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Abstract: High-quality and fast reconstructions are essential for the clinical application of positron
emission tomography (PET) imaging. Herein, a deep-learning-based framework is proposed for PET
image reconstruction directly from the sinogram domain to achieve high-quality and high-speed
reconstruction at the same time. In this framework, conditional generative adversarial networks
are constructed to learn a mapping from sinogram data to a reconstructed image and to generate a
well-trained model. The network consists of a generator that utilizes the U-net structure and a whole-
image strategy discriminator, which are alternately trained. Simulation experiments are conducted
to validate the performance of the algorithm in terms of reconstruction accuracy, reconstruction
efficiency, and robustness. Real patient data and Sprague Dawley rat data were used to verify the per-
formance of the proposed method under complex conditions. The experimental results demonstrate
the superior performance of the proposed method in terms of image quality, reconstruction speed,
and robustness.

Keywords: PET image; direct reconstruction; cGANs

1. Introduction

Positron emission tomography (PET) is an in vivo nuclear medicine imaging technique
that is widely used in clinical trials and medical practice. Over several years, much effort
has been devoted to promoting the wider application of PET in clinical and scientific
research and enhancing PET imaging quality. In addition to improving the performance
of PET imaging and acquisition systems, researchers have mainly focused on developing
algorithms for image reconstruction.

In PET, the raw tomographic data are typically stored in projection data histograms
called sinograms, which cannot be interpreted directly by observers but can be shown
through the projection-slice theorem, which can be mapped to images that reveal the
radioactivity concentration distribution. However, owing to random noise in the data,
PET image reconstruction is an ill-posed inverse problem [1]. Many solutions have been
proposed to address this problem. In addition to the traditional analytic method, i.e.,
filtered backprojection (FBP) [2], various iterative strategies based on statistical data models
have been widely used. The maximum-likelihood expectation maximum (MLEM) [3] is
a classic iterative method that has a remarkable antinoise ability, but it also features slow
convergence and has a large computational requirement. Compared with the MLEM, the
maximum a posteriori (MAP) method [4] adds penalty terms that preserve regional smooth-
ness and sharp variations of edges. Several studies attempted to design penalty terms
using low-rank constraints [5], total variation (TV) [6], spatiotemporal spline modeling [7],
tracer kinetics, and signal subspaces [8]. Regardless of the method chosen, it is necessary to
assume a statistical model that produces a distribution close to the real data distribution,
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but there may be inconsistencies, and the difference between the two distributions causes
a deviation between the reconstructed and real images. In addition, the system matrix
plays an important role in these methods. To eliminate the dependence on hypothetical
models and system matrices and reduce the complexity of the artificial setting and parame-
ter training, the deep learning based image reconstruction as a promising option can be
investigated to reconstruct from the sinogram data directly.

In recent years, deep learning has demonstrated promising potential in the field of
medical image reconstruction [9-12] and has successfully generated high-quality images
for PET [13-15]. Current medical image reconstruction methods using deep learning can
be broadly classified into two categories: (category A) those achieving reconstruction from
image domain to image domain and (category B) those completing reconstruction from the
sinogram domain to the image domain. In recent years, there have been interesting changes
in the approach and research of deep learning in image-to-image work. Deep learning
was primarily used for postprocessing [16] or for accelerating [17,18] the reconstruction
task. Kang et al. [19] used a deep convolutional neural network (CNN) to remove noise
from low-dose computed tomography images. Wang et al. [20] designed an offline CNN
to accelerate the reconstruction of magnetic resonance images. Wu et al. [21] proposed a
cascaded CNN to remove the artifacts induced by denoising.

