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Abstract: Various random factors in the bridge construction process directly affect the safety of the
bridge life cycle. The existing theories on the reliability of bridge structure mainly focus on the
reliability of components and the reliability of the bridge structure system in the completion and
operation stages, while the research on the reliability of the structure system in the construction
stage is relatively lacking. Therefore, this paper proposed using the Copula function to calculate the
reliability index of the bridge structure construction process system. The basic theory of the Copula
function was introduced in detail, and the formula was improved according to the actual situation of
bridge construction. Finally, the sensitivity analysis of bridge system reliability was carried out. The
research results showed that the method proposed in this paper based on Copula theory to calculate
the reliability index of the bridge structure construction process system has strong applicability,
simple calculation, and can be used in conjunction with the “interval estimation method”, which is
suitable for large and complex bridge structural engineering. At the same time, the conclusion that
the influence of failure mode correlation on structural reliability should not be ignored in the actual
engineering construction process is confirmed.

Keywords: bridge structure construction; Copula theory; system reliability

1. Introduction

In recent years, with the continuous improvement of comprehensive national strength,
bridge construction in China has gradually developed towards higher pier height and
larger span. At present, the common structural forms of large span complex bridges in
China include but are not limited to large span steel pipe concrete arch bridges, large span
suspension bridges, and steel–concrete composite continuous girder bridges. As one of
the most important steps of bridge construction, the bridge construction stage directly
determines the quality of the bridge after completion. Bridge construction includes many
divisional works, such as foundation and substructure, superstructure, and protection
works, etc. It involves a wide range, complex construction, many influencing factors, and
harsh construction conditions, which are very conducive to engineering accidents. At the
same time, along with the great development of bridge construction, safety problems are
becoming more and more prominent. The number of overturning and collapse accidents in
the construction process is gradually increasing, thus directly causing a large number of
economic losses and casualties and producing adverse social impacts. Therefore, it becomes
necessary to analyze the structural response during bridge construction.

A series of faults are inevitable in the process of manufacturing and use of engineering
structures. It is of great significance to accurately identify the failure mode and predict the
probability of failure for the extension of structural life. In this regard, many scholars at
home and abroad have carried out a series of studies. Soliman M et al. [1] better predicted
the fatigue life of steel bridge structures by integrating structural health monitoring into
a probabilistic bilinear S-N approach. Helder Sousa et al. [2] carried out construction
evaluation and long-term prediction of prestressed concrete bridges based on monitoring
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data. Based on the long-term monitoring data of Lezíria Bridge, which is the new bridge
on the Tagus River in Portugal, an analysis strategy for calculating the long-term behavior
based on the finite element model is proposed. The research results showed that the trend
caused by shrinkage and creep and the change caused by temperature can be used as the
main references in the detection of the viaduct. Lei Li [3] summarized the advantages and
disadvantages of the current large-scale bridge dynamic displacement monitoring methods,
constructed a GPS bridge monitoring system, introduced the measurement principle,
system composition, data processing method, and precautions of the system in detail, and
concluded that the measurement result of the system is stable and high precision through
an example analysis. Chengxin Yu et al. [4], in order to make up for the shortcomings of
traditional measurement methods in monitoring the overall deformation of bridges and
long-term real-time monitoring, and overcome the defect that the digital photography
technology based on monocular vision cannot monitor the three-dimensional deformation
of bridges, proposed a bridge-monitoring method based on image matching-time baseline
parallax method, and established a new bridge-monitoring and early warning system on
this basis. The superiority of this method was verified by an engineering example. Xin
Wei et al. [5] developed a bridge health-monitoring data integration and early warning
system using component GIS software in order to efficiently integrate, manage, and visually
analyze a large amount of existing data in the bridge monitoring project, and carry out
real-time dynamic early warning on its monitoring data, which greatly improved the
operability and visualization level of data in the monitoring process. Ghiasi R et al. [6] used
a non-probabilistic element model and interval mathematics to deal with the uncertainty
in structural damage detection, and proposed a non-probabilistic agent model based
on Wavelet Weighted Least Squares Support Vector Machine (WWLS-SVM) to solve the
uncertainty problem in vibration-based damage detection. Through practical application,
it was proven that the performance of the method was better than the direct finite element
model, and less computation was required. Ashraf A. A. Beshr et al. [7] established an
integrated monitoring system using global navigation satellite systems (GNSS) observation.
The system is mainly used to study the deformation behavior and displacement prediction
of suspension highway bridges, taking into account the effects of wind, temperature,
humidity, and traffic load during operation and short-term measurement. The results
showed that the predicted displacement obtained by artificial neural network (ANN) and
adaptive neuro-fuzzy inference systems (ANFIS) provides a significant improvement for
predicting the structural deformation of suspension highway bridges based on GNSS
observations. Davide Martucci et al. [8], by applying the extreme value function theory
to structural damage detection, provided a useful tool for structural health monitoring,
and carried out numerical and experimental tests and verifications by using engineering
application examples in different fields. This research laid a solid foundation for structural
health monitoring in the field of extreme function theory (EFT) and extreme value theory
(EVT) in the future. Susheng Li et al. [9], by integrating building information modeling
(BIM) with health monitoring and early warning, achieved the goal of integrating bridge
operation, management, and maintenance, provided visual and information-based bridge
conditions for bridge management and maintenance departments, and then provided
information-based data assistance and decision support. Through analysis, it was found
that the research on structural fault at home and abroad mostly focuses on structural fault
monitoring and prediction, while the research on structural fault analysis based on system
reliability theory is relatively lacking.

At present, scholars at home and abroad have carried out a series of studies on the
reliability analysis of bridge structural systems. Since the structural system has many
components and complex forms, which are difficult to calculate accurately, a series of more
practical approximation methods have been derived, and these calculation methods can be
roughly divided into two categories: “point estimation method” and “interval estimation
method” [10].
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Point estimation method mainly includes the Monte-Carlo method, direct numerical
integration method, and approximate numerical calculation method [11]. The Monte-
Carlo method mainly relies on computerized cyclic tests to respond to the response or
performance of the structure as a whole by changing the parameters or design variables
of the structural system. It is not only applicable to the reliability analysis of individual
members, but also can approximate the failure of the system. However, since the accuracy
of the Monte-Carlo method is based on a large amount of data, it is less applicable in the
reliability analysis of large structural systems. The direct numerical integration method,
as the name implies, solves the system reliability by directly calculating a multidimensional
numerical integral. The probability of failure of a structural system composed of failure
modes in the series becomes a problem of calculating a dimensional integral. However,
the calculation process is very complicated and difficult to apply in practical engineering.
Moreover, as the dimension of integration increases, the computational volume and error
of integration grow exponentially, and the feasibility and accuracy are relatively low.
The approximate numerical calculation method is used to convert the complex high-
dimensional integration into a simple one-dimensional integration problem so as to solve
the approximate solution with certain accuracy. The PENT method (Probabilistic Network
Evaluation Technique) proposed by Ang H-S et al. is a typical approximate numerical
computation method [11]. The basic principle of this method is that the failure modes are
divided into several groups according to the closeness of their correlation and the failure
mode with the highest failure probability in each group is selected as the representative
failure mode, assuming that the representative failure modes are independent of each other.
The failure probability of the system is estimated by using the following equation:

