learning techniques [4,10,11] and does not strictly follow DNA
properties. Second, the generated keys are not random and thus fail to meet all of the
NIST security properties. A researcher in DNA computing [12–14] has leveraged DNA’s
biological features in information security techniques [15]. However, it is well understood
that the lack of randomness in key generator logical methods or mathematical functions
leads to cryptanalytic breaches. As a result, a wide range of key generators with a high
level of randomness is required [16]. Hence, the main motivation behind this research is to
design a novel Omega network-based DNA cryptographic key generator. The design is
applied to create a strong cryptographic key(s) for symmetric ciphering applications. The
NSIT test suit is used to evaluate the performance of the Omega key generation algorithm
in terms of randomness.

1.1. Overview of DNA

Apprehending the rudimentary principles of DNA cryptography in an emerging
area of DNA computing, it is necessary to address the background details of the central
dogma of molecular biology. DNA is an instruction storage molecule that carries the entire
information essential for synthesizing proteins in all living organisms [10]. Every person
has a unique DNA sequence, and no two individuals have an exactly matching sequence,
even if they are identical twins, maternal twins, or mono-gametic twins [10,13].

DNA is a polymeric molecule of structural and functional units known as nucleotides.
A genetic code or codon is a specific sequence in a properly constructed message that is
triplet-coded. The nucleotides arranged in a specific sequence give specific features to each
individual, which ultimately transfer to the next generation during sexual reproduction
when the male gamete or sperm of the male mating partner meets with the female gamete
or ovum of the female mating partner. Both sperm and ovum contain 23 chromosomes.
Upon the union of sperm and ovum during the fertilization process, which produces a
zygote cell, there are 46 chromosomes [11,12]. The single-cell zygote undergoes division
to become a multi-cell structure and grow into a human baby. In the division process, a
number of new cells are formed in the zygote, and new proteins are likely added to the
cells. In new protein formation, the central dogma of molecular biology is involved. There
is replication, transcription, and translation. Inside the cell center, DNA is transcribed into
RNA. The RNA molecules formed inside the cell center from the DNA molecule are shifted
to the cell cytoplasm for protein synthesis via translation.

Appl. Sci. 2022, 12, 8141 3 of 19

1.1.1. Transcription

Transcription is a process in which a single-stranded messenger RNA (mRNA) is
formed from a double-stranded DNA molecule. The process occurs inside the nucleus of a
cell with the help of an enzyme called transcriptase. The mRNA acts as a transcript for the
protein synthesized from that mRNA. The mRNA is transferred to the cytoplasm, where its
translation is carried out [17]. In transcription, the nitrogen base of a DNA molecule named
thymine is replaced with uracil in the RNA sequence, such that for a single DNA sequence
AGCTTTA, the complementary mRNA strand will be TCGUUT.

1.1.2. Translation

Single-stranded mRNA formation in the cell nucleus results in protein formation inside
the outer cytoplasmic region of the cell. The process of protein formation from mRNA
inside the cell cytoplasm is known as Translation. The process involves the movement of
mRNA from the cell nucleus to the cytoplasmic region of the cell, where mRNA uses the
transcribed coded message of DNA to cause the collection of the desired protein units in
the cell cytoplasm and consequently results in protein synthesis [18]. Take a DNA sequence
TGC. Based on Table 1, the transcription process which produces mRNA from DNA would
yield the sequence ACG. This sequence identifies the amino acid coded for by the mRNA
as an ACG codon. The mRNA triplet message ACG codes for the amino acid threonine,
abbreviated as Thr.

Table 1. Formation of mRNA codons and their relevant protein representations [9].

Second Letter

U C A G

Fi
rs

tl
et

te
r

U

UUU Phe UCU Ser UAU Tyr UGU Cys U

Fi
rs

tl
et

te
r

UUC Phe UCC Ser UAC Tyr UGC Cys C
UUA Leu UCA Ser UAA Stop UGA Stop A
UUG Leu UCG Ser UAG Stop UGG Trp G

C

CUU Leu CCU Pro CAU His CGU Arg U
CUC Leu CCC Pro CAC His CGC Arg C
CUA Leu CCA Pro CAA Gln CGA Arg A
CUG Leu CCG Pro CAG Gln CGG Arg G

A

AUU lle ACU Thr AAU Asn AGU Ser U
AUC lle ACC Thr AAC Asn AGC Ser C
AUA lle ACA Thr AAA Lys AGA Arg A
AUG Met ACG Thr AAG Lys AGG Arg G

G

GUU Val GCU Ala GAU Asp GGU Gly U
GUC Val GCC Ala GAC Asp GGC Gly C
GUA Val GCA Ala GAA Glu GGA Gly A
GUG Val GCG Ala GAG Glu GAG Gly G

1.1.3. Complementary Rules

DNA exists in a twisted ladder-like structure in humans, where the DNA bases A, G,
C, and T are paired. These basses are adenine (A), guanine (G), cytosine (C), and thymine
(T). An A in one strand will pair with a T in the other strand in two DNA helix strings,
based on the complementary mapping rules in Table 2. Similarly, a G in one strand will
pair with a C in the other [19]. This rule is known as Chargaff’s base-pairing rule, which
must be followed to keep both the strands chemically connected. This is why both the
strands are always complementary to each other. According to the complementary rules, a
single strand of DNA is converted to a double-stranded DNA molecule. The single strand
of DNA is considered a parent strand, while the second strand is called a daughter strand.

Appl. Sci. 2022, 12, 8141 4 of 19

Table 2. Complementary rules [20].

Symbol Description Base Represented Complement

A Adenine A

1

T
C Cytosine C G
G Guanine G C
T Thymine T A
U Uracil U A
W Weak A T

2

W
S Strong C G S
M AMino A C K
K Keto G T M
R Purine A G Y
Y Pyrimidine C T

3

R
B Not A (B comes after A) C G T V
D Not C (D comes after C) A G T H
H Not G (H comes after G) A C T D
V Not T (V comes after T and U) A C G B
N Any Nucleotide (not a gap) A C G T 4 N

2. Related Work

The authors proposed a key generation algorithm in [15] that takes an initial seed value
of size 16 bits and generates a new key. This newly created key is only two bytes (16 bits)
long. First, a 4 × 4 matrix is generated during the key generation process. The initial
key number is transformed into ASCII and eight DNA bases. The initial key nucleotide
sequence is placed in the first and second rows of the matrix. The remaining rows of the
matrix are filled with bio-DNA addition, and bio-DNA subtraction operations used to
generate eight DNA nucleotides from the initial key. Based on bio-DNA addition, the first
two values of the third row and the fourth row are generated. However, the key size of the
proposed algorithm is too short, only 16 bits long; a brute force attack may easily guess the
key. Secondly, the natural biological steps are ignored.