As deep learning has achieved satisfactory results in image processing [22,23], many
researchers have attempted to introduce deep learning in PET image processing [24-26].
Of which most of the works belong to category A. Gong et al. [27] proposed a framework
combining a residual convolutional network with MLEM, and the dynamic data of prior
patients were used to train a network for PET denoising. Kim et al. [15] combined a
denoising CNN with a local linear fitting function and trained the network using full-dose
images as the ground truth and low-dose images reconstructed from downsampled data as
the input. An unsupervised deep learning framework for direct reconstruction with an MR
image as prior information would later be proposed by Gong [28]. GapFill-Recon Net [29]
is also a domain transform reconstruction network based on CNN. Recently, the deep
image prior (DIP) framework [30] showed that CNNs have the intrinsic ability to regularize
various ill-posed inverse problems without pretraining. No prior training pairs are required,
and random noise can be employed as the network input to generate denoised images.
Inspired by this work, Gong et al. [31] achieved PET reconstruction guided by MRI using
the DIP framework. Song et al. [32] designed a CNN-based PET reconstruction framework
with multichannel prior inputs, including high-resolution magnetic resonance images and
the radial and axial coordinates of each voxel. However, as the DIP method does not
require pretraining [31], it is similar to an online training process for each reconstruction.
Moreover, several parameters must be trained, thus requiring a long time to complete the
reconstruction each time. This drawback limits the application of the method in clinical
practice. The difficulty in select the stopping point of the iterative training is another
limitation. With the addition of prior knowledge of other modes, image registration has
also become a technical difficulty.

Compared with category A, category B makes full use of the information in the
sinogram domain and implements direct reconstruction using deep learning. Haggstrom
et al. [33] focused on direct reconstruction and adopted a deep encoder—decoder network to
learn the mapping from the sinogram to the image. However, they mainly focused on the
reconstruction speed rather than the image quality. Their proposed method was verified by
simulation as opposed to real clinical data.

In this study, a direct reconstruction deep learning scheme for the recovery of ra-
dioactivity maps from sinogram data was built using conditional generative adversarial
networks (cGANSs) [34], which obtained excellent results for the image-to-image translation
task [35]. In the training phase, the input is an image pair that includes reconstructed
images and sinogram images. After alternate training of the generator and discriminator, a
well-trained model was established. In the testing phase, the input was only a sinogram
image. After passing through the trained model, the reconstructed image was obtained



Appl. Sci. 2022,12, 8118

30f18

from the output. There are two contributions of this study. First, simulation experiments
were used to verify the performance of the proposed method in terms of accuracy, ro-
bustness, and runtime. Second, considering that the testing data and training data of
simulation experiments may have similar structures, the method was verified on a Sprague
Dawley (SD) rat dataset that includes 12 different objects and a real patient dataset that
contains nine objects. Both kinds of experimental results demonstrate the feasibility of the
proposed method. Our preliminary cGANs-based direct network result has been published
on MICCAI 2019 [36].

The remainder of this report is organized as follows. In Section 2, the proposed method-
ology is presented. The design of the simulation experiments and real data experiments of
PET image reconstruction is described in Section 3, followed by the experimental results in
Section 4. Finally, the results are discussed, and the paper is concluded in Section 5.

2. Methodology
2.1. Problem Definition

In PET imaging, photons emitted by radioactive tracers follow a random Poisson
process. Therefore, it is assumed that the imaging model of the PET system obeys a Poisson
distribution. The measured PET data y, referred to as “projection data”, equal the sum of
the coincidence events captured by each detector and are usually stored in sinogram mode,

y ~ Poissorl{g} 1

where y € R is a collection of detected events, I is the number of lines of response, and ¥ is
the mean of the Poisson distribution. In addition, the projection data y can be described as
a projective transform about the unknown activity image x e R’.

y:Gx+s+r/ (2)

where G € RI*/ is the system matrix, and | is the number of pixels in the image space. In
reality, y includes not only the true coincidences, but also scattered coincidences s and
accidental coincidences r. In the specific acquisition process of PET, the method of the
verbal coincidence window is usually used to correct the accidental coincidence, which can
effectively remove accidental events in the data. Therefore, one can generally describe the
PET measurement model as follows:

y=Gx+e. 3)

The task can then be defined as a process of generating an activity map x from sinogram
data y. However, this task is an ill-posed optimization problem in theory. Traditional
solutions primarily involve iterative methods.

2.2. Framework Based on Conditional Generative Adversarial Network

The iterative method is based on a hypothetical initial image. Using the step-by-
step approximation method, the theoretical projection value can be compared with the
actual measurement projection value, and the optimal solution is determined under the
guidance of some optimization criteria. Compared with the analytical method, the iterative
method has better image quality and higher image resolution in PET imaging with relative
undersampling and low counting. However, the disadvantage is that the calculation is
complex and slow. In the proposed method, the approximation and optimization processes
are replaced with the training process of the neural network.