Pf = 1−
m

∏
i=1

(
1− Pf i

)
(1)

where Pf is the failure probability of the structural system; m is the total number of
representative failure modes; i is the serial number of the representative failure modes,
the value range of i is [1, m]; and Pf i is the failure probability of each representative failure
mode. In addition to the above three “point estimation methods”, many scholars have
formulated a series of extensions and improvements on the basis of these methods to
make them more relevant to practical engineering applications. Ditlevesen [12] proposed
the reliability analysis method of series system by Taylor expansion of the cumulative
distribution function of multidimensional normal distribution. However, for the reliability
calculation of complex practical structural systems, the calculation amount is relatively
large. M. Hohenbichler et al. proposed a first-order reliability calculation scheme by
converting the non-normal correlation uncertainty vector into an independent standard
normal vector to simplify the reliability calculation of tandem systems. Reference [13]
proposed a conditional probability method based on the PENT method, which avoids the
drawback of the PENT method.

The interval estimation method includes the wide and narrow bounds methods.
Cornell [14] was the first to propose a wide-bound formula for the failure probability of
a tandem system. The basic idea is that the failure probability of a structural system lies
between the failure probability solved when the failure modes are completely correlated
and the failure mode solved when the failure modes are completely independent. Since
the wide bounds formula does not consider the correlation between the failure modes, it
is generally used to roughly estimate the reliability of the structural system. To address
the problem that the wide bounds method is too broad in scope, Ditleven [15] proposed
a narrow-bounded range formula for the failure probability of a structural system. The
narrow-bound method considers the probability of failure of two failure modes at the same
time, which results in a narrower range than the wide-bound method and is more efficient
in calculation. However, it only considers the failure of two failure modes together, and
the estimation results are relatively rough. By analyzing domestic and foreign methods for
calculating system reliability, it can be seen that the proposed system reliability calculation
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methods have two major defects. Firstly, the calculation is too cumbersome to be applied
to the actual complex engineering structures. Secondly, the correlation between failure
modes is not considered comprehensively. Therefore, a method that is easy to calculate
and accurately considers the correlation between failure modes is needed to guide the
engineering practice.

In recent years, Copula theory has developed rapidly in the field of mathematics,
providing a new way to establish the joint distribution function of related variables, which
was first used in the field of finance. Copula theory was first proposed by Sklar [16] in
the 1950s and Sklar’s theorem laid the foundation for the application and development
of Copula theory. Copula theory has been gradually used in the analysis of structural
system reliability in recent years [17]. PL Liu et al. first applied the Copula function to
structural reliability analysis, and pointed out that the essence of the Nataf transform is
to use the Gaussian Copula function to construct the joint distribution function among
variables [18]. Goda [19] used Copula theory to investigate the correlation between peak
structural displacements and permanent displacements due to seismic loads. Kazianka and
Pilz [20,21] used Copula function to describe the spatial dependence structure of continuous
random field and discrete random field in geostatistics, provided three methods of spatial
interpolation of geomechanical parameters based on Copula function, and, on this basis,
proposed to consider the prior distribution of model parameters using Bayesian theory.
Eryilmaz [22] achieved the time-varying reliability analysis of multivariate structural
systems by studying multivariate random variable Copula functions. By considering the
correlation of failure modes of structural systems, Yuefei Liu [23] proposed a reliability
analysis method of structural systems based on the hybrid Copula model; the nonlinear
correlation between the failure modes of binary and multivariate structural systems was
reasonably analyzed, and the time-varying reliability of the structures was reasonably
predicted with corrections based on the analysis results, which provides a new method
for the reliability analysis of structural systems. Lei Zhang et al. [24] applied the Copula
function into the reliability analysis of geotechnical structural systems and discussed the
difference of failure probabilities of geotechnical structural systems calculated by different
Copula functions, reflecting the necessity of making the optimal Copula function selection.
Qingkai Xiao [25] applied Copula theory to the time-varying reliability analysis of bridge
structures; the reliability of bridge structures during long-term operation was analyzed, and
the reliability of bridge structures was predicted and analyzed based on Bayesian dynamic
model, which provides a reference for the operation management of bridge projects. Xirui
Wang [26], by applying Copula theory into the time-varying reliability analysis of existing
small- and medium-span bridges, and proposing a bridge system reliability assessment
method that considers multiple failure criteria based on the Copula function and AHP-
EW (analytic hierarchy process–entropy weight) decision method, further improved the
rationality of the bridge system reliability assessment. Laifu Song [27], using Copula
theory to analyze the stability reliability of concrete dams, laid the foundation for the
joint reliability analysis of engineering instances with few test data and where the joint
distribution model cannot be determined. Copula theory is simple to calculate and easy to
understand, and it is not limited by the amount of data. Copula theory is introduced into
the reliability analysis of structural systems, which overcomes the problems of cumbersome
calculation of traditional system reliability analysis methods and inadequate consideration
of failure mode correlation. Although scholars at home and abroad have conducted a series
of studies on the Copula function, the research on the Copula function is mainly focused
on the theoretical level, and the research on structural reliability analysis based on Copula
theory is still in the primary stage. Most of the existing structural system reliability analysis
theories are focused on the bridge operation stage, and there are relatively few studies on
the reliability of bridge system in the construction stage. Therefore, this paper proposed
using Copula theory to analyze the reliability of the bridge system construction process.

Based on Copula function theory, this paper analyzed the reliability of structural
systems during bridge construction. Four different Copula functions were used to establish
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the correlation between failure modes. On this basis, the reliability index of the bridge
structure system in the construction process was calculated with the help of MATLAB
software. Then, the traditional Copula theory was improved according to the calculation
results. Finally, the importance of failure mode correlation in practical engineering was ex-
plained through sensitivity analysis. This paper provides a technical reference for ensuring
construction safety, improving construction quality, and controlling construction risks.

2. Basic Theory of the Copula Function
2.1. Definition of Copula Function

Copula theory was first proposed by Sklar [16]. Sklar’s theory states that any mul-
tivariate joint distribution function can be decomposed into a corresponding marginal
distribution and a Copula function, which uniquely determines the correlation between
variables [28]. The Copula function is theoretically a joint distribution function, and Sklar’s
theorem is the basis for the practical application of the Copula function. According to
Sklar’s theorem, there exists only one unique Copula function satisfying the following
Equation [29]:

F(x1, x2, · · · xn) = C(F1(x1), F2(x2), · · · Fn(xn); θ) (2)

where C is the Copula function describing the structure of the correlation between the
variables (x1, x2, · · · xn), which is independent of the distribution with each marginal
distribution Fn(xn); θ is the correlation parameter of the Copula function.