The authors of [21] proposed two types of key generation for DNA encryption and
decryption. The first type of key generation process is based on the ElGamal algorithm. The
second type of key generation is based on DNA. The authors take random DNA sequences
and generate public and private keys from the DNA codons. A random DNA sequence
is generated using A, T, G, and C characters and stored in the database. However, the
authors ignored the real biological steps for random key generation. Secondly, the key
generation process takes a long time to encrypt and decrypt the message, as the ElGamal
key generation process consists of complex calculations.

The authors of [22] designed a cryptosystem using a Malay machine and DNA cryp-
tography. They proposed a key generation algorithm based on user attributes, such as
email address, username, and personal identification number, first converting each of these
attributes to ASCII characters. Secondly, the attributes are merged and obtained as a single
string. This string is converted to binary numbers of size 304 bits. The last key size of
256 bits is obtained with extra binary numbers removed from the binary string’s right side.
The authors completely ignored the biological steps for key generation.

The authors of [23] used two dynamic encoding tables based on ASCII values. The first
table is based on a 7-bit key taken from the dynamic encoding table. This table represents
96 ASCII characters as 7-bit binary sequences. The ASCII characters are randomly allocated
to the 7-bit sequences, irrespective of their binary values. The second dynamic table is based
on base 64 encoding rules. Each 6-bit sequence is assigned to a character from the base
64 encodings. However, character distribution is entirely random. The sender randomly
chooses the 7-bit key from both tables and XORs the key with the 7-bit long plain text.
Here the authors are missing the biological process, and the key size is short. The brute
force attack may easily guess the real key after 27 combinations. The author improved

Appl. Sci. 2022, 12, 8141 5 of 19

the key strength in [5], using the defi Hellman and genetic algorithm. This algorithm is
computationally complex due to its complex operation.

The authors proposed in [24] a long 1024-bit DNA-based key using DNA computing.
They used the DNA XOR operation and DNA complementary rules. In this algorithm,
first, the user takes user attributes and a MAC address. For example, the user’s date of
birth and the names of the user’s first school and first teacher. Applying some decimal and
binary encoding rules, they split the binary values into two equal parts and perform the
DNA XOR operation. Lastly, they use padding operations and complementary rules to
obtain the final output key. In this algorithm, only one feature is included from biological
DNA—its complementary rules. The remaining steps of the algorithm are entirely based
on traditional calculation. Thus, it is missing the pure DNA biological steps. Secondly, this
algorithm is based on linear operations and does not generate pseudorandom keys.

The authors of [25] presented a maximum-length matching algorithm where DNA
strands represent the secret key of size 8 bits. The authors take the plaintext and convert
the plaintext into a nucleotide sequence. Next, they select the last block of nucleotides
generated from plaintext and use this as a key. They overcome the limitation of the secure
key generation algorithm, namely, the “yet another encryption algorithm”. The authors
demonstrate that natural biological DNA can compute encryption. Moreover, the authors
claimed that their proposed algorithm strongly resists frequency attacks. However, the
authors of [26] claimed that the proposed algorithm in [25] requires multiple loops to
execute the process, which increases the complexity sequentially.

A new S-box creation scheme based on encoding into a DNA codon, the XOR operation,
and some arithmetic operations were proposed in [27]. The authors used the secret key
size of 128 bits and a server name as examples for generating new S-box values. Two
keys were used to strengthen the security of the created S-box. The authors claimed that
their proposed method effectively passed the S-box test criteria, such as the balanced,
completeness, avalanche, and strict avalanche criteria. However, the author used the block
cypher S-box method, which is slow and takes time.

The authors proposed a technique in [28] for generating a random secret key based on
the genetic information of a biological system. They used the process of the central dogma of
molecular biology. The proposed method also uses the splicing system to generate a random
key. Another method was proposed in [29], which employs the DNA hybridization process as
an effective source for random key generation. However, these methods/techniques [28,29]
do not pass the avalanche criterion and fail to produce pseudorandom keys with a 1-bit
change. Secondly, according to the authors of [30], the pro-posed techniques [28,29] use
physical processes such as thermal noise for generating random numbers.

3. Proposed Design

One Omega network is designed to generate a strong cryptographic pseudorandom
DNA-based key. The design consists of biological DNA-based operations in which pseudo-
random substitution and permutation operations are modified based on biological DNA, as
discussed in Section 1. The modifications of pseudorandom substitution and per-mutation
operations are shown in Tables 3 and 4. Table 3 presents the DNA XOR rules, which we
denoted with the symbol (*). Table 4 presents the complementary mapping rules, which
we denoted with the symbol (#). Table 5 presents the mRNA mapping rules, which we
denoted with the symbol (µ and σ).

Our proposed design of an Omega network consists of three rows and four columns,
as shown in Figure 1. We denoted it as Brow, column. B2, 3, B2, 4, and B3, 4 are based on
DNA XOR rules. B1, 2, B1, 4, and B3, 3 are based on mRNA mapping rules, referring to
the first letter followed by the second. B1, 1, B2, 1, and B3, 2 are based on mRNA mapping
rules, which refer to the second letter followed by the first letter. B1, 3, B2, 2, and B3, 1 are
based on complementary mapping rules. The operations are arranged randomly, and each
operation is equally balanced, appearing in the design in order to produce cryptographically
pseudorandom outputs.

Appl. Sci. 2022, 12, 8141 6 of 19

Table 3. DNA XOR rules.

Rule 1-T (00) Rule 2-C (01) Rule 3-A (10) Rule 4-G (11)

DNA XOR A
10

C
01

G
11

T
00

A
10

C
01

G
11

T
00

A
10

C
01

G
11

T
00

A
10

C
01

G
11

T
00

A 10 A G C T G T A C C G T A T A C G
C 01 G C T A T A C G G T A C A C G T
G 11 C T A G A C G T T A C G C G T A
T 00 C T A G C G T A A A C G G T A C

Table 4. Complimentary mapping rules.

Input Binary Symbol Description Base Represented Complement Output
Binary

0000 A Adenine A

1

T 0011
0001 C Cytosine C G 0010
0010 G Guanine G C 0001
0011 T Thymine T A 0000
0100 U Uracil U A 0000
0101 W Weak A T

2

W 0101
0110 S Strong C G S 0110
0111 M AMino A C K 1000
1000 K Keto G T M 0111
1001 R Purine A G Y 1010
1010 Y Pyrimidine C T

3

R 1001
1011 B Not A (B comes after A) C G T V 1110
1100 D Not C (D comes after C) A G T H 1101
1101 H Not G (H comes after G) A C T D 1100
1110 V Not T (V comes after T and U) A C G B 1011
1111 N Any Nucleotide (not a gap) A C G T 4 N 1111

Table 5. mRNA rules.