2.2.1. Network Design

Unlike traditional generative adversarial networks (GANs) [37], in which the only
input is noise z, cGANSs can provide extra information y to lead the training of the network.
In this work, the input data include both noise z and sinogram data y. The cGANs
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y: Sinogram

Input: Image pair

consist of two models: generator G and discriminator D. The generator adapts the U-net
architecture [38], which generates the PET image directly from a sinogram image. The
full-image strategy is introduced to the discriminator, which attempts to differentiate
between the real sinogram and PET image pairs from the database and the fake image
pair output generated by G. The entire framework involves training G and D alternately
until a balance is reached in the convergence stage. Figure 1 illustrates the structure of the
entire reconstruction network. In the discriminator part, both the whole-image strategy
and Patch-GAN strategy are utilized.

Generator G (y, 2)

' 'Wfﬂ@@ _auff ] m

16 32 128%2 128x2 64x2 32x2 16x2
Discriminator
Whole image
5 )
<
/ =
Or True OR False b=
\ &
=
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x: PET _Real
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=» 5x5 Conv_Stridel+LReLU = Sigmoid

Figure 1. Training framework of the direct reconstruction process.

The generator consists of two paths. (1) Encoder: the contracting path (shown on the
left-hand side of top of Figure 1 is used to compress the input image and obtain context
information. (2) Decoder: the symmetrical expanding path (shown on the right-hand
side) is used to expand the path and locate accurately. The basic module of both paths is
convolution layer-batchnorm layer—ReLU layer. However, there are some differences in the
details of the specific settings of encoding and decoding. There is no batch normalization
(batchnorm) in the first layer of the encoder. All rectified linear units (ReLUs) in the encoder
are leaky, whereas the ReLUs in the decoder are not leaky. All convolutions are 16 spatial
filters and downsample with stride 2. Dropout is applied only to the first three layers of
the decoder. Skip connections that concatenate activations from the layer in the contracting
path to the (n — 7)th layer are built in the expanding path, where n is the total number of
layers. For the proposed method, n = 12. Finally, a tanh function is adopted after the last
layer in the decoder to complete the entire generator model, and the output image has the
same size as that of the input image. The structure of the generator is illustrated in Figure 2.
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Figure 2. Architecture of generator.

Patch-GAN is a very efficient strategy in image-to-image translation task. The Patch-
GAN only penalizes structure at the scale of patches. This strategy tries to classify if each
N x N patch in an image is real or fake. It can be understood as a form of texture/style
loss. However, for reconstruction, the sinogram space is not correlated to image space as
shown in Figure 3, which means the patch-based image to image translation may be not
suitable for reconstruction task. The values of abscissa and ordinate of each pixel in the
sinogram image have their own physical meaning. In actuality, each pixel in the sinogram
related to the full activity image. Therefore, we attempt to perform it on the full space,
which is called the whole-image strategy in this paper. The loss of the full image is adopted
instead of the loss of each patch. The whole image and Patch-GAN discriminators were
compared in this study. Both types of discriminators were tested in the simulation and SD
rat experiments. Because the whole-image discriminator obtained a higher score in the
compared experiments, all experiment results are based on the whole-image discriminator.

(a) (b)

Figure 3. The sinogram image and the corresponding activate image. There is not a simple pixel-to-
pixel relationship between (a,b). Each pixel of sinogram has its own physical meaning. The abscissa
position of the pixel refers to the distance between line-of-response (LOR) and the center of the
detector. The ordinate position of the pixel refers to the angle between LOR and the standard surface.
The value of the pixel refers to the number of coincidence events recorded by the detector in the
corresponding at this position.
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The Adam solver was used to optimize the networks. The number of training iterations
n =120, the learning rate o« = 0.0002, and the weight of the L1 term A = 100.