The correlation between the failure modes of the structural system is constructed on the
basis of Copula theory in two main steps. Step 1 is to determine the failure function of each
failure mode and to specify the distribution of each random variable in the failure function.
Step 2 is to select the optimal Copula function to characterize the correlation structure
between the failure modes. The two abovementioned steps are carried out independently
without interfering with each other. It can be seen that the joint distribution function
established when analyzing the reliability of the bridge construction period system based
on Copula theory is not affected by the type and distribution of the failure function. The
joint distribution function with any distribution type and correlation can be constructed in
practical engineering. For the binary joint distribution, the joint cumulative distribution
function F(x1, x2) and the joint probability density function f (x1, x2) are

F(x1, x2) = C(F1(x1), F2(x2); θ) = C(u, v; θ) (3)

f (x1, x2) = D(u, v; θ) f1(x1) f2(x2) (4)

where u = F1(x1) and v = F2(x2) are the marginal cumulative distribution functions of
the variables X1 and X2, respectively; C(u, v; θ) is the two-dimensional Copula function;
D(u, v; θ) is the density function of the two-dimensional Copula function; θ is the cor-
relation parameter of the Copula function, which is used to characterize the correlation
between random variables.

2.2. Metrics of Copula Function Correlation

The correlation between the reliability of engineering structures can be measured by
using multiple indicators; those commonly used include Pearson linear correlation coeffi-
cient, Kendall rank correlation coefficient, and Spearman rank correlation coefficient [28].
Since the Kendall rank correlation coefficient and Spearman rank correlation coefficient
have similar properties, only the definition and calculation methods of Pearson linear
correlation coefficient and Kendall rank correlation coefficient are introduced in this paper.

2.2.1. Pearson Linear Correlation Coefficient

The Pearson linear correlation coefficient ρ is a measure of the strength of the linear
correlation between two random variables. We expand it to the field of reliability analysis.
The Pearson linear correlation coefficient ρ is calculated for the correlation between two
functions as follows [10]
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ρZiZj =
cov
(
Zi, Zj

)
σZi σZj

(5)

where Zi and Zj are the function of two failure modes, respectively; cov
(
Zi, Zj

)
is the

covariance of two failure functions Zi and Zj; σZ1 and σZ2 are the standard deviation of two
failure functions Zi and Zj, respectively.

The Pearson linear correlation coefficient ρ varies in the range of [−1, 1]. The larger
the |ρ|, the stronger the correlation between the two failure modes. |ρ| = 1 indicates that
the two failure modes are completely linearly correlated, and |ρ| = 0 indicates that there is
no linear correlation between the two failure modes. Since the Pearson linear correlation
coefficient can only describe the linear correlation between the failure modes, the Pearson
linear correlation coefficient ρ will be transformed when there is a nonlinear transformation
between the failure modes [30]. Therefore, the applicability in engineering practice is weak.

2.2.2. Kendall Rank Correlation Coefficient

In contrast to the Pearson linear correlation coefficient, the Kendall rank correlation
coefficient not only describes the linear correlation between failure modes, but also describes
the nonlinear correlation between them well and has been widely used in engineering.
The Kendall rank correlation coefficient is a measure of the degree of consistency between
variables. Let (x11, x21) and (x12, x22) be two sets of observations of a two-dimensional
random vector (X1, X2). If (x11 − x21)(x12 − x22) > 0, then (x11, x21) and (x12, x22) are said
to be consistent. If (x11 − x21)(x12 − x22) < 0, then (x11, x21) and (x12, x22) are said to be
inconsistent. Establish the independent identically distributed vectors

(
X′1, X′2

)
of the two-

dimensional random vector (X1, X2). Using P
[(

X1 − X′1
)
(X2 − X′2) > 0

]
to denote their

probability of being consistent, and P
[(

X1 − X′1
)
(X2 − X′2) < 0

]
to denote their probability

of being inconsistent, the Kendall rank correlation coefficient τ is defined as the difference
between the probability of being consistent and the probability of being inconsistent, with
the following equation [28]:

τ = P
[(

X1 − X′1
)(

X2 − X′2
)
> 0

]
− P

[(
X1 − X′1

)(
X2 − X′2

)
< 0

]
(6)

Similar to the range of the Pearson linear correlation coefficient ρ, the range of the
Kendall rank correlation coefficient τ is also [−1, 1]. The larger the |τ|, the stronger the
correlation between the two failure modes. |τ| = 1 indicates that the two failure modes are
perfectly correlated, while |τ| = 0 indicates that there is no correlation between the two
failure modes. The Kendall rank correlation coefficient τ can also be calculated from the
observations of the two-dimensional random vectors X1 and X2 [28]:

τ =

∑
i<j

sign
[(

x1i − x1j
)(

x2i − x2j
)]

0.5N(N − 1)
(7)

where i, j = 1, 2, · · · , N; sign[·] is the symbolic function, when
(

x1i − x1j
)(

x2i − x2j
)
> 0,

sign = 1, and vice versa, sign = −1; N is the total number of combinations of observations.
The Kendall rank correlation coefficient τ has the following relationship with the

two-dimensional Copula function C(u, v; θ) [28]:

τ = 4
∫ 1

0

∫ 1

0
C(u, v; θ)dC(u, v; θ)− 1 (8)

The Kendall rank correlation coefficient mainly reflects the correlation between two
groups of random vectors and his independent identically distributed vectors. However,
what this paper needs to reflect is the correlation between the two failure modes. In
order to overcome the above drawbacks, this paper proposes to use the Latin hypercube
sampling method to sample the uncertainty parameters in the two failure modes and then
bring them into the failure mode function so as to calculate the response values of the
function. The two sets of response values are the two-dimensional random vectors X1 and
X2. Then the Kendall rank correlation coefficient τ between the two functions can then be
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calculated using the Equation (6). The details of the Latin hypercube sampling method are
described below.

The Latin hypercube sampling method to draw N samples x = (x1,i, x2,i · · · xN,i)
T

(i = 1, 2 · · ·N) from the random variable X = (X1, X2 · · ·Xm)
T is as follows [31]:

(1) Divide the range of each random variable Xj into N equal probability intervals, i.e.,
the domain of values of the cumulative distribution function FXj

(
xj
)

of the variable
Xj into N equal subintervals [0, 1/N], [1/N, 2/N] . . . [1− 1/N, 1] that do not overlap
with each other.

(2) For each random variable Xj, a sample is taken in each of the N subintervals divided
in all its (1), and each subinterval generates a unique random number xj,i (indicating
the sample random number drawn in the i-th interval of the j-th variable). The sample
value corresponding to this random number is obtained by the inverse transformation
method αj,i.

(3) The sample values of αj,i are numbered 1,2,3 . . . , N from smallest to largest to form a
matrix Amn.

