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Abstract: Phase-shifting profilometry (PSP) has been widely used in the measurement of dynamic
scenes. However, the object motion will cause a periodical motion-induced error in the phase map,
and there is still a challenge to eliminate it. In this paper, we propose a method based on three-stream
neural networks to reduce the motion-induced error, while a general dataset establishment method
for dynamic scenes is presented to complete three-dimensional (3D) shape measurement in a virtual
fringe projection system. The numerous automatically generated data with various motion types
is employed to optimize models. Three-step phase-shift fringe patterns captured along a time axis
are divided into three groups and processed by trained three-stream neural networks to produce
an accurate phase map. The actual experiment’s results demonstrate that the proposed method
can significantly perform motion-induced error compensation and achieve about 90% improvement
compared with the traditional three-step phase-shifting algorithm. Benefiting from the robust
learning-based technique and convenient digital simulation, our method does not require empirical
parameters or complex data collection, which are promising for high-speed 3D measurement.

Keywords: fringe projection profilometry; motion-induced error; deep learning

1. Introduction

Three-dimensional (3D) measurement methods based on fringe projection profilometry
(FPP) [1–3] has been widely used in computer vision [4], industrial inspection [5], and
other fields [6] due to its advantages of non-contact, low cost, and high accuracy. A typical
FPP system consists of a camera and a projector. By projecting specially designed fringe
patterns onto a tested object, the depth information of the object’s surface is modulated in
the distorted fringe patterns. Then, the phase distribution can be retrieved through fringe
analysis algorithms and converted to 3D geometry based on triangulation.

At present, there are two main approaches to extract phase value in FPP: Fourier
transform profilometry (FTP) [7,8] and phase shifting profilometry (PSP) [9,10]. In FTP,
only a single-frame high-frequency fringe pattern is required, and a suitable designed
bandpass filter is applied to separate fundamental components in the frequency domain.
However, with the limitation of filter operation, FTP is sensitive to surface variation and
non-uniform reflection. In PSP, multi-frame (usually at least three frames) fringe patterns
are utilized to calculate the phase map by a least square algorithm. At the expense of
reducing speed, a more accurate and robust result can be obtained compared with FTP.

For the measurement of dynamic scenes, the moving object will no longer satisfy the
assumptions of PSP, which include fixed position and known phase shift. More specifi-
cally, the location of a moving object changes over time between frames, while an extra
value is introduced into phase shift on the same point of the object’s surface [11]. The
motion-induced error will cause periodical fluctuations in phase distribution, leading to
the decrease of measurement accuracy.

To suppress the motion-induced error in PSP, researchers have developed various
kinds of methods. One of the approaches is to combine the FTP with PSP. Cong et al. [12]
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extracted phase map using FTP from single fringe pattern in three-step PSP, and performed
phase subtraction to estimate the unknown phase shift. Qian et al. [13] used four fringe
patterns to obtain the absolute phase with the stereo phase unwrapping (SPU) method,
then developed a pixel-wised motion detection strategy to fuse the results of PSP and FTP.
Guo at al. [14] proposed a dual-frequency composite grating method to identify the motion
region using the phase of a virtual high frequency and replaced the phase map of PSP with
FTP in corresponding region. However, due to the implicit drawbacks of FTP, these hybrid
methods are unadaptable for dealing with complex scenes.

To avoid this issue, Lu et al. tracked the motion of an object by manually placed
makers [15] or scale-invariant feature transform (SIFT) [16] and estimated the translation
vector and rotation matrix to calculate phase map. Liu et al. [17] estimated the phase-
shift error by averaging the difference of three adjacent phase maps, which are calculated
from eight consecutive images of four-step phase-shift fringe patterns. Wang et al. [18]
applied Hilbert transform to shift the phase of three-step phase-shift fringe patterns by
π/2, constructed opposite distributional phase to compensate motion error. Guo et al. [19]
divided four-step phase-shift fringe patterns into two groups to calculate two phase maps
which have opposite phase error distribution, and the periodical motion-induced phase
error can be compensated by averaging them. However, most of these methods may not be
suitable if the object undergoes non-uniform motion [11].