2.2.2. Objective Function

The conditional restriction can make the results closer to the desired ones. Therefore,
the input includes both random noise z and condition y, and the objective of the cGAN can
be represented as

LCGANS (D/ G) = Ex,yNPdm,,<x,y> [log D(X, y)] + EXNPdgm(x),ZNPZ(Z) [1Og(1 - D(x/ G(Z/ ]/))H (4)

As shown in Equation (4), generator G attempts to adjust parameters to minimize
log(1 — D(x,G(z,y))), while D tries to maximize it; thus, they are two adversarial models.
Training according to adversarial loss makes the generated images clear but does not
ensure similarity with the established image. To enhance the accuracy of low-frequency
information, the L1 regularizer is introduced in the proposed model. Thus, the entire
objective function can be described as

G* = arg mcin mSXLCGANS(DI G)+7\LL1<G) 5)
where L1 (G) is the L1-norm, which is represented as

LLl(G) = Ex,prdm(x,y),erpz(z) [Hx - G(y,Z) ”1] (6)

3. Experiments

Simulation experiments, including the Zubal thorax phantom and Zubal brain phan-
tom, SD rat experiments, and real patient experiments were designed to verify the perfor-
mance of the algorithm.

3.1. Simulation Experiments

Simulated data of the Zubal thorax phantom with 4Cu-ATSM and Zubal brain phan-
tom with 11C-Acetate were generated using Monte Carlo simulations, which can simulate
the true environment of the PET scan and generate realistic sinogram data by using the
GATE toolbox. The simulated PET scanner adopted was the Hamamatsu SHR74000, which
contains six rings with 48 detector blocks. The ring diameter is 826 mm. The size of the
field of view is 576 mm in the transaxial direction and 18 mm in the axial direction [39]. To
obtain the original PET data for the Monte Carlo simulation, a two-compartment model
was used to simulate the radiation concentration of different regions of interest (ROIs) in
different phantoms. Figure 4 shows that each phantom is composed of several ROIs, in
which the kinetic parameters of the two-compartment model are different. Details regard-
ing the kinetic parameter settings can be found in the literature [40-42]. Each phantom
consisted of three data sampling times. For each sampling time, three levels of counting
rates were set: 5 x 10°, 1 x 107, and 5 x 107. For different counts, each reconstructed
dynamic image had 18 frames with a resolution of 64 x 64 pixels. Thus, the entire database
consisted of two phantoms, and each phantom dataset contained 162 (9 x 18) images. One
third of each phantom dataset was randomly selected as the testing set, which included
162 images, with the others making up the training set, which included 324 images. The
detailed sampling interval of the 18 frames is shown in Table 1. For example, for the 20 min
simulated scanning of the Zubal thorax phantom, the first 14 frames were taken every 50 s,
then two frames were taken every 100 s, and the last two frames were taken every 150 s.
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Figure 4. Two PET phantoms: (a) Zubal thorax phantom; (b) Zubal head phantom.

Table 1. Dataset for simulation experiments.

Phantom Sampling Time Sampling Interval Counts Dataset
5 x 106
20 min 14 x 50,2 x 100,2 x 150 s 1 x 107 training
5 x 107
5 x 106
Zubal thorax 30 min 10 x 30,2 x 150,6 x 200s 1 x 107 training
5 x 107
5 x 10°
40 min 10 x 30,5 x 240,3 x 300s 1 x 107 testing
5 x 107
12 x 508 5 x 10° training
20 min 7
2x50,2x100,2x 1505 L. testing
5% 30,7 x 100's 5 x 10° training
Zubal head 30 min 1% 107
1 x100,3 x 150,2 x 200 s 5 % 107 testing
5% 30,7 x 150 s 5 x 10° training
40 min 1 x 107 .
6 x 200s 5 % 107 testing
In this study, the bias and variance were adopted for comparison.
: 1 |2 —x
bias =-) .~ —— 7
p iy )
. 1 0o Ri—%2
variance = —— ) . 8
p 1 i () 8)

where 1 denotes the overall number of pixels in the ROL #; denotes the reconstructed value
at voxel i, x; denotes the true value at voxel i, and ¥; is the mean value of x;.

3.2. SD Rat Experiments

To verify the reliability of the algorithm, twelve nine-week-old SD rats injected with 18F-
FDG were scanned using a Siemens Inveon micro-PET scanner.  Sinograms of
128 pixels x 160 pixels x 130 slices and activity images of 128 pixels x 128 pixels x 130 slices
were obtained. The reconstruction method used was the ordered subset expectation maxi-
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mization 3D algorithm (OSEM 3D) packaged in Siemens scanning software. Three rats were
randomly selected for testing, and the other nine rats were used for training. Thus, there were
1170 image pairs in the training dataset and 390 image pairs in the testing dataset. Here, the
images reconstructed using OSEM 3D were treated as the ground truth.