Amn =


α11 α12 · · · α1n
α21 α22 · · · α2n

...
...

...
...

αm1 αm2 · · · αmn

 (9)

The sample values of the m random variables from the first row to the m-th row are
sorted from smallest to largest.

(4) Randomly sort the row vector
[
αj1, αj2 · · · αjn

]
(j = 1, 2 · · ·m) in the matrix Amn and the

resulting vector is denoted as
[
ϕj1, ϕj2 · · · ϕjn

]
(j = 1, 2 · · ·m), resulting in the matrix

Φmn.

Φmn =


ϕ11 ϕ12 · · · ϕ1n
ϕ21 ϕ22 · · · ϕ2n

...
...

...
...

ϕm1 ϕm2 · · · ϕmn

 (10)

(5) Then, each column vector in Φmn is a set of samples, and a total of N sets of samples
are drawn.

2.3. Commonly Used Two-Dimensional Copula Functions

There are many types of Copula functions and the common ones include (1) two-
dimensional elliptic Copula functions, such as Gaussian Copula and t Copula functions;
(2) two-dimensional Plackett functions; and (3) two-dimensional Archimedean Copula
functions, such as Frank, Clayton, No. 16 Copula functions, etc. In this paper, based on
the review of the reference, the cumulative distribution function and probability density
function of some commonly used Copula functions are listed at Table 1 [27].

2.4. Identification of Optimal Copula Functions

From the analysis of the current status of domestic and international research in the
first section of this paper, it can be seen that the correlation between different failure modes
is different, and different Copula functions are needed to describe the correlation between
them. Therefore, how to accurately select the optimal Copula function to describe the
correlation between failure modes is the primary problem that needs to be solved at present.
There are many methods to identify the optimal Copula function, and there are two main
ones used at present: (1) AIC (Akaike Information Criterion) [32]; and (2) BIC (Bayesian
Information Criterion) [33].
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Table 1. Commonly used two-dimensional Copula functions.

Copula Function
Type Copula Function C(u, v; θ) Copula Density Function D(u, v; θ) Range Values

of θ

Gaussian Φθ

(
Φ−1(u), Φ−1(v)

) 1√
1−θ2 exp

[
− (Φ−1(u))

2
θ2−2θ(Φ−1(u)·Φ−1(v))+(Φ−1(v))

2
θ2

2(1−θ2)

]
[−1, 1]

Clayton (
u−θ + v−θ − 1

)− 1
θ (1 + θ)(u · v)−θ−1(u−θ + v−θ − 1

)−2−1/θ (0, ∞)

Plackett
S−
√

S2−4uvθ(θ−1)
2(θ−1)

S = 1 + (θ − 1)(u + v)

θ[1+(θ−1)(u+v−2uv)]{
[1+(θ−1)(u+v)]2−4uvθ(θ−1)

}3/2 (0, ∞)\{1}

Frank − 1
θ ln
[

1 + (e−θu−1)(e−θv−1)
e−θ−1

]
−θ(e−θ−1)e−θ(u+v)

[(e−θ−1)+(e−θu−1)(e−θv−1)]
2 (−∞, ∞)\{0}

t T2
(
T−1

v (u1), T−1
v (u2); θ, v

) t2(T−1
v (u1),T

−1
v (u2); θ,v)

tv(T−1
v (u1))tv(T−1

v (u2))
[−1, 1]

No. 16
1
2

(
S +
√

S2 + 4θ
)

S = u + v− 1− θ
(

1
u + 1

v − 1
) 1

2

(
1 + θ

u2
1

)(
1 + θ

u2
2

)
S−

1
2

{
−S−1

[
u + v− 1− θ

(
1
u + 1

v − 1
)]2

+ 1
}

S =
[
u + v− 1− θ

(
1
u + 1

v − 1
)]2

+ 4θ

[0, ∞)

Gumbel exp
{
−
[
(− ln u1)

θ + (− ln u2)
θ
]1/θ

}
e(−S1/θ )(ln u1 ln u2)

θ−1(S1/θ+θ+1)
u1u2S2−1/θ

S = (− ln u1)
θ + (− ln u2)

θ
[1, ∞)

AIC and BIC are based on the principle that the Copula function with the smallest
AIC or BIC value is considered to be the optimal Copula function for fitting the correlation
between the two data sets. AIC is based on the concept of entropy, which is a standard to
measure the goodness of statistical model fitting. The specific method is to find a model
that contains the least free parameters and can best interpret the data. The AIC value is
defined as the sum of −2 times the logarithmic sum of the Copula density function values
at the original observed data points of the variable and 2 times the number of parameters
associated with the Copula function [32]. When there is a large difference between the
two models, the difference is mainly reflected in the likelihood function term. When the
likelihood function difference is not significant, the model complexity plays a role, so the
model with less parameters is a better choice. Generally, when the complexity of the
model increases, the likelihood function will also increase so that the AIC becomes smaller.
However, when the complexity of the model is too large, the growth rate of the likelihood
function slows down, resulting in the increase of AIC. If the model is too complex, it is
easy to cause over fitting. The model selection problem seeks the best balance between the
complexity of the model and the ability of the model to describe the data set (i.e., likelihood
function). BIC is similar to AIC for model selection. The BIC value is defined as the sum
of −2 times the logarithmic sum of the Copula density function values at the original
observed data points and ln N times the number of parameters associated with the Copula
function [33]. The first half of AIC and BIC calculation formula is the same, and the second
half is the penalty term. BIC penalizes model parameters more than AIC when there is
a large amount of data, resulting in BIC preferring to choose simple models with fewer
parameters. The equations for the calculation of AIC and BIC are as follows:

AIC = −2
N

∑
i=1

ln D(ui, vi; θ) + 2n (11)

BIC = −2
N

∑
i=1

ln D(ui, vi; θ) + 2n ln N (12)

where n is the number of relevant parameters in the Copula function, for a two-dimensional
Copula function n = 1; (ui, vi) is the empirical distribution value of the original observation
(x1i, x2i), which can be calculated by the following equation:



Appl. Sci. 2022, 12, 8137 9 of 19

{
ui =

rank(xi)
N+1

vi =
rank(yi)

N+1

, i = 1, 2, · · · , N (13)

where rank(·) denotes the rank of samples xi or yi, i.e., the number of samples arranged
from smallest to largest is less than or equal to xi or yi.

In the reliability analysis process, the observed data of the failure modes cannot
be known, but a method to establish a random vector of two failure modes using the
Latin hypercube sampling method is proposed in Section 2.2.2 of this paper. This two-
dimensional random vector can be brought into Equations (11)–(13) when calculating the
correlation between the failure modes to expand the calculation. We found the AIC and
BIC values of the alternative Copula functions, which could be compared to identify the
optimal Copula function suitable for the correlation of these two failure modes.