Second Letter

First letter

T (00) C (01) A (10) G (11)
T (00) 1110 1100 0010 0101
C (01) 1101 0001 0100 1000
A (10) 0000 1001 1111 1010
G (11) 0110 0111 0011 1011

Firstly, two 128-bit binary string sperm and string ovum are generated. String sperm
and string ovum is a union using XORing binary, which produces a string zygote. Three
128-bit random strings are generated, which are taken from Pi [31] and which we denote
as random string a, random string b, and random string c. The string zygote and random
strings are passed to the Omega network.

Firstly, the string zygote and random string b are XORed as the input B1, 1. Random
string a and random string c are XORed as the input B1, 2. Random string a and random
string b are XORed as the input B1, 3. String zygote and random string c are XORed as the
input B1, 4. These have completed the first row, four columns of the Omega network.

Secondly, the output of B1, 1 and B1, 3 are XORed as the input to B2, 1. The output of
B1, 1 and B1, 2 are XORed as the input to B2, 2. The output of B1, 2 and B1, 4 are XORed as
the input to B2, 3. The output of B1, 3 and B1, 4 are XORed as the input to B2, 4. These have
completed the second row, four columns of the Omega network.

Next, the output of B2, 1 and the output of B2, 4 are XORed as the input to B3, 1. The
out-put of B2, 1 and the output of B2, 3 are XORed as the input to B3, 2. The output of B2, 2
and the output of B2, 3 are XORed as the input to B3, 3. The output of B2, 2 and the output of
B2, 4 are XORed as the input to B3, 4. These have completed the third row, four columns of

Appl. Sci. 2022, 12, 8141 7 of 19

the Omega network. Lastly, the output of B3, 1 is XORed with B3, 4; the length is 128 bits.
The output B3, 2 is XORed with B3, 2; the length is 128 bits. Both strings are concatenated as
256 bits, yielding what is best known as a cryptographic pseudorandom DNA-based key.
The complete steps are presented in Algorithm 1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 20

Figure 1. Omega network-based DNA key generation. Notes: *—DNA XOR rules; µ—mRNA
mapping rules (first letter, second letter); σ—mRNA mapping rules (second letter, first letter); #—
Complementary mapping rules.

Firstly, two 128-bit binary string sperm and string ovum are generated. String sperm
and string ovum is a union using XORing binary, which produces a string zygote. Three
128-bit random strings are generated, which are taken from Pi [31] and which we denote
as random string a, random string b, and random string c. The string zygote and random
strings are passed to the Omega network.

Firstly, the string zygote and random string b are XORed as the input B1, 1. Random
string a and random string c are XORed as the input B1, 2. Random string a and random
string b are XORed as the input B1, 3. String zygote and random string c are XORed as the
input B1, 4. These have completed the first row, four columns of the Omega network.

Secondly, the output of B1, 1 and B1, 3 are XORed as the input to B2, 1. The output of B1,

1 and B1, 2 are XORed as the input to B2, 2. The output of B1, 2 and B1, 4 are XORed as the input
to B2, 3. The output of B1, 3 and B1, 4 are XORed as the input to B2, 4. These have completed
the second row, four columns of the Omega network.

Next, the output of B2, 1 and the output of B2, 4 are XORed as the input to B3, 1. The out-
put of B2, 1 and the output of B2, 3 are XORed as the input to B3, 2. The output of B2, 2 and the
output of B2, 3 are XORed as the input to B3, 3. The output of B2, 2 and the output of B2, 4 are
XORed as the input to B3, 4. These have completed the third row, four columns of the

Figure 1. Omega network-based DNA key generation. Notes: *—DNA XOR rules; µ—mRNA
mapping rules (first letter, second letter); σ—mRNA mapping rules (second letter, first letter);
#—Complementary mapping rules.

Here, we provide a test case of the proposed Omega network design using four inputs
and their corresponding outputs. The four inputs are string sperm, string ovum, and three
random strings. The output is a cryptographically pseudorandom key.

• String sperm:

1000101111100111101101110011101001011000110100010110100101011101000100011001
0000011111000111010100000001100110010101001011100110

• String ovum:

1111010110000010110101110011101000101111111001010010000011100110100101010110
0001011011101011101101000000111011100001010101011101

• Random string a:

0000000011010110110110011000111111101001100011000001000111100101011011111110
0110010010001111011100100011100111110101000111100010

Appl. Sci. 2022, 12, 8141 8 of 19

• Random string b:

000001011001110110010000110111001001000100011100111010011001101011110100110
00011101101001010100011110101000001001110110011101100

• Random string c:

110110110100000111100110000111000001011001001110011100110101000100001101011
10000111010110100001000111100011001110011100101101100

• The final output of a 256-bit key is obtained:

111000101110110111011000110100011110110011110001110101110101010100100000110
01111100001010011100000101101001111110101011010100101011110010000111001100100010
10000100100101101001110000010001000000111011001000001101001111100100010110110000
101110100011001011100

Table 3 shows the DNA XOR operations with different combinations of A, T, G, and C
letters. The design consists of four different binary combinations: the letter A is binary 10,
the letter C is binary 01, the letter G is binary 11, and the letter T is binary 00. There are
four rules based on the four DNA letters. The XOR for each letter is perfectly balanced
as a quarter to preserve the entropy of the input. Assume there are two strings: the first
string is ACCCT and the binary is 1001010100; the second string is CCTAA and the binary
is 0101001010. Note that the letter for the first string is A. Then, the operation XOR is based
on rule number three. The final output for XORing these two strings is GTAGA and the
binary is 1100101110. The binary mapping of these rules is given in Appendix A, Figure A4.

Table 4 represents complementary mapping letters in binary form. We have assigned
four binary values for each of the nucleotide letters. Let us assume that we have a sequence
of binary bits 0000 representing a base A nucleotide. The complementary output will
be 0011, which represents a T base. In the second example, we have the input string
001100010010. The nucleotide sequence of this string is TCG. The complementary output
will be 000000100001, which represents AGC. Further details are given in Appendix A,
Figure A3.

Table 5 shows the mRNA mapping rules. Assume a string AAAGTA; the binary is
101010110010. The first letter of the string is A and the second letter is A; the output is GG.
The third letter of the string is A and the fourth letter of the string is G; the output is AA. The
same process is performed for the entire string. Hence, the output for the string AAAGTA is
GGAATA. The details of the mRNA rules are given in Appendix A, Figures A1 and A2.