For the SD rat dataset, the relative root mean squared error (rRMSE) was used to
evaluate the image quality.

rRMSE = vVMSE/x 9)
1 n ~
MSE = Yo (- x)? (10)

where x is the ground truth, £ is the reconstructed image, X is the ground truth average
pixel value, and n is the number of image pixels.

3.3. Real Patient Experiments

To test the feasibility of the proposed method on human datasets, the method was
also evaluated using a human brain PET dataset from nine real patients. The tracer injected
into the patient was 18F-FDG. For each patient, 93 slices of reconstructed images and
corresponding sinogram images were obtained. The reconstruction method was OSEM.
The sizes of the images were set to 320 x 320. The last two objects were selected as the
testing dataset, and the other seven objects were used as the training dataset. In addition to
using rRMSE, structure similarity (SSIM) was used to evaluate the quality of the results.

(uzuy 4 c1) (204 + 2)

SSIM(x,y) =
(x¥) (ug? +ux +c1) (0x2 + 02 + ¢2)

(11)

where 11, is the mean value of x, 13 is the mean value of £, 0,2 is the variance of x, 032 is the
variance of £, and o,z is the covariance of x and £.

Here, ¢1 = (k1L)?, ¢ = (koL)?, k1 = 0.01, and k, = 0.03; both ¢; and ¢, are constants used
to maintain stability. In addition, L is the dynamic range of the pixel values.

4. Results
4.1. Simulation Experiments

The Zubal thorax phantom was used to select a suitable discriminator and show
the convergence of the algorithm. A Zubal head phantom was also used to verify the
robustness and testing time of the proposed method.

4.1.1. Discriminator Comparison Experiments

The full-image discriminator and Patch-GAN discriminator were both tested on the
Zubal thorax dataset. Three dynamic objects were used to test, and each object possesses
18 frames. As we know, during the scanning period, with the increase in tracer injection
time, the more photons the organ accumulates, the clearer the active image. In the current
clinical practice, doctors usually pay attention to the static data, one clear active image of
the later frames. Thus, the later frames are much useful for clinical. We compared the two
strategies with the dynamic testing data and the results are shown in Figure 5. Though
we obtained approximate quantitative results in the first 10 frames of the two strategies,
the latter 8 frames of the whole-image strategy obtained much lower bias and variance
compared to Patch-GAN. It is obvious that with the whole-image discriminator helping,
the proposed network has better ability in improving the reconstruction image quality,
especially for the frames with higher numbers of photons.
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Figure 5. Reconstruction results comparison of whole-image discriminator and Patch-GAN: (a) bias;
(b) variance. The bias and variance of whole-image strategy are much lower than Patch-GAN of the
later frames, as shown between the dashed blue line.

To better illustrate that the whole-image strategy is more suitable in PET reconstruction,
we selected a real patient to show the generation results under different strategies at the
same epoch in the training phase. The generation results of 2nd, 20th, 40th, 60th, 80th, and
100th epoch are all shown in Figure 6. With the increasing epoch, the global features become
clearer for both strategies. However, the network with PatchGAN may generate some local
features that do not exist in the ground truth, as shown in the red box. Moreover, compared
with PatchGAN, a whole-image discriminator can generate more accurate reconstruction
images in fewer epochs.

Figure 6. The images generated in training phase under two different strategies. The first column
shows the real brain images generated with PatchGAN. The second column shows the brain images
generated with the whole-image method. From left to right: the images generated in the 2nd epoch,
20th epoch, 40th epoch, 60th epoch, 80th epoch, and 100th epoch.

4.1.2. Convergence of the Algorithm

As shown in Table 1, the Zubal thorax dataset is divided according to sampling time.
The 20 and 30 min scanning datasets belong to the training set, which contains 108 PET
images and the corresponding sinogram images. The 40 min scanning data were chosen as
the testing set, including 54 image pairs. The entire network was trained for 120 iterations,
and the convergence curves are shown in Figure 7. The left curve shows the convergence
of the discriminator, and the right curve represents the convergence of the generator. The
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x-axis indicates the loss value, and the y-axis indicates the iteration step. Both the generator
and discriminator converge to a value quickly and tend to be stable.

g_loss d_loss
60.0 ‘ 350
50.0 250
400
500 1 1.50 ru‘"\-’wn.m«ufr’-'L*w»,:q‘_m,v““»-m\‘«" = -
‘ |
20.0 ‘ lJ
10.0 \ 0.500 |
|
\
0.00 T e 2
®
D:000° 4000k -8.000k = 12.00k " 16.00k 0.000 4000k 8.000k 1200k 16.00k

Figure 7. Convergence curves of the discriminator and generator. Both g-loss and d-loss converge
quickly after approximately 1000 steps.