3. Engineering Applications

In order to more accurately and intuitively reflect the superiority of the structural
system reliability calculation method based on Copula theory during the bridge construc-
tion period, this paper used the calculated engineering examples in reference [34], and
compared them with the traditional system reliability calculation method.

3.1. Basic Information of the Algorithm

Reference [34] analyzed the reliability of the long-span continuous rigid frame bridge
system based on the engineering background of the Labajin Super Large Bridge in the
Yingjing section of Yahu Expressway in China. The main span of the bridge is a separated
variable cross-section continuous rigid frame, and the span combination of the whole
bridge is (105 + 2 × 200 + 105) m. The main span is 610 m long, the main beam of the
superstructure adopts a prestressed single-box single chamber section, and the bridge
is a fully prestressed concrete structure. In order to reduce the amount of calculation,
reference [34] only took the single span bridge of the main span for calculation. The steps
of analyzing the reliability of bridge system in reference [34] can be roughly divided into
the following four steps.

(1) Use MIDAS/Civil software to establish the finite element analysis model of the whole
bridge.

(2) Use the modified β-bound method to search for the main failure modes of the bridge
structure.

(3) Use the improved quadratic series response surface method to solve the failure func-
tion in different failure modes.

(4) Use the wide boundary method, narrow boundary method, and PENT method to cal-
culate the reliability indexes of the continuous rigid bridge system in the construction
stage respectively.

The basic information related to the calculations in this paper in reference [34] is shown
below.

In reference [34], the entire bridge construction process is divided into 28 construction
stages. Each construction stage includes four processes: moving hanging baskets, tying
reinforcement, placing concrete, and tensioning prestressing. The maximum cantilever
construction stage of the middle pier “T” structure was selected as an example for the
system reliability analysis. For the mechanical characteristics of this continuous rigid
bridge, three failure modes were selected: axial compression stability failure and tensile
and compressive stress failure during the construction and operation periods. The failure
of any section of the main girder or the instability of any pier will lead to the failure of the
bridge system, so each failure mode forms a tandem system. The FEA results were used to
find the location where the stress in the main girder section is relatively large or small and
the tensile and compressive stress failure of the main girder at this location and the stability
failure of pier 10 were selected as the main failure modes as shown in the Table 2 below.
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Table 2. Basic information of each failure mode.

Failure Mode
Number 1 2 3 4 5 6 7

Location/Node Pier 10 65 79 90 96 107 121

Failure mode Stability Lower edge
Tensile stress

Lower edge
Compressive

stress

Lower edge
Compressive

stress

Lower edge
Compressive

stress

Lower edge
Compressive

stress

Lower edge
Tensile stress

The functions of each failure mode in the construction phase were obtained by fitting
the modified quadratic series response surface method as follows.

g1(X) = 430.966KR1 − 15.389KR1KG − 101.534KG (14)

g2(X) = 1.96KR3 − (0.74− 0.28KG + 0.29KE + 0.078Kξ − 0.12KQ1
−0.13K2

E + 0.2K2
ξ + 0.01K2

Q1)
(15)

g3(X) = 26.5KR2 − (−10.66 + 19.52KG + 4.11KE + 5.44Kξ + 1.11KQ1
−2.49K2

G − 2.22K2
E − 2.22K2

ξ + 0.27K2
Q1)

(16)

g4(X) = 26.5KR2 − (−0.41 + 12.67KG − 4.78KE − 2.78Kξ − 0.19KQ1
+0.99K2

G + 2.22K2
E − 2.22K2

ξ + 0.27K2
Q1)

(17)

g5(X) = 26.5KR2 −
(
−5.07 + 14.83KG + 1.33Kξ + 0.23KQ1

)
(18)

g6(X) = 26.5KR2 − (6.15− 0.66KG − 4.11KE + 0.67Kξ + 1.35KQ1
+7.48K2

G + 2.22K2
E − 0.27K2

Q1)
(19)

g7(X) = 26.5KR2 − (1.15 + 8.72KG − 0.67KE + 0.67Kξ + 0.46KQ1 + 2.49K2
G) (20)

where KR1 is the uncertainty factor for stability resistance calculations; KR2 is the axial
compressive strength uncertainty factor for C60 concrete for the main beam; KR3 is the
axial tensile strength uncertainty factor of C60 concrete for the main beam; KG is the
weight uncertainty of the member, KG = G

GK
(G is the actual member weight, GK is the

standard weight of the member specified in the current code); KE is the equivalent modulus
of elasticity uncertainty factor; Kξ is the stress pipe friction uncertainty factor; KQ1 is the
construction period expressed as the construction load uncertainty factor. These uncertainty
factors obey the distribution functions and characteristic parameters taken as the following
Table 3.

Table 3. Basic information of each uncertainty factor.

Name KR1 KR2 KR3 KG KE Kξ KQ1

Distribution Normal Normal Normal Normal Normal Normal Extreme vale type I
µ 1.3636 1.3849 1.1420 1.0212 1.0000 1.0000 1.0000
δ 0.1344 0.1406 0.0967 0.0462 0.0500 0.1440 0.0862

Using the reliability calculator of reference [34] can find the reliability indicators for
each failure mode as follows: β1 = 7.93, β2 = 8.77, β3 = 4.62, β4 = 5.02, β5 = 4.81,
β6 = 4.52, β7 = 8.36. The probability of failure for each of the seven different reliability
indicators was calculated using MATLAB. Since the reliability indicator of β2 is very
large, the probability of failure after expansion is very small and can be approximated
as 0. The results of their respective probability of failure calculations are as follows:
Pf1 = 1.1102× 10−15,Pf2 = 0,Pf3 = 1.9187× 10−6,Pf4 = 2.5836× 10−7,Pf5 = 7.5465× 10−7,
Pf6 = 3.0920× 10−6, Pf7 = 5.5511× 10−7.
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3.2. Calculation of System Reliability Indicators
3.2.1. Establishment of Copula Function

Analyzing the basic case of the calculation in Section 3.1, it can be seen that the
failure of any one mode in the construction process will lead to the failure of the whole
structural system. So, the failure modes are in series with each other. The joint failure
probability of the bridge structure system construction process failure occurring is shown
in the following equation. For simplifying the calculation, this paper only considered the
correlation between two failure modes.