Algorithm 1. Pseudorandom DNA key generation algorithm.

Inputs: Strings: Sperm (0 . . . 127) and ovum (0 . . . 127)
Outputs: String: key (0 . . . 255)
Var: Strings: a (0 . . . 127), b (0 . . . 127), c (0 . . . 127), zygote(0 . . . 127)

Strings: Bi, j (0 . . . 127): i, j ∈ {1,2,3,4}

1. zygote← sperm ⊕ ovum
2. a← Rand(128)
3. b← Rand(128)
4. c← Rand(128)
5. {B1, 1, B1, 2, B1, 3, B1, 4 }← { zygote ⊕ b, a ⊕ c, a ⊕ b, zygote ⊕ c }
6. {B1, 1, B1, 2, B1, 3, B1,4 }←{ σ (B1, 1), µ (B1, 2), # (B1, 3), µ (B1, 4) }
7. {B2, 1, B2, 2, B2, 3, B2, 4 }←{ B1, 1 ⊕ B1, 3, B1, 1 ⊕ B1, 2,B1, 4 ⊕ B1, 2,B1, 4 ⊕ B1, 3 }
8. {B2, 1, B2, 2, B2, 3, B2,4 }←{ σ (B2, 1), # (B2, 2), * (B2, 3), * (B2, 4)
9. {B3, 1, B3, 2, B3, 3, B3, 4 }←{ B2, 1 ⊕ B2, 4, B2, 1 ⊕ B2, 3, B2, 3 ⊕B2, 2,B2, 4 ⊕B2, 2 }
10. {B3, 1,B3, 2, B3, 3, B3, 4 }←{ # (B2, 1), σ (B2, 2), µ (B2, 3), * (B2, 4)
11. key← (B3, 1 ⊕ B3, 4). (B3, 2 ⊕ B3, 3)
12. Return key

Appl. Sci. 2022, 12, 8141 9 of 19

4. Methodology

This section presents the simulation setup. Firstly, the proposed Omega network-based
pseudorandom DNA key generation algorithm generates random keys. The complete
execution process of the proposed DNA key generation is explained in the previous section.
The randomness of the test is checked, and data sets are analyzed. The generated data sets
are based on a specific function. After preparing the data set, the proposed key generation
algorithm is tested using the NIST statistical test, and the results are evaluated. The overall
research methodology flow diagram is shown in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 20

Algorithm 1. Pseudorandom DNA key generation algorithm.

Inputs: Strings: Sperm (0…127) and ovum (0…127)
Outputs: String: key (0…255)
Var: Strings: a (0…127), b (0…127), c (0…127), zygote(0…127)

Strings: Bi, j (0…127): i, j ∈ {1,2,3,4}
1. zygote ← sperm ⊕ ovum
2. a ← Rand(128)
3. b ← Rand(128)
4. c ← Rand(128)
5. {B1, 1, B1, 2 ,B1, 3, B1, 4 } ← { zygote ⊕ b, a ⊕ c, a ⊕ b, zygote ⊕ c }
6. {B1, 1, B1, 2 ,B1, 3, B1,4 } ←{ σ (B1, 1), µ (B1, 2), # (B1, 3), µ (B1, 4) }
7. {B2, 1, B2, 2 ,B2, 3, B2, 4 }←{ B1, 1 ⊕ B1, 3, B1, 1 ⊕ B1, 2,B1, 4 ⊕ B1, 2,B1, 4 ⊕ B1, 3 }
8. {B2, 1, B2, 2 ,B2, 3, B2,4 } ←{ σ (B2, 1), # (B2, 2), * (B2, 3), * (B2, 4)
9. {B3, 1, B3, 2 ,B3, 3, B3, 4 }←{ B2, 1 ⊕ B2, 4, B2, 1 ⊕ B2, 3 ,B2, 3 ⊕B2, 2,B2, 4 ⊕B2, 2 }
10. {B3, 1,B3, 2 ,B3, 3, B3, 4 } ←{ # (B2, 1), σ (B2, 2), µ (B2, 3), * (B2, 4)
11. key ← (B3, 1 ⊕ B3, 4). (B3, 2 ⊕ B3, 3)
12. Return key

4. Methodology

This section presents the simulation setup. Firstly, the proposed Omega network-
based pseudorandom DNA key generation algorithm generates random keys. The com-
plete execution process of the proposed DNA key generation is explained in the previous
section. The randomness of the test is checked, and data sets are analyzed. The generated
data sets are based on a specific function. After preparing the data set, the proposed key
generation algorithm is tested using the NIST statistical test, and the results are evaluated.
The overall research methodology flow diagram is shown in Figure 2.

Figure 2. Research flow diagram. Figure 2. Research flow diagram.

4.1. Simulation Setup

The Omega network is designed to generate DNA-based keys. The source code is
written in C/C++ (see Appendix A, Figures A1–A7). The design is simulated using an IntelI
CITM) i7-8550U CPU 1.99 GHz, with a hard disk and 8 GB RAM. To execute the Omega
network key generation algorithm, we need to generate 73,465,856 bits of DNA-based key.
The string sperm and string ovum are 128 bits each.

A 256-bit DNA-based key is generated for every string sperm and string ovum. The
union of string sperm and string ovum is obtained using the XOR operation; we denoted it
as string zygote. To generate 73,465,856 bits, we require a 286,976-bit string zygote. Note
that for each string zygote only a one-bit change as shown in Figure 3. This indicates that
the changes can be made for string sperm or string ovum but subjected only to one-bit
changes for each execution of 256 bits of DNA-based key. In the end, each 256 bits of
DNA-based key are concatenated to obtain a total of 73,465,856 bits of DNA-based keys.
The National Institute of Standards and Technology (NIST) test suite (STS 8.1.2 application)
was used for pseudorandomness.

Appl. Sci. 2022, 12, 8141 10 of 19

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 20

4.1. Simulation Setup

The Omega network is designed to generate DNA-based keys. The source code is
written in C/C++ (see Appendix A, Figures A1–A7). The design is simulated using an IntelI
CITM) i7-8550U CPU 1.99 GHz, with a hard disk and 8 GB RAM. To execute the Omega
network key generation algorithm, we need to generate 73,465,856 bits of DNA-based key.
The string sperm and string ovum are 128 bits each.

A 256-bit DNA-based key is generated for every string sperm and string ovum. The
union of string sperm and string ovum is obtained using the XOR operation; we denoted
it as string zygote. To generate 73,465,856 bits, we require a 286,976-bit string zygote. Note
that for each string zygote only a one-bit change as shown in Figure 3. This indicates that
the changes can be made for string sperm or string ovum but subjected only to one-bit
changes for each execution of 256 bits of DNA-based key. In the end, each 256 bits of DNA-
based key are concatenated to obtain a total of 73,465,856 bits of DNA-based keys. The
National Institute of Standards and Technology (NIST) test suite (STS 8.1.2 application)
was used for pseudorandomness.