4.1.3. Accuracy

Three frames of the Zubal thorax testing dataset were extracted to exhibit the recon-
structed results, as shown in Figure 8. The method was also compared with the MLEM and
TV algorithms. As shown in Figure 8, the reconstruction results of the proposed method
are highly consistent with the ground truth in terms of the sharp edges and high pixel
values of the ROIs. The results of the MLEM method contain excessive noise and artifacts
because of the chessboard effect, even though the boundaries cannot be clearly observed.
The TV method provides a clearer and sharper result than the MLEM method. However,
the reconstruction effect of the small structure in the ROI3 area is poor, as indicated by the
pink rectangular box. The detailed quantitative results are provided in Table 2. The images
generated by cGANSs had less than one tenth of the bias and less than one percent of the
variance of the full image compared to the MLEM. Compared to TV, we still found much
lower bias and variance using cGANs. However, for different frames, the performance of
c¢GAN:S s has a great difference. For the first few frames, such as the third frame and seventh
frame, though the cGANs obtained better quantitative results on full image compared with
TV, the bias values of ROI2—which is a tiny area in the Zubal thorax phantom—are very
close. For the late frames, such as the 12th and 18th frames, the bias values of cGANSs are
almost one tenth of TV’s. Even for the ROI2, cGANSs also got surprised results. cGANs
indeed has much stronger ability in the frames that own higher photons and less noise.

MLEM cGANs Ground truth

Figure 8. Reconstruction results for Zubal thorax phantom with 40 min scanning and 1 x 107 counts.
From left to right: MLEM results, TV results, cGAN results, and ground truth. From top to bottom:
the 3rd, 7th, and 12th frames.
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Table 2. Zubal thorax reconstruction evaluation results.

Bias Variance
Frame Method Total ROI1 ROI2 ROI3 Total ROI1 ROI2 ROI3
MLEM 0.1225 0.1739 0.0654 0.1284 0.0271 0.0510 0.0070 0.0233
3rd TV 0.0611 0.0909 0.0503 0.0420 0.0110 0.0227 0.0040 0.0063
¢GANs 0.0189 0.0112 0.0454 20x107°  81x107% 24x107* 0.0022 7.8 x 108
MLEM 0.1034 0.1335 0.0547 0.1221 0.0204 0.0356 0.0047 0.0210
7th TV 0.0407 0.0586 0.0189 0.0446 0.0086 0.0168 0.0014 0.0077
¢GANs 0.0106 0.0066 0.0252 20x107°  27x107% 10x10* 72x10% 78x10°8
MLEM 0.1049 0.1325 0.0573 0.1249 0.0208 0.0355 0.0055 0.0215
12th v 0.0457 0.0631 0.0342 0.0399 0.0089 0.0173 0.0025 0.0065
cGANs 0.0042 0.0058 0.0068 1.0x107°  67x10° 89x10° 11x107* 39x1078
MLEM 0.1211 0.1545 0.0649 0.1439 0.0263 0.0444 0.0068 0.0277
18th vV 0.0531 0.0689 0.0320 0.0584 0.0109 0.0195 0.0031 0.0103
cGANs 0.0055 0.0067 0.0098 20x107°  1.0x107% 11x10° 20x107* 7.8x 1078
Figure 9 shows the mean values of the bias and variance of all 18 frames of the Zubal
thorax phantom. For the bias and variance, the cGAN framework obtained a satisfactory
score. The TV method performs much better performance than the MLEM method because
it can better suppress the noise in the images. However, compared with the other two
areas, the reconstruction results of ROI2 were unsatisfactory, and the values of the bias and
variance of the three methods were higher than those of the other areas. It is considered
that this outcome was possible because ROI2 was extremely small for it to be distinguished
from the other two parts.
Bias Variance
0.2 0.05
015 0.04
0.03
0.1 |
P 0.02
0.05 8 P i 0.01 i pu
o - [ | = 0 - — i l —
Whole ROI1 ROI2 ROI3 Whole ROI1 ROI2 ROI3
BcGANs ETV ®MLEM

B cGANs v MLEM

Figure 9. Bias and variance of whole images for ROI1, ROI2, and ROI3 of the Zubal thorax phantom.