Recently, plenty of studies have introduced deep learning technique into 3D measure-
ment. Yu et al. [20] proposed a deep learning-based modulation-enhancing method that
transforms two low-modulation fringe patterns into a set of three-step phase-shift fringe
patterns. Zhang et al. [21] extracted accurate phase information from three-step phase-shift
fringe patterns of low signal-to-noise ratio (SNR) and saturation by using convolutional
neural network (CNN). Feng et al. [22] utilized U-Net [23] architecture to suppress phase
error in non-sinusoidal patterns resulting from gamma distortion, defocus, saturation, and
couples of these factors. Nguyen et al. [24] extracted multiple triple-frequency phase-shift
grayscale fringes from single color fringe pattern and reconstructed 3D shape accurately.

As discussed before, the FTP-based methods will lead to unreliable results in complex
variant surface, and PSP-based methods are usually limited in resolving complex objects
with different types of motion. In order to solve these problems, we intend to reduce the
motion-induced phase error in PSP using deep learning technique. Firstly, the phase error
model of three-step PSP is derived to understand the characteristics of motion-induced
error. Secondly, a method based on three-stream neural networks is proposed to process
three different orders of the three-step phase-shift fringe patterns in the time series, and
effectively suppress the phase error. Thirdly, a virtual FPP system is constructed to perform
the measurement of dynamic scenes and provides the synthetic data for network training,
which shows the potential of our method in dynamic scene analysis. Experimental results
prove that the method can accurately reconstruct a moving object with different motion
types and achieve significant improvement compared with traditional three-step phase-
shifting algorithm.

2. Principle
2.1. Motion-Induced Error in Three-Step Phase-Shifting Algorithm

The intensity distribution of N-step phase algorithm can be expressed as:

In(x, y) = A(x, y) + B(x, y) cos[φ(x, y)− δn(x, y)], (1)

δn(x, y) = 2π(n− 1)/N, n = 1, 2, . . . , N. (2)

where x, y donates the pixel coordinate, A, B, φ represents the background intensity,
intensity modulation, and phase map, respectively. δn is the theoretical phase shift, and n is
the phase shift number. The desired phase map can be calculated by least square algorithm:
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φ(x, y) = arctan
M(x, y)
D(x, y)

= arctan

N
∑

n=1
In(x, y) sin δn(x, y)

N
∑

n=1
In(x, y) cos δn(x, y)

. (3)

where M(x,y) and D(x,y) represent the numerator and denominator of the arctangent func-
tion, respectively. When the measured object is moving, the actual phase shift δ′n becomes:

δ′n(x, y) = δn(x, y) + εn(x, y). (4)

where εn(x,y) is the additional unknown phase shift caused by motion in nth fringe pattern.
Similarly, the actual phase map φ′ can be calculated by:

φ′(x, y) = arctan

N
∑

n=1
In(x, y) sin δ′n(x, y)

N
∑

n=1
In(x, y) cos δ′n(x, y)

. (5)

Therefore, the motion-induced error can be expressed as [25]:

∆φ = φ′ − φ

= arctan
cos 2φ ·

N
∑

n=1
sin(2δn + εn)− sin 2φ ·

N
∑

n=1
cos(2δn + εn)−

N
∑

n=1
sinεn

cos 2φ ·
N
∑

n=1
cos(2δn + εn) + sin 2φ ·

N
∑

n=1
sin(2δn + εn) +

N
∑

n=1
cosεn

.
(6)

Equation (6) shows that the distribution of motion-induced error is related to the
doubled frequency of the projected fringe. In this paper, three-step PSP is selected for
analysis and measurement, since it requires minimum number of patterns with ensured
accuracy. Three-step fringe patterns distorted by motion can be represent as:

I1(x, y) = A(x, y) + B(x, y) cos[φ(x, y)− ε1],

I2(x, y) = A(x, y) + B(x, y) cos[φ(x, y)− (2π/3 + ε1 + ε2)],

I3(x, y) = A(x, y) + B(x, y) cos[φ(x, y)− (4π/3 + ε1 + ε2 + ε3)].

(7)

where ε1 = 0. Considering a small phase shift error ε, sin(ε) ≈ ε, cos(ε) ≈ 1, the actual phase
of three-step PSP can be derived from Equation (5):

φ′ ≈ arctan

(
6 +
√

3ε3

)
sin φ− (6ε2 + 3ε3) cos φ

(2ε2 + ε3) sin φ +
(

6−
√

3ε3

)
cos φ

. (8)

The corresponding motion-induced error can be expressed as:

∆φ ≈ arctan
2
√

3ε3 sin 2φ− (4ε2 + 2ε3) cos 2φ− (8ε2 + 4ε3)

−(4ε2 + 2ε3) sin 2φ− 2
√

3ε3 cos 2φ + 12− 2
√

3ε3

≈
√

3ε3 sin 2φ− (2ε2 + ε3) cos 2φ

6
− 2ε2+ε3

3 .