Figure 3. One-bit change example.

4.2. NIST Test Suite

The NIST Test Suite is made up of 17 different empirical tests [32] that were devel-
oped to analyze binary sequence bitstreams. The tests investigate the unpredictability of
data through the use of a variety of bit statistics as well as bit block statistics. The NIST
STS tests all investigate the degree to which entire bitstreams are governed by random-
ness. Multiple tests that can detect local nonrandomness break the bitstreams down into
several generally large pieces and calculate a bit characteristic for each segment of the
data. After that, the test statistic is computed by using each of these partial attributes in
turn. Checking the randomness of the sequence is a part of each of the NIST STS tests, and
each test is specified by one of the three types of test statistic. For example:

1. Bits: These tests examine a variety of aspects of bits, such as the proportion of bits, the
frequency of bit change for example, runs, and cumulative sums;

2. M-bit blocks: These tests examine the allocation of m-bit blocks (where m is typically
less than 30 bits) inside the sequence or its portions;

Figure 3. One-bit change example.

4.2. NIST Test Suite

The NIST Test Suite is made up of 17 different empirical tests [32] that were developed
to analyze binary sequence bitstreams. The tests investigate the unpredictability of data
through the use of a variety of bit statistics as well as bit block statistics. The NIST STS tests
all investigate the degree to which entire bitstreams are governed by randomness. Multiple
tests that can detect local nonrandomness break the bitstreams down into several generally
large pieces and calculate a bit characteristic for each segment of the data. After that, the
test statistic is computed by using each of these partial attributes in turn. Checking the
randomness of the sequence is a part of each of the NIST STS tests, and each test is specified
by one of the three types of test statistic. For example:

1. Bits: These tests examine a variety of aspects of bits, such as the proportion of bits, the
frequency of bit change for example, runs, and cumulative sums;

2. M-bit blocks: These tests examine the allocation of m-bit blocks (where m is typically
less than 30 bits) inside the sequence or its portions;

3. M-bit parts: These tests examine the complex properties of M-bit parts (where M is
typically greater than 1000 bits) of the sequence, such as the rank of the sequence as
seen in a matrix, the sequence’s spectrum, or the linear complexity of the bitstreams.

Some tests that are part of the NIST STS are carried out in a greater number of
variations. For instance, they may carry out a number of sub-tests and investigate additional
qualities of a sequence of the same type. For example, the cumulative sum test and the
serial test look at a sequence forward and backward orders.

4.3. Developing the NIST Test Strategy

NIST STS allows analysis of an input file as one block sequence or as n fixed-length
sequences. We chose the parameters in the following order in the text-based user interface.

(a) File for the analysis: run the key generation algorithm and generate a 9 MB file;
(b) All the NIST recommended tests are applied;
(c) Values for the parameterized tests are set; for example, block frequency 21, over-

lapping template matching 9, non-overlapping template matching 9, approximate
entropy 10, serial 16, linear complexity 500;

(d) Choose the number of bitstreams;
(e) File format: ASCII 0s and 1s are chosen;

Appl. Sci. 2022, 12, 8141 11 of 19

(f) The sequence length, sample size, and significance level are input parameters. The
sample size for 9 MB files is set to 100 binary sequences, and 0.01 is chosen as the
significance level. A p-value is calculated for each binary sequence and sample size;

(g) A success or failure evaluation is made for each p-value depending on whether it
exceeds or drops below the pre-determined significance level;

(h) For each statistical test, whether it passed or failed the standard passing rate require-
ments, a p-value and proportional values are recorded;

(i) Both of the measures are assessed. A sample would pass a statistical test if it passed
both the proportion and uniformity criteria. If one of the two p-values is less than 0.01,
the sample is considered unsuccessful. If this occurs, further samples are analyzed,
otherwise the sample is considered to pass the randomness test.

5. Results and Discussion

The NIST test suite is a statistical package that includes 17 tests designed to evaluate
the randomness of arbitrarily long binary sequences created by cryptographic random or
pseudorandom number generators based on hardware or software [33]. These tests look
for several sorts of non-randomness present in sequences. The probability value (p-value)
is used in these tests to determine the randomness of the sequence. The sequence is non-
random if the estimated p-value is less than 0.01; otherwise, it is inferred as random [34,35].
To pass the probability test, the probability value should be between 0.99 and 0.0094392.
To check the randomness of the data, the minimum criterion is 100 binary sequences for
1,000,000 bits. Thus, we use 100 binary sequences of length 73,465,856 bits for each sequence
evaluated and discussed. The proposed key generation algorithm results are transformed
into binary because the NIST statistical test suite can consider the data only in binary form.

Secondly, according to NIST [32], the test for randomness is to be performed in two
ways: first, as a test of the proportion of sequences passing a statistical test; and, second, as
a test of the distribution of the p-values. In addition, according to the standardization of the
NIST test, if the proportion value is equal to 96 sequences out of 100 passing sequences, the
test will be considered a pass, otherwise as a fail. The proposed design result is presented in
Table 6. The minimum pass rate for the Random Excursions (Variant) test is approximately
50 for a sample of 100 binary sequences. The minimum pass rate for the random excursion
is approximately 51 for a sample of 100 binary sequences. We can see in Table 6 that the
number of sequences that have managed to pass each test is greater than the minimum rate.
Therefore, the proposed Omega network-based pseudorandom key generation algorithm
passed all NIST statistical tests.

Table 6. NIST test results.

Test Name Probability Test (p-Value) Proportion Result

Frequency 0.699313 98/100 Pass
Block-frequency 0.971699 99/100 Pass

Cumulative SUM (1) 0.759756 97/100 Pass
Cumulative SUM (2) 0.851383 98/100 Pass

Runs 0.534146 100/100 Pass
Longest runs 0.554420 99/100 Pass

Rank 0.275709 99/100 Pass
FFT 0.924076 100/100 Pass

Non-overlapping 0.262249 98/100 Pass
Overlapping 0.401199 100/100 Pass

Universal 0.334538 99/100 Pass
Approximate Entropy 0.494392 99/100 Pass
Random Extrusions 0.946308 51/51 Pass

Random Extrusions Variant 0.383827 50/51 Pass
Serial (1) 0.383827 98/100 Pass
Serial (2) 0.867692 98/100 Pass

Linear Complexity 0.935716 99/100 Pass

Appl. Sci. 2022, 12, 8141 12 of 19

6. Comparison

This section compares the proposed Omega network-based pseudorandom DNA key
generation algorithm with other DNA-based systems. The performance is evaluated in
term of randomness, as shown in Table 7. In the comparison stage, the symbols “

√
” and “x”

are used to denote whether the proposed key generation algorithm and the other related
DNA-based system satisfied the respective randomness or not. Table 7 shows that the
DNA-based system in [36] passes 13 NIST randomness tests, while the DNA-based system
in [6] passes 3 NIST random tests, the system in [15] passes only 2 NIST tests, and the
system in [9] passes 15 NIST tests. By contrast, the proposed algorithm passes all the
recommended NIST randomness tests.