4.1.4. Robustness and Runtime Analysis

The Zubal thorax dataset was chosen to validate the robustness of the algorithm under
different counting rates. The values of the evaluation parameters for reconstruction are
shown in Figure 10. The three curves at the top of both the bias graph and the variance
graph show the properties of MLEM, the three curves in the middle show the properties
of TV, and the curves at the bottom show the properties of cGANs. The three solid curves
at the bottom of the graph have the highest coincidence, which means that the cGAN
method is the least affected by the count value. For the other two methods, as the count
increases, both the variance and bias of the MLEM and TV methods decrease distinctly.
Therefore, one can conclude that these two methods are significantly influenced by the
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count. This may be because both methods are based on a probabilistic statistical model;
therefore, when the count increases, the probabilistic statistical characteristics of the data
can be better guaranteed. Compared with the other two methods, the proposed framework
has minimum variance and deviation and maximum stability.
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Figure 10. Bias and variance of three methods (MLEM, TV, and cGANSs) of Zubal thorax phantom
with different counts. The top three curves represent the results of the MLEM method, the middle
curves represent results of the TV method, and the bottom curves correspond to the proposed method.
With increasing counts, the bias and variance values of the MLEM and TV methods decrease, but
there is a slight effect on the cGANs method.

The Zubal head phantom is more complex than the Zubal thorax phantom. It was
used to verify whether the proposed algorithm can predict the reconstructed images of the
last six frames by training the first 12 frames.
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The concentration distribution of the first 12 frames is shown in Figure 11a. Four
frames were chosen from the subsequent six frames to obtain the reconstruction results,
as shown in Figure 11b. Although the training dataset did not include the last six frames,
the test results are highly consistent with the true concentration distribution. Even an
extremely small area, such as ROI3, can be reconstructed clearly, as indicated by the pink
rectangular boxes in Figure 11b.

58666588
858668588

MLEM
- .
cGANs - ‘ | I
Ground truth ‘ | I
13:th

(b)

Figure 11. Robustness verification graphs of Zubal head phantom for different frames. (a) Concentra-
tion distribution of training images (the first 12 frames). (b) Reconstruction results for Zubal head
phantom with a 70 min scan and 5 X 107 counts. From top to bottom: MLEM results, TV results,
c¢GAN results, and ground truth. From left to right: the 13th, 14th, 16th, and 17th frames.

Tables 3 and 4 listed the reconstruction results of three methods. As a classic traditional
iterative method, MLEM cost about 0.2 s for reconstruction of each image. TV mixed a
postprocessing of iterative method to improve the image quality, it takes almost twice as
long as MLEM. As for cGANs, it only cost 0.007 s of each image because the model was
trained in advance and the test time is very short which even can be ignored.
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Table 3. Reconstruction times for Zubal thorax.
Frame
2 4 6 8 10 12 14 16 18 Mean
Method
MLEM 0.213 s 0.211s 0.204 s 0.215s 0.218 s 0.210s 0.207 s 0.217 s 0.202 s 0.211s
TV 0.508 s 0.449 s 0.504 s 0.542 s 0.522 s 0.525s 0.527 s 0.519s 0.511s 0.512s
CGANs 0.007 s 0.007 s 0.007 s 0.007 s 0.007 s 0.007 s 0.007 s 0.007 s 0.007 s 0.007 s
Table 4. Reconstruction times for Zubal brain.
Frame 13 14 15 16 17 18 Mean
Method
MLEM 0.219 s 0.268 s 0.226 s 0.233 s 0.260 s 0.260 s 0.244 s
TV 1.005 s 1.120 s 1.088 s 1.176 s 1.153 s 1.216s 1.126 s
CGANs 0.007 s 0.007 s 0.007 s 0.007 s 0.007 s 0.007 s 0.007 s

4.2. SD Rat Experiments

To verify the method in a faster and more familiar way, the sinogram and ground truth
which generated with OSEM method were extended to a uniform size of 192 x 192 by zero
padding. First, the two discriminators were compared on the real datasets. As shown in
Figure 12, the rRMSE of the whole-image strategy is lower than that of Patch-GAN, which
is consistent with the results of the simulations.