(9)

It can be seen that the phase error is periodically distributed and is a function of 2φ.
A spectral-filter-based or iteration-based method can be adopted to eliminate the motion-
induced error. However, these methods usually decrease the ability of handling complex
surfaces, or have prior assumptions on the movement forms, which limits their application
in different types of objects.
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2.2. Three-Stream Neural Networks-Based Motion-Induced Error Compensation Method

As discussed before, it is still problematic to accurately retrieve the phase from phase-
shift fringe patterns of moving objects, especially for those with complex surfaces and
different types of motion. To address this issue, deep learning technique is introduced
to suppress the periodical phase error caused by motion. The diagram of the proposed
temporal three-stream neural networks-based method is shown in Figure 1. Firstly, image
sequences of three-step fringe patterns, which contain three different kinds of phase shift
orders (order1 = (0, 2π/3, 4π/3), order2 = (2π/3, 4π/3, 0), and order3 = (4π/3, 0, 2π/3))
are cyclically projected onto the object over time. Secondly, every three adjacent images of
the captured fringe patterns modulated by the object are passed into CNN 1~3 according
to their orders. Thirdly, the numerator M(x,y) and denominator D(x,y) of the arctangent
function in Equation (3) are predicted for accurate phase calculation and phase unwrapping.
Lastly, the 3D shape is reconstructed using the traditional triangulation method.
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Figure 1. Proposed temporal three-stream neural networks-based method for motion-induced error
compensation (top) and the inner structure of CNN1~3 (bottom).

The design principles of the proposed framework are follows: during the projection of
fringe patterns, the phase information and the position of the object change continuously
from frame to frame, which make it difficult to directly learn the features from image
sequence using a single neural network. Therefore, these fringe patterns are artificially
divided into three groups according to their orders of phase shift values and passed to
different subnets of three-stream neural networks. Since the inputs of each subnet have
similar distribution in spatial dimension after grouping operation, it will be easier for
networks to focus on the elimination of motion-induced error.

All the CNN 1~3 adopt the architecture of U-Net [23], whose effectivity in phase
prediction of non-sinusoidal fringe patterns has been verified [22]. The detail of the
network is shown in bottom of Figure 1. The whole structure consists of an encoder,
decoder, and skip connection. For the encoder, the input images are firstly processed by
two convolutional blocks, which is implemented by a combination of a convolutional layer
(Conv), batch normalization layer (BN) [26], and linear rectification function (ReLU) [27].
The max pooling followed by two convolution blocks are applied to down-sample the
tensors by 1/2 in width and height, and the channel dimension is doubled. The same
operations are used four times to increase the receptive field gradually. For the symmetrical
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decoder, the down-sampling operations are replaced by up-sampling. The multi-level
features from skip connection are concatenated with tensors of doubled resolution to
enhance the detail information. The output layer only has one single convolution operation
without ReLU, since both positive and negative terms existed in M(x,y) and D(x,y). The
kernel of all convolutional layer is 3 × 3 with padding 1. The start features in the input
layer is 64. Taking the fringe patterns modulated by moving object as input, the CNN 1~3
in three-stream neural networks will output the M(x,y) and D(x,y), whose motion-induced
error has been suppressed.

A simple L2-norm function is used to optimize the neural network and can be written as:

Loss(θ) =
[
Mp(θ)−Mg

]2
+
[
Dp(θ)− Dg

]2. (10)

where θ is the parameter of the network trained to minimize the loss function. The subscript
p and g of M and D represent the prediction and ground truth, respectively.

2.3. Dataset Establishment in Virtual FPP System

Deep learning-based FPP methods usually require a dataset that consists of numer-
ous fringe patterns modulated by different objects for high accuracy network prediction.
However, the dataset collection in the real world will be limited in the hardware, number
of objects, and other uncontrolled factors. To solve this problem, a dataset establishment
flow in a virtual FPP system for dynamic scenes is proposed to produce synthetic data
conveniently and flexibly.