Pf = P{Z1(X) ≤ 0∪ Z2(X) ≤ 0∪ · · · ∪ Zn(X) ≤ 0}
=

n
∑

i=1
P{Zi(X) ≤ 0} −

n
∑

1≤i<j≤n
P
{

Zi(X) ≤ 0, Zj(X) ≤ 0
}

+
n
∑

1≤i<j<k≤n
P
{

Zi(X) ≤ 0, Zj(X) ≤ 0, Zk(X) ≤ 0
}

+ · · ·+ (−1)n−1P{Z1(X) ≤ 0, Z2(X) ≤ 0, · · · , Zn(X) ≤ 0}
≈

n
∑

i=1
P{Zi(X) ≤ 0} −

n
∑

1≤i<j≤n
P
{

Zi(X) ≤ 0, Zj(X) ≤ 0
}

(21)

Bringing in the arithmetic example in Section 3.1, Equation (21) becomes

Pf = P{g1(X) ≤ 0∪ g2(X) ≤ 0∪ g3(X) ≤ 0∪ g4(X) ≤ 0∪
g5(X) ≤ 0∪ g6(X) ≤ 0∪ g7(X) ≤ 0} (22)

The correlation between failure modes was established using the Copula function,
and according to Equation (2), it can be seen that the bridge system failure probability is
a 7-dimensional Copula function. According to Equation (3), it can be derived that the
probability of failure mode occurrence of the binary combined structural system is shown
in the following equation.

P(g1(X) ≤ 0, g2(X) ≤ 0) = C
(

Pf1 , Pf2 ; θ12

)
(23)

Treating each failure mode as a probability event. According to the addition formula of
multiple probability events in probability theory, the corresponding calculation formula of
the failure probability of the bridge system is obtained, in which the joint failure probability
of failure criterion is calculated according to Copula theory. Then Equation (22) can be
converted into the following equation.

Pf = {g1(X) ≤ 0∪ g2(X) ≤ 0∪ g3(X) ≤ 0∪ g4(X) ≤ 0∪
g5(X) ≤ 0∪ g6(X) ≤ 0∪ g7(X) ≤ 0
= P{g1(X) ≤ 0}+ P{g2(X) ≤ 0}+ P{g3(X) ≤ 0}
+P{g4(X) ≤ 0}+ P{g5(X) ≤ 0}+ P{g6(X) ≤ 0}
+P{g7(X) ≤ 0} − C

(
Pf1 , Pf2

)
− C

(
Pf1 , Pf3

)
− C

(
Pf1 , Pf4

)
−C
(

Pf1 , Pf5

)
− C

(
Pf1 , Pf6

)
− C

(
Pf1 , Pf7

)
− C

(
Pf2 , Pf3

)
−C
(

Pf2 , Pf4

)
− C

(
Pf2 , Pf5

)
− C

(
Pf2 , Pf6

)
− C

(
Pf2 , Pf7

)
−C
(

Pf3 , Pf4

)
− C

(
Pf3 , Pf5

)
− C

(
Pf3 , Pf6

)
− C

(
Pf3 , Pf7

)
−C
(

Pf4 , Pf5

)
− C

(
Pf4 , Pf6

)
− C

(
Pf4 , Pf7

)
− C

(
Pf5 , Pf6

)
−C
(

Pf5 , Pf7

)
− C

(
Pf6 , Pf7

)

(24)

3.2.2. Calculation of the Kendall Rank Correlation Coefficient τ

According to the contents described in Section 2.2.2 of this paper, the calculation of the
Kendall rank correlation coefficient τ between failure modes requires a Latin hypercube
sampling of the seven uncertainty factors (Table 3). In this paper, we used MATLAB
software to divide the defined domain of each random variable into 500 groups and
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generated a random datum in each group, after which we disrupted its order to form a
matrix Φmn. Since this sample is a huge matrix of 500 × 7, it is not listed in detail here.
Afterwards, the samples of each random variable were brought into the function of each
failure mode, using Equation (7) to solve the Kendall rank correlation coefficients between
the two functions. The Kendall rank correlation coefficients for the 21 sets of failure mode
combinations were solved as shown in the following Table 4.

Table 4. Calculations of Kendall rank correlation coefficients for each combination of failure modes.

gigj τ gigj τ gigj τ

g1g2 0.00983 g2g4 0.00386 g3g7 0.97839
g1g3 −0.01303 g2g5 0.01034 g4g5 0.94616
g1g4 −0.01323 g2g6 0.00915 g4g6 0.94947
g1g5 −0.01242 g2g7 0.01015 g4g7 0.95101
g1g6 −0.01259 g3g4 0.94389 g5g6 0.98746
g1g7 −0.01345 g3g5 0.97422 g5g7 0.99070
g2g3 0.00960 g3g6 0.98442 g6g7 0.98955

From the above table, it can be seen that the correlation between 1, 2, and other
failure modes was very low. As mentioned in Section 2.2.2 of this paper, the range of
the Kendall rank correlation coefficient τ is [−1, 1]. The larger the |τ|, the stronger the
correlation between the two failure modes. |τ| = 1 indicates that the two failure modes
are perfectly correlated, while |τ| = 0 indicates that there is no correlation between the
two failure modes. Since the correlation coefficients between 1, 2, and other failure modes
were all around 0, there was almost no linear correlation between the two failure modes.
By consulting the literature, when |τ| is greater than 0.5, the correlation between failure
modes should not be ignored. To simplify the calculation, the correlation between 1, 2, and
other failure modes is no longer considered here, so Equation (24) is changed to:

Pf = P{g1(X) ≤ 0, g2(X) ≤ 0, g3(X) ≤ 0, g4(X) ≤ 0,
g5(X) ≤ 0, g6(X) ≤ 0, g7(X) ≤ 0}
= P{g1(X) ≤ 0}+ P{g2(X) ≤ 0}+ P{g3(X) ≤ 0}
+P{g4(X) ≤ 0}+ P{g5(X) ≤ 0}+ P{g6(X) ≤ 0}
+P{g7(X) ≤ 0} − C

(
Pf3 , Pf4

)
− C

(
Pf3 , Pf5

)
− C

(
Pf3 , Pf6

)
−C
(

Pf3 , Pf7

)
− C

(
Pf4 , Pf5

)
− C

(
Pf4 , Pf6

)
− C

(
Pf4 , Pf7

)
−C
(

Pf5 , Pf6

)
− C

(
Pf5 , Pf7

)
− C

(
Pf6 , Pf7

)
(25)

3.2.3. Selection of Copula Function and Calculation of Related Parameters

Based on the review of a large amount of references, four Copula functions commonly
used in engineering were selected in this paper to carry out the analysis of failure mode
correlation. These four functions are Gaussian Copula function, Clayton Copula function,
Frank Copula function, and Gumbel Copula function.

We used Equation (8) to calculate the values of the relevant parameters for each failure
mode in the case of four different combinations of Copula functions separately, and the
results are listed at Table 5.

3.2.4. Identification of Optimal Copula Functions

In this paper, we used the AIC and the BIC for the selection of the optimal Copula
function. According to Equations (11)–(13), the AIC and BIC values were calculated for
each combination of different failure modes when fitted with each of the four Copula
functions, and the results are shown in the following Table 6.