Table 7. Comparison of the proposed system with existing DNA-based systems in terms of randomness.

Test Name [36] [15] [9] Proposed

Frequency
√ √ √ √

Block-frequency
√ √ √ √

Cumulative SUM (1)
√

x
√ √

Cumulative SUM (2)
√

x
√ √

Runs
√

x
√ √

Longest runs
√

x
√ √

Rank
√

x
√ √

FFT
√

x
√ √

Non-overlapping
√

x
√ √

Overlapping
√

x
√ √

Universal x x
√ √

Approximate Entropy x x
√ √

Random Extrusions x x x
√

Random Extrusions Variant x x x
√

Serial (1)
√

x
√ √

Serial (2)
√

x
√ √

Linear Complexity
√

x
√ √

6.1. Computational Time Complexity Analysis

Computational time complexity is a way to judge how well an algorithm works by
showing how quickly it gives results. It tells how many internal machine instructions a
computer needs to carry out to finish an algorithmic task. The algorithm is better if it takes
less time to run. This metric is utilized by a variety of researchers in order to represent
the time complexity of their methods. Regarding the complexity of the proposed key
generation algorithm, let us assume that a is the time required for an elementary operation
(e.g., XORing two bits or generating a random bit). In the proposed algorithm, we have
the number of input columns n = 4 (number of columns or functions at each row), zygote
generation takes 128 XOR operations = 128 × a, and the random generation of a, b, and c
each takes 128 random numbers = 128 × 3 × a.

For each row input, we have n = 4 strings to be XORed together (with lengths of
128 bits), which gives 4 × 128 × a = 128 × n × a. Similarly, for each row output, we have
four strings to be passed to the box functions. In this case, we have 4 × 128 × a = 128 × n ×
a. The key generation involves two XOR strings and one concatenation of 256 bits. So, we
have 128 × a + 128 × a + 256 × a = 128 × 2 × a + 128 × 2 × a = 128 × n × a. Thus, the total
time complexity of the proposed key generation algorithm is T(n) = 128 × 4 × a (zygote,
a, b, c) + 128 × a × 4 × 3 (row inputs) + 128 × a × 4 × 3 (row outputs) = 128 × 4 × 7 × a
= 128 × 7 × n × a ∈ (O(n)).

6.2. Space Complexity Analysis

Space complexity measures how much space an algorithm needs to run based on
input length. Initially, the proposed key generation algorithm uses n = 4 strings, which
are the zygote, a, b, and c. The length of each string is 4 × 128 bits. After performing the

Appl. Sci. 2022, 12, 8141 13 of 19

XORing operation, the length of the strings is 8 × 128 bits. If we free the space of the first
four strings (zygote, a, b, c), then the resultant space should be S = 4 × 128. Each row of
the proposed key generation algorithm contains four inputs and generates four outputs,
which gives 8 × 128 bits. During the execution of the proposed key generation algorithm,
four output strings are generated, and each time we can free the space of the input strings.
In the end, we have two strings of 2 × 128 bits to be XORed and one resulting string key
of 256 bits. The total is = 4 × 128 bits. Therefore, the complexity is the maximum space
needed for all the steps, which is S_max = 8 × 128 bits (256 × n) ∈ (O(n)).

6.3. Attack Analysis

In this paper, the central dogma of molecular biology is applied to generate a pseudo-
random key that provides a large key space of 256 bits. Thus, it is resistant to brute force
attack. Secondly, a small change in the key value will change the resultant output of the
key. It will be very difficult for the attacker to guess the key because of a one-bit change
in the input. Thirdly, the proposed key generation algorithm consists of a combination
of substitution and permutation operations which are based on the DNA XOR operation,
mRNA, and complementary rules. The attacker cannot guess the mRNA codon and the
four DNA XORing rules. Fourthly, the output of the proposed key generation algorithm
is pseudorandom. If it passes the pseudorandom NIST test, meaning that the output is
pseudorandom, the output is given to the attacker. The attacker will be trying to guess
whether it is a pseudorandom key or a key generator that is outputted by our proposed
algorithm. Therefore, in terms of pseudorandomness, it is very hard for the attacker to
guess the key and break the proposed algorithm.

7. Conclusions

The proposed algorithm uses DNA properties, such as replication, complementary
rules, and mRNA rules. Logical and biological operations are performed in the algorithm.
The evaluation of the proposed algorithm has been carried out using the NIST test suite.
One-hundred binary sequences of 73,465,856 bits were tested. The results showed that our
proposed Omega network-based pseudorandom key generation algorithm is well fitted
to achieve the NIST test security properties and pass all the NIST recommended tests.
The time and space complexity of the proposed key generation algorithm were analyzed,
(O(n)), respectively. Future work, firstly, might consist of analyzing and comparing the
performances of all the DNA cryptographic techniques based on secure data transmission
and computation processes. Secondly, this design can encode and decode information
for all types of information and applications. Thirdly, more biological operations and
computation techniques can be used to improve the proposed Omega network design.

Author Contributions: Conceptualization, G.R. and C.C.W.; methodology, G.R. and C.C.W.; software,
G.R.; validation, G.R. and C.C.W.; formal analysis, G.R. and C.C.W.; investigation G.R.; resources,
G.R.; data curation, G.R.; writing—original draft preparation, G.R.; writing—review and editing,
G.R.; visualization, G.R.; supervision, C.C.W.; project administration, C.C.W.; funding acquisition,
C.C.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study did not report any data.

Acknowledgments: The authors would like to thank the Ministry of Higher Education of Malaysia for
supporting this research under the Fundamental Research Grant Scheme, Vot No. FRGS/1/2020/ICT03/
UTHM/03/5, and the Universiti Tun Hussein Onn Malaysia for partial sponsorship.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Appl. Sci. 2022, 12, 8141 14 of 19

Appendix A

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 20

proposed Omega network-based pseudorandom key generation algorithm is well fitted
to achieve the NIST test security properties and pass all the NIST recommended tests. The
time and space complexity of the proposed key generation algorithm were analyzed,
(O(n)), respectively. Future work, firstly, might consist of analyzing and comparing the
performances of all the DNA cryptographic techniques based on secure data transmission
and computation processes. Secondly, this design can encode and decode information for
all types of information and applications. Thirdly, more biological operations and com-
putation techniques can be used to improve the proposed Omega network design.