The availability of large image datasets has become a major bottleneck in deep learning-
based techniques. Recently, synthetic dataset generation methods using computer graphics
show their potential applications in various industrial use-cases, such as viewpoint esti-
mation [28], image classification [29], single-shot FPP [30,31], etc. In this section, our goal
is to establish one-to-one mapping between the actual and virtual FPP system, and the
method mentioned in [30] is extended from static scene to dynamic scene. A free and open
source 3D creation suite named Blender [32] is introduced to build virtual FPP system and
training dataset. Meanwhile, various 3D models including sculpture, toy, and industrial
component in Thingi 10K dataset [33] are selected as the objects to be measured.

The first step is to determine the positional relationship between camera and projector
and their own inherent parameters, i.e., intrinsic and extrinsic matrixes. The experimental
setup of FPP system and the schematic diagram of virtual FPP system are shown in
Figure 2a,b, respectively. The actual experimental setup shown in Figure 2a provides the
referenced structural parameters for the virtual one shown in Figure 2b and will be used in
the performance evaluation of this work in Section 3. According to the traditional pinhole
camera model, the image capture process from a point in the world coordinate to a pixel of
the image plane can be described as:

λc

 uc

vc

1

 = Kc[Rc|Tc]


Xw

Yw

Zw

1

. (11)

where the superscript c represents the camera imaging system. λ is a scaling factor. (u,v)
is the pixel coordinate on the image plane. K is the intrinsic matrix. R and T denote the
rotation matrix and translation vector from the world coordinate (Xw,Yw,Zw) to camera
coordinate in extrinsic matrix, respectively. K, R, and T can be further rewritten as:

Kc =

 f c
v sc uc

0
0 f c

v vc
0

0 0 1

, (12)
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Rc =

rc
11 rc

12 rc
13

rc
21 rc

22 rc
23

rc
31 rc

32 rc
33

, Tc =

tc
1

tc
2

tc
3

. (13)

fu, fv are the focal length along u and v directions. s represents the axis skew. (u0,v0)
is the location of the principle point. Rij and ti are the parameters in the corresponding
location of R and T, respectively. Since the projector can be regarded as an inverse camera,
the image projection process can be written as:

λp

 up

vp

1

 = Kp[Rp|Tp]


Xw

Yw

Zw

1

. (14)

where the superscript p represents the projector imaging system. Assume that the projector
coordinate coincides with world coordinate, and its origin is (0,0,0)T, the mapping from the
origin of the camera coordinate to that of the projector can be obtained: 0

0
0

 = Rc

 Xc
0

Yc
0

Zc
0

+ Tc. (15)

The camera location can be determined by a rearranging of Equation (15): Xc
0

Yc
0

Zc
0

 = −(Rc)TTc. (16)

All parameters in the intrinsic and extrinsic matrixes of the camera and projector can
be calibrated by Zhang’s [34] and Li’s method [35]. Since the Euler angles along the x, y, z
axes are required in Blender to describe the object’s rotation, the calibrated rotation matrix
should be considered as the multiplication of three parts:

R = Rz(α)Ry(β)Rx(γ). (17)

where the Euler angles α, β, γ can be solved by Slabaugh’s method [36]. So far, the one-to-
one relationship between the virtual and actual FPP system has been built.

The next step is to determine the location and motion type of objects and perform
image rendering. As shown in Figure 2c, the most common rigid motion type of a measured
object can be categorized into translation, rotation, and mixture of them, while the object
remains static without any external force. To simulate a dynamic scene realistically, a
dataset generation pipeline is proposed:

(a) to load a 3D model as the measured object and randomly rescale it to 1/2~2/3 of the
calibration volume. The coordinate of the object’s centroid represents its position.

(b) to randomly select the initial position of the object at first frame and final position at
Fth frame. F is the number of frames the object motion. For the stationary and rotation
around the centroid, the initial position equals the final one. The selected position
should make the bounding box of the object inside the calibration volume.

(c) to choose the corresponding interframe interpolation methods according to the desired
motion trajectory. For example, linear interpolation corresponds to uniform linear
motion, and the nodes of Bezier interpolation can be controlled to implement different
accelerative motion.

(d) to cyclically project three-step phase-shift fringe patterns in F frames and synchronously
render the corresponding deformed patterns. The object poses (location and rotation)
are simultaneously recorded at every frame. One phase map affected by motion is
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calculated from three adjacent images, so F-2 phase maps can be obtained from the
total F frames.