Appl. Sci. 2022, 12, 8137 13 of 19

Table 5. Relevant parameter values of the alternative Copula function.

gigj
Copula Function θ

Gaussian Clayton Frank Gumbel

g3g4 0.99610 33.6443 1.3755 17.8221
g3g5 0.99920 75.5795 1.4054 38.7898
g3g6 0.99970 126.3697 1.4163 64.1849
g3g7 0.99940 90.5497 1.4098 46.2749
g4g5 0.99640 35.1471 1.3776 18.5736
g4g6 0.99690 37.5804 1.3808 19.7902
g4g7 0.99700 38.8247 1.3823 20.4123
g5g6 0.99980 157.4896 1.4196 79.7448
g5g7 0.99989 213.0538 1.4231 107.5269
g6g7 0.99986 189.3876 1.4218 95.6938

Table 6. List of calculated results of AIC and BIC values (the bolded parts in the table are the
minimum values of AIC and BIC for each failure mode combination).

gigj
Gaussian Clayton Frank Gumbel

AIC BIC AIC BIC AIC BIC AIC BIC

g3g4 −2394.7 −2390.5 −1848.5 −1844.3 −211.3 −207.1 −2431.1 −2426.9
g3g5 −3092.1 −3087.9 −2309.7 −2305.5 −216.7 −212.4 −3064.3 −3060.1
g3g6 −3493.5 −3489.2 −2693.9 −2689.7 −218.4 −214.2 −3443.5 −3439.3
g3g7 −3255.7 −3251.5 −2566.8 −2562.5 −217.4 −213.2 −3186.6 −3182.3
g4g5 −2444.2 −2440.0 −1871.0 −1866.8 −211.7 −207.5 −2502.7 −2498.5
g4g6 −2507.3 −2503.0 −1941.4 −1937.2 −212.3 −208.1 −2550.0 −2545.8
g4g7 −2531.2 −2526.9 −1962.6 −1958.4 −212.6 −208.4 −2566.7 −2562.5
g5g6 −3723.4 −3719.2 −2857.7 −2853.5 −218.9 −214.7 −3614.9 −3610.7
g5g7 −3901.5 −3897.3 −2816.5 −2812.3 −219.5 −215.3 −3759.5 −3755.3
g6g7 −3875.4 −3871.2 −2829.3 −2825.1 −219.3 −215.1 −3667.6 −3663.4

According to the calculation results, it can be seen that the failure mode combinations
g3g4, g4g5, g4g6, and g4g7 should use the Gumbel Copula function to establish the binary
joint distribution, and the failure mode combinations g3g5, g3g6, g3g7, g5g6, g5g7, and g6g7
should use the Gaussian Copula function to establish the binary joint distribution.

3.2.5. Calculation of the System Failure Probability

Based on the results of the analysis in Section 3.2.4, the failure probabilities of the failure
mode combinations are brought into the corresponding Copula functions, respectively, and
the values of the joint failure probabilities of the two-dimensional failure modes can be
calculated as shown in the following Table 7.

Table 7. Two-dimensional joint failure probabilities for each combination of failure modes.

gigj Joint Failure Probability gigj Joint Failure Probability

g3g4 2.4196× 10−7 g4g6 2.5273× 10−7

g3g5 7.5465× 10−7 g4g7 5.5511× 10−17

g3g6 1.9187× 10−6 g5g6 7.5465× 10−7

g3g7 5.5511× 10−17 g5g7 5.5511× 10−17

g4g5 2.1418× 10−7 g6g7 5.5511× 10−17

From the failure probability values calculated in the above table, it can be seen that
all the two-dimensional joint failure probabilities combined with the seventh failure mode
have a large order of magnitude, all of which were 10−17. It can be concluded that the
correlation between the seventh failure mode and the other four failure modes is weak. The
orders of magnitude of the failure probability values calculated by the other four failure
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modes were similar, which were all around 10−6 and 10−7. It can be seen that these four
failure modes are highly correlated. Therefore, the influence of failure mode correlation on
the reliability of the structural system should not be ignored in practical engineering.

Bringing the individual two-dimensional joint failure probabilities into Equation (25),
the probability of failure of the bridge structure system during the construction period can
be calculated as 1.8869× 10−6, and the system reliability index is 4.6235.

According to Section 5.5 of reference [34], the reliability index range calculated by the
traditional wide bound method was (4.376, 4.52), and the reliability index range calculated
by the narrow limit method was (4.4177, 4.4455), and the reliability index calculated by
PENT method was 4.52. Compared with the reliability index 4.6235 calculated in this paper,
it can be seen that the reliability index of the bridge structure system calculated in this
paper is relatively high. Based on the additional calculation and analysis of other reference
examples, it is concluded that the reliability of the bridge construction period system based
on Copula theory is safer.

3.2.6. Improvement of Computational Theory

In order to better guide the actual bridge construction project, this paper makes the
following improvements to the traditional Copula theory.

According to the calculation process in Section 3.2.5 of this paper, when establishing the
linkage between failure modes, the correlation between two of the individual failure modes
is established many times. So, when applying Equation (25), the same indicator is sub-
tracted from other indicators several times when calculating. For example, in C

(
Pf3 , Pf4

)
,

C
(

Pf3 , Pf5

)
, C
(

Pf3 , Pf6

)
, and C

(
Pf3 , Pf7

)
, the linkage between failure mode 3 and other

failure modes is established several times, and in C
(

Pf3 , Pf6

)
, C
(

Pf4 , Pf6

)
, C
(

Pf5 , Pf6

)
, and

C
(

Pf6 , Pf7

)
, the linkage between failure mode 6 and other failure modes is established

several times. Although the links established are between two different failure modes, if we
directly use Equation (25), the probability of partial failure of the same failure mode will be
subtracted several times, which will lead to a low failure probability, large reliability index,
and safe calculation results. Therefore, this paper proposes the following improvement:
when subtracting the Copula joint distribution of the correlation between failure modes,
the inverse of the number of occurrences of such failure modes should be multiplied as a
coefficient before the Copula function. According to Equations (21) and (23), the improved
equation is shown in the following equation.

Pf = P{Z1(X) ≤ 0∪ Z2(X) ≤ 0∪ · · · ∪ Zn(X) ≤ 0}
=

n
∑

i=1
P{Zi(X) ≤ 0} −

n
∑

1≤i<j≤n
P
{

Zi(X) ≤ 0, Zj(X) ≤ 0
}

+
n
∑

1≤i<j<k≤n
P
{

Zi(X) ≤ 0, Zj(X) ≤ 0, Zk(X) ≤ 0
}

+ · · ·+ (−1)n−1P{Z1(X) ≤ 0, Z2(X) ≤ 0, · · · , Zn(X) ≤ 0}
≈

n
∑

i=1
P{Zi(X) ≤ 0} −

n
∑

1≤i<j≤n
P
{

Zi(X) ≤ 0, Zj(X) ≤ 0
}

=
n
∑

i=1
PfZi
− 1

jmax−imin

n
∑

1≤i<j<n
C
(

PfZi
, PfZj

)
(26)