Author Contributions: Conceptualization, G.R. and C.C.W.; methodology, G.R. and C.C.W.; soft-
ware, G.R.; validation, G.R. and C.C.W.; formal analysis, G.R. and C.C.W.; investigation G.R.; re-
sources, G.R.; data curation, G.R.; writing—original draft preparation, G.R.; writing—review and
editing, G.R.; visualization, G.R.; supervision, C.C.W.; project administration, C.C.W.; funding ac-
quisition, C.C.W. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Ministry of Higher Education of Malaysia for sup-
porting this research under the Fundamental Research Grant Scheme, Vot No.
FRGS/1/2020/ICT03/UTHM/03/5, and the Universiti Tun Hussein Onn Malaysia for partial sponsor-
ship.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study did not report any data.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

Appendix A

Figure A1. mRNA first letter and second letter. Figure A1. mRNA first letter and second letter.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 20

Figure A2. mRNA second letter and first letter. Figure A2. mRNA second letter and first letter.

Appl. Sci. 2022, 12, 8141 15 of 19Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 20

Figure A3. Complementry mapping rules. Figure A3. Complementry mapping rules.

Appl. Sci. 2022, 12, 8141 16 of 19Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 20

Figure A4. DNA XOR rules. Figure A4. DNA XOR rules.

Appl. Sci. 2022, 12, 8141 17 of 19Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 20

Figure A5. Function to generate random binary strings.

Figure A6. Function of one-bit change.

Figure A7. Function of binary XORing.

Figure A5. Function to generate random binary strings.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 20

Figure A5. Function to generate random binary strings.

Figure A6. Function of one-bit change.

Figure A7. Function of binary XORing.

Figure A6. Function of one-bit change.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 20

Figure A5. Function to generate random binary strings.

Figure A6. Function of one-bit change.

Figure A7. Function of binary XORing.

Figure A7. Function of binary XORing.

Appl. Sci. 2022, 12, 8141 18 of 19

References
1. Yung, P.Z.; Zhen, Z.W.; Zhi, W.W.; Yaseen, H.K.; Wei, D.D. A New DNA Cryptography Algorithm Based on the Biological Puzzle

and DNA Chip Techniques. In Proceedings of the 2016 International Conference on Biomedical and Biological Engineering,
Shanghai, China, 15–17 July 2016; pp. 360–365. [CrossRef]

2. Olga, T. Contributions to DNA cryptography: Applications to text and image secure transmission. Ph.D. Thesis, Université Nice
Sophia Antipolis, Nice, France, Universitatea Tehnică Cluj-Napoca, Cluj-Napoca, Romania, 2013.

3. Anam, B.; Sakib, K.; Hosain, M.; Dhal, K. Review on the advancements of DNA cryptography. In Proceedings of the SKIMA-2010
of the 4th International Conference, Paro, Bhutan, 25–27 August 2010; pp. 177–184. [CrossRef]

4. Shurit, K.; Harleen, K.; Vactor, K. DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key
Generation. J. Med. Syst. 2018, 42, 17. [CrossRef]

5. Vidhya, E.; Rathipriya, R. Key Generation for DNA Cryptography Using Genetic Operators and Diffie-Hellman Key Exchange
Algorithm. Int. J. Math. Comput. Sci. 2020, 15, 1109–1115.

6. Sodhi, G.K.; Monga, H.; Gaba, G.S. DNA and LCG based security key generation algorithm. Pertanika J. Sci. Technol. 2017,
25, 1369–1380.

7. Majumdar, A.; Biswas, A.; Baishnab, K.L.; Sood, S.K. DNA based cloud storage security framework using fuzzy decision making
technique. KSII Trans. Internet Inf. Syst. (TIIS) 2019, 13, 3794–3820. [CrossRef]

8. Tushar, M.; Vijay, C.A. DNA encryption technique based on matrix manipulation and secure key generation scheme. In
Proceedings of the International Conference on Information Communication and Embedded Systems (ICICES), Chennai, India,
21–22 February 2013; pp. 47–52. [CrossRef]

9. Sally, S.N.; Mohmood, K.I. Cryptographic Algorithm Based on DNA and RNA Properties. Int. J. Adv. Res. Comput. Eng. Technol.
(IJARCET) 2018, 7, 237–241.

10. Bin, L. BioSeq-Analysis: A platform for DNA, RNA and protein sequence analysis based on machine learning approaches. Mol.
Genet. Genom. 2018, 20, 1280–1294. [CrossRef]

11. Sayantani, B.; Marimuthu, K.; Mita, N.; Anup, K.H.; Niranchana, R. Bio-inspired cryptosystem with DNA cryptography and
neural networks. J. Syst. Arch. 2019, 94, 24–31. [CrossRef]

12. Suyel, N. Fast and Secure Data Accessing by using DNA Computing for the Cloud Environment. IEEE Trans. Serv. Comput. 2020,
1374, 1–12. [CrossRef]

13. Suyel, N.; Rupak, C.; Abhishek, M.; Nageswara, R.M. Securing Multimedia by Using DNA-Based Encryption in the Cloud
Computing Environment. ACM Trans. Multimed. Comput. Commun. Appl. 2020, 16, 1–19. [CrossRef]

14. Dhivya, R.; Aashiq, S.; Murthy, B.K.; Vidhyadharini, B.; Sherin, F.; Rengarajan, A. An efficient medical image encryption using
hybrid DNA computing and chaos in transform domain. Med. Biol. Eng. Comput. 2021, 55, 89–605. [CrossRef]

15. Dilovan, A.Z.; Habibollah, H.; Subhi, R.M.Z.; Diyar, Q.Z. Multi-Level of DNA Encryption Technique Based on DNA Arithmetic
and Biological Operations. In Proceedings of the International Conference on Advanced Science and Engineering (ICOASE),
Duhok, Iraq, 9–11 October 2018. [CrossRef]

16. Shakir, M.H.; Hussein, A.B. A DNA-Based Cryptographic Key Generation Algorithm. In Proceedings of the International
Conference on Security and Management, Las Vegas, NV, USA, 25–28 July 2016; pp. 338–342.