(e) for each pose recorded in (d), to project standard 12-step phase-shift patterns and
calculate the phase maps of F-2 poses as the corresponding ground truth for the phase
maps obtained in (d).

(f) to remove the object and return to (a) for the next object.

After processing all objects with different motion types, the obtained synthetic dataset
can be used to train the model mentioned in Section 2.2. Instead of complex manually
marking, the data collection using virtual FPP system and computer graphics can be
performed automatically. In addition to data generation, the proposed method can also be
used for the analysis of non-rigid movement or other unstable measurement scenes.
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data generation.

3. Experiment
3.1. Data Acquisition

As shown in Figure 2a, the actual experimental setup of FPP system contained a
camera (model: UI-3250CP-M-GL R2) with a resolution of 1600 × 1200 pixels and a digital
light processing (DLP) projector with a resolution of 1280 × 800 pixels and throw radio of
1.6. The objective lens of the camera had a focal length of 12 mm. The period number of the
projected fringe patterns is 64.

Using the data establishment method mentioned in Section 2.3, we have built a
virtual FPP system as a one-to-one mapping from the aforementioned actual system. The
parameters of camera and projector in the virtual FPP system were identified by calibration.
The mean reprojection error of both the calibrated camera and projector are 0.07 pixels,
which are accurate enough for dataset establishment. It is worth noting that the spot
light (projector) in the Blender has no concept of focal length, and the projected image
is always in focus when the shadow soft size is 0 mm (ideal point light source). For
simplicity, the intrinsic matrix of the projector was replaced by its throw radio to adjust
the size of projected images. Seven types of motion were selected to generate synthetic
data: stationary, uniform translation, accelerated translation, uniform rotation, accelerated
rotation, a mixture of uniform translation and rotation, and a mixture of accelerated
translation and rotation. One hundred objects and 24 (F) postures for each have been
collected. To reduce memory space and speed up network optimization, the resolution of
the rendered images was set to 0.4; that is, the camera resolution was 640 × 480 pixels in
this virtual FPP system. In total, 100 × 7 × (24 + 22 × 12) = 201,600 fringe patterns were
rendered and 100 × 7 × 22 = 15,400 pairs of input and the ground truth phase maps were
obtained to make up the dataset, where 22 represents the number of phase maps calculated
from 24 fringe patterns, and 12 represents the 12-step phase shift. All the steps in the dataset
generation pipeline were implemented by Python script and performed automatically. It
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takes about one day to generate the dataset by processing different motion type in parallel.
The dataset was split into two parts, 90% training set and 10% validation set. The collection
of the training set and validation set are shown in Figure 3. Several image preprocessing
operations, including normalization, randomly rotating to a degree ± 15◦, cropping into
a size of 480 × 480 pixels, were adopted to further increase the diversity of data during
training stage.
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Figure 3. Collection of the training data and validation data. The first row shows the different 3D
models used in the virtual FPP system. Each 3D model with different motion type was measured by
24 frames fringe patterns of the three-step PSP, in which the 1st, 10th, and 20th images are shown in
the second to fourth row. The ground truth numerator and denominator of the first frame are shown
in the fifth and sixth row.

3.2. Network Training

The network was implemented by Pytorch [37] 1.8.2 and the training process was
completed in the hardware environment with Intel Gold 5120 CPU and the 16 GB NVIDIA
Tesla P100 GPU. We used an Adam [38] optimizer with initial learning rate of 10−4 to
minimize the loss function in Equation (10). The batch size is set to 4. A scheduler was
applied to reduce the learning rate with a factor of 0.1 when there is no improvement on
validation set after 10 epochs. The temporal three-streams neural networks are trained
separately, and their loss curves are shown in Figure 4. Both curves show the convergence
occur after around 30 epochs, then the losses steadily reduce to about 5 in the training set
and 8 in validation set, respectively, which indicates the validity of the model.
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3.3. Quantitative Evaluation

To verify the performance of the proposed method, we first evaluated the trained
model in the validation set, which is generated by a virtual FPP system. In Figure 5, the fist
shaped object in the first row fronted towards the projector and translated from right to
left. One of the captured fringe patterns is shown in Figure 5a. Since the poses in every
frame were recorded and fixed for