We recalculated the reliability index of the bridge system in the construction pro-
cess in the example of this paper according to Equation (26). Equation (25) becomes the
following equation.
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Pf = P{g1(X) ≤ 0, g2(X) ≤ 0, g3(X) ≤ 0, g4(X) ≤ 0,
g5(X) ≤ 0, g6(X) ≤ 0, g7(X) ≤ 0}
= P{g1(X) ≤ 0}+ P{g2(X) ≤ 0}+ P{g3(X) ≤ 0}
+P{g4(X) ≤ 0}+ P{g5(X) ≤ 0}+ P{g6(X) ≤ 0}
+P{g7(X) ≤ 0} − 1

4 [C
(

Pf3 , Pf4

)
− C

(
Pf3 , Pf5

)
− C

(
Pf3 , Pf6

)
−C
(

Pf3 , Pf7

)
− C

(
Pf4 , Pf5

)
− C

(
Pf4 , Pf6

)
− C

(
Pf4 , Pf7

)
−C
(

Pf5 , Pf6

)
− C

(
Pf5 , Pf7

)
− C

(
Pf6 , Pf7

)
]

(27)

Using Equation (27), it was calculated that the failure probability of the system during
the construction of the bridge structure was 4.9895× 10−6. With the help of MATLAB
software, the system reliability index aw 4.4176. Compared with the calculation results in
Section 3.2.5 of this paper, it was found that the improved Copula theory for calculating
the reliability of bridge structure system overcomes the problem that the calculation results
of the traditional copula theory are partial to safety. The calculation results fell within the
boundary range (4.376, 4.52) calculated by the wide boundary method.

3.3. System Reliability Analysis
3.3.1. Relationship between System Reliability Index and Failure Mode Reliability Index

In this section, the relationship between the variation of the reliability indexes of the
bridge system with the reliability indexes of individual failure modes is analyzed, and the
system reliability index values are calculated separately when each single failure mode
takes any integer between 1 and 8. Based on these data, a graph of the variation of the
system reliability indexes with each single reliability index is fitted and the variation is
plotted in Figure 1. From Figure 1, it can be seen that the seven failure modes mentioned
in the examples used in this paper have approximately the same effect on the system
reliability index of the bridge structure. When the reliability index of a single failure
mode is less than 4, the reliability index of a single failure mode directly determines the
reliability index of the whole system due to the high probability of failure. As the individual
failure mode reliability index increases, the reliability index of the bridge system tends
to be stable and finally stabilizes at a number near the system reliability index calculated
in this paper (4.4176). The reading of the graph shows that the sixth failure mode, the
compressive stress at the lower edge of node 107, plays a decisive role in the magnitude
of the system reliability index, which is consistent with the definition used in the wide
boundary method calculation.

In order to more clearly describe the influence of each reliability index of the overlap-
ping part in Figure 1 on the system reliability index, the influence of a single failure mode
reliability index on the system reliability index when the variation range of the reliability
index is 4~8 is enlarged in Figure 2.

3.3.2. Variation of System Failure Probability with Failure Mode Correlation Coefficient

This section analyzes the relationship between the reliability index of the bridge struc-
tural system and the Kendall rank correlation coefficient of the failure mode combination.
The reliability index value of the system was calculated when the Kendall rank correlation
coefficient of each failure mode combination was taken as 19 key data points between 0–1.
Based on these data, the curves of the system reliability indexes with the change of the
Kendall rank correlation coefficient for each failure mode combination were fitted as shown
in Figure 3. From Figure 3, it can be seen that the Kendall rank correlation coefficients of
the 3rd failure mode and the 6th failure mode combination had a relatively great influence
on the reliability indexes of the bridge structure system; the combination of failure mode 3
with failure mode 5 and the combination of failure mode 5 with failure mode 6 had a
relatively greater influence on the reliability indexes of the bridge structure system; the
combination of failure mode 4 with failure mode 5, failure mode 4 with failure mode 6, and
failure mode 3 with failure mode 4 had relatively less influence on the reliability index of
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the bridge structure system; all the combinations associated with failure mode 7 had little
influence on the reliability index of the structure system. Reference [34] points out that the
main failure mode of the maximum cantilever state during construction is the lower edge
compressive stress at 1/4 of the bridge span. Failure mode 3 and failure mode 6 are located
at 1/4 of the bridge span. Therefore, the combination of failure modes 3 and 6 had a great
impact on the reliability of structural system. The influence of failure mode combination on
the failure probability of structural system is mainly reflected in the level of single-failure
probability. The higher the failure probability of the failure mode, the greater the influence
of this failure mode combined with other failure modes on the reliability of the structural
system. This is consistent with the meaning indicated by the curves in Figure 3.
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index of the system.

In order to more clearly describe the influence of Kendall rank correlation coefficient
of each combination in the overlapping part of Figure 3 on the system reliability index,
Figure 4 enlarges the influence of the change of the Kendall rank correlation coefficient of
failure mode combination on the system reliability index when the change range of the
Kendall rank correlation coefficient is 0.8~1.0.
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4. Conclusions

In this paper, based on an in-depth study of the existing relevant reference, a method
of using Copula theory for structural system reliability analysis in the construction phase
of bridge projects was proposed, and the study mainly achieved the following conclusions.
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(1) The theory and method of calculating the reliability of the traditional system of bridge
structures were summarized in the light of the existing research, and the shortcomings of
the traditional theory in calculating the reliability of the system were analyzed. The idea
of using Copula theory to establish the correlation between failure modes was proposed.
(2) The basic contents of Copula theory were introduced in detail, and the Copula theory
was extended to the field of reliability calculation of bridge structural systems. (3) The
method proposed in this paper was used to calculate the examples in reference [34], and the
formula of Copula theory was appropriately improved according to the calculation results.
After comparing the results with the original reference, it was concluded that the improved
Copula theory for calculating the reliability of the bridge structure system overcomes the
problem of safety bias of the traditional Copula theory, and can be used with the traditional
“interval estimation method”, which is simple to calculate, easy to understand, is suitable
for large and complex bridges, and has a certain guiding effect on engineering practice.
(4) Finally, the sensitivity analysis was carried out from two aspects, and the results showed
that the influence of the correlation between the failure modes on the failure probability of
the structural system must not be ignored in engineering.

This paper has achieved milestones in the study of the reliability of bridge structure
construction process system using Copula theory, but there are still areas that need to
be considered and improved. Based on the research process and results of this paper,
the general directions of the subsequent research are as follows. (1) In this paper, only the
correlation between two failure modes was established, and the analysis was carried out
from the perspective of two-dimensional Copula function, which is not closely enough
connected with the actual engineering. The Copula function with a higher dimension
should be used for calculation as much as possible so as to improve the connection with the
actual project. (2) In this paper, only a coefficient was generalized into the improvement
of the calculation theory to weaken the situation that the same failure mode appears
many times in the calculation, and this calculation is not accurate enough. The weights of
all failure modes and their combinations should be calculated and the weights brought
into the calculation theory as coefficients so as to further improve the accuracy of the
calculation results.
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