20 ‘

Whole-Image
Patch-Gan
18 B

rRMSE
5
T
1

0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Test Images

Figure 12. Comparison of reconstruction results using whole-image discriminator and patch-GAN
on SD rat dataset.

Three images in the test dataset were randomly chosen to obtain the reconstructed
results. As shown in Figure 13, the reconstructed images produced by the cGAN have
contour structures that are similar to the ground truth. However, the details are not clear,
and the rRMSE value is slightly high. This may be caused by two factors: a more complex
real scan situation and large individual differences among samples. A larger amount of
data is required, but this is always a major challenge in medical image processing.
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Sinogram

cGANs

o -

Figure 13. Reconstruction results of different slices of SD rats. From top to bottom: sinogram images,
ground truth (OSEM), reconstruction results of cGANs.

4.3. Real Patient Experiments

Several different learning rates and epochs were applied to a real human brain dataset.
The best results were obtained with Ir = 0.002 and 120 epochs. The training dataset
contained seven objects, including 651 image pairs. The testing dataset contained two
objects, which included 186 image pairs. Finally, five slices were selected from the test
dataset, as shown in Figure 14. The quantitative results, including the SSIM and rRMSE,
are shown in Figure 15. Compared to the SD rat whole-body dataset, the human brain
dataset obtained better results in terms of reconstructed image quality. The SSIM of the test
images was close to 0.94. The mean rRMSE was approximately 2.74. It is considered that
the whole-body dataset of the SD rats may have finer and more complex structures than
the human brain dataset. However, for a detailed structure, such as the green rectangle in
Figure 14, it is difficult to obtain an accurate result. Unlike MLEM and TV, a single object
can be reconstructed through a finite number of iterations; cGANS is a deep-learning-based
method which achieve reconstruction by first learning the recognition processing of other
objects. If there are not enough learning objects, then the leaning result is naturally not
satisfied, and if the new object has some structures that the model has never seen before, it
is very difficulty to reconstruct the new object accurately.



Appl. Sci. 2022, 12,8118

16 of 18

Sinogram
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cGANs

1-59 1-64 2-34 2-46 2-68

Figure 14. Reconstruction results of five selected images of human brain dataset: 1-59 depicts the
59th slice of the first test object, 2-34 depicts the 34th slice of the second test object, etc.
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Figure 15. Reconstruction results of five selected images of human brain dataset.

5. Discussion

PET has become an indispensable tool in clinical trials in recent years. The quality of
the reconstructed image is crucial for the development of PET. However, traditional recon-
struction methods have many limitations, as discussed above. Therefore, deep learning
was adopted in this study to avoid the problems encountered in traditional methods. In
this study, an attempt was made to learn the correspondence between sinogram images
and reconstruction images. Considering that cGANs have obtained outstanding results in
other fields, a cGAN was chosen as the main network. The results of the simulation, SD rat,
and human brain datasets suggest that cGANs can outperform traditional methods.

For the simulation datasets, the reconstruction image quality is greatly improved
compared with MLEM and TV, and the quantitative results also prove that. The bias values
of cGAN:'s for the first few frames are only 10% of that of MLEM method and about 30% of
TV. The variance values are even less than 1% of the other methods. For the late frames
which contain less noise and more photons, the bias and variance are much lower. For the
reconstruction time, the deep-learning-based cGANSs takes only 3% of the time of MLEM.

However, although satisfactory results were obtained for the simulation dataset, the
performance on the SD rat and real patient datasets was not satisfactory. There are two rea-
sons for this. First, the two real datasets had a more complex data acquisition environment.
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Moreover, there were significant differences between different individuals. Therefore, more
data are required in the training data phase. Second, there was no additional information
as a constraint in the network to guide the training process. Thus, it was difficult for the
network to converge to more precise results.

In future work, more physiological information should be added to the network as
an effective constraint. The inputs of the network can be multiple-scale images, which can
lead the network to learn coarse and fine structures.
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