17. Fursan, T.; Sharaf, T.; Sudhir, J. A new data security algorithm for the cloud computing based on genetics techniques and
logical-mathematical functions. Int. J. Intell. Netw. 2021, 2, 18–33. [CrossRef]

18. Sreeja, C.S.; Misbahuddin, M.; Mohammed, N.P.H. DNA for information security: A Survey on DNA computing and a pseudo
DNA method based on central dogma of molecular biology. In Proceedings of the International Conference on Computing and
Communication Technologies, Hyderabad, India, 11–13 December 2014. [CrossRef]

19. Madhvi, P.; Gagandeep. DNA Cryptography: A Novel Approach for Data Security Using Flower Pollination Algorithm. In
Proceedings of the International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM),
Amity University Rajasthan, Jaipur, India, 26–28 February 2019. [CrossRef]

20. Elmoselhy, A.; Elalfy, E.S.M. On DNA cryptography for secure data storage and transfer. In Proceedings of the IET Conference,
Online, 21–23 September 2020. [CrossRef]

21. Raju, P.V.C.N.; Pritee, P. DNA encryption based dual server authentication. Adv. Intell. Syst. Comput. 2014, 328, 29–37. [CrossRef]
22. Pramod, P.; Sheena, M.; Suyel, N.; Pascal, L. A novel cryptosystem based on DNA cryptography and randomly generated mealy

machine. Comput. Secur. 2021, 104, 102–160. [CrossRef]
23. Manreet, S.; Sandeep, S. BDNA-A DNA inspired symmetric key cryptographic technique to secure cloud computing. J. King Saud

Univ. Comput. Inf. Sci. 2022, 34, 1417–1425. [CrossRef]
24. Suyel, N.; Sharma, S.; Ganesh, C.D.; Pascal, L. DNA computing and table based data accessing in the cloud environment. J. Netw.

Comput. Appl. 2020, 172, 102835. [CrossRef]
25. Yunpeng, Z.; Xin, L.; Yongqiang, M.; Liang, C.C. An optimized DNA based encryption scheme with enforced secure key

distribution. Clust. Comput. 2017, 20, 3119–3130. [CrossRef]
26. Reddy, M.I.; Kumar, A.P.S. An efficient data transmission approach using IAES-BE. Clust. Comput. 2020, 23, 1633–1645. [CrossRef]
27. Alaa, F.; Rasha, K.; Ali, R.S.; Hassan, R.Y.; Nadia, M.G.A.; Ghassan, H.A.M. A new approach to generate multi S-boxes based on

RNA computing. Int. J. Innov. Comput. Inf. Control 2020, 16, 331–348.

http://doi.org/10.2991/bbe-16.2016.55
http://doi.org/10.48550/arXi.1010.0186
http://doi.org/10.1007/s10916-017-0851-z
http://doi.org/10.3837/tiis.2019.07.025
http://doi.org/10.1109/ICICES.2013.6508181
http://doi.org/10.1093/bib/bbx165
http://doi.org/10.1016/j.sysarc.2019.02.005
http://doi.org/10.1109/TSC.2020.3046471
http://doi.org/10.1145/3392665
http://doi.org/10.1007/s11517-021-02328-8
http://doi.org/10.1109/ICOASE.2018.8548824
http://doi.org/10.1016/j.ijin.2021.03.001
http://doi.org/10.1109/ICCCT2.2014.7066757
http://doi.org/10.2139/ssrn.3358159
http://doi.org/10.1049/icp.2021.0900
http://doi.org/10.1007/978-3-319-12012-6_4
http://doi.org/10.1016/j.cose.2020.102160
http://doi.org/10.1016/j.jksuci.2018.09.024
http://doi.org/10.1016/j.jnca.2020.102835
http://doi.org/10.1007/s10586-017-1009-y
http://doi.org/10.1007/s10586-020-03098-y

Appl. Sci. 2022, 12, 8141 19 of 19

28. Suresh, E.; Babu, C.; Naga, R.; Prasad, M.H.M.K. Inspired pseudo biotic DNA based cryptographic mechanism against adaptive
cryptographic attacks. Int. J. Netw. Secur. 2016, 18, 291–303.

29. Miki, H.; Hiroki, K.; Zuhiro, O. Design of True Random One-Time Pads in DNA XOR Cryptosystem. In Proceedings in Information
and Communications Technology; Springer: Tokyo, Japan, 2010; pp. 174–184. [CrossRef]

30. Emtious, M.S.H.; Kazi, M.R.A.; Yasihiko, M. A DNA cryptographic technique based on dynamic DNA sequence table. In
Proceedings of the 19th International Conference on Computer and Information Technology (ICCIT) 2017, Dhaka, Bangladesh,
22–24 December 2017. [CrossRef]

31. Ilya, R.; Greg, H.; Jin, W. Using π digits to Generate Random Numbers: A Visual and Statistical Analysis. In Proceedings of the
International Conference on Scientific Computing (CSC), Paphos, Cyprus, 3–6 December 2013.

32. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications; Special Publication 800-22; National Institute of Standards and Technology (NIST): Gaithersburg, MD,
USA, 2008.

33. Darshana, U.; Paryanka, S.; Sharada, V. SP 800-22 Rev. 1A: A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications. Technical Report National Institute of Standards & Technology. 2010. Available
online: https://dl.acm.org/doi/pdf/10.5555/2206233 (accessed on 19 June 2022).

34. Kordov, K.M. Modified Chebyshev map based pseudo-random bit generator. AIP Conf. Proc. 2014, 1629, 432. [CrossRef]
35. Auday, H.S.A.W.; Ramlan, M.; Zuraiti, A.Z.; Nur, I.U. Generating a new S-Box inspired by biological DNA. Int. J. Comput. Sci.

Appl. 2015, 4, 32–42. [CrossRef]
36. Biswas, M.R.; Alam, K.M.R.; Tamura, S.; Morimoto, Y. A technique for DNA cryptography based on dynamic mechanisms. J. Inf.

Secur. Appl. 2019, 48, 102363. [CrossRef]

http://doi.org/10.1007/978-4-431-53868-4_20
http://doi.org/10.1109/ICCITECHN.2016.7860208
https://dl.acm.org/doi/pdf/10.5555/2206233
http://doi.org/10.1063/1.4902305
http://doi.org/10.12783/ijcsa.2015.0401.04
http://doi.org/10.1016/j.jisa.2019.102363

	Introduction
	Overview of DNA
	Transcription
	Translation
	Complementary Rules

	Related Work
	Proposed Design
	Methodology
	Simulation Setup
	NIST Test Suite
	Developing the NIST Test Strategy

	Results and Discussion
	Comparison
	Computational Time Complexity Analysis
	Space Complexity Analysis
	Attack Analysis

	Conclusions
	Appendix A
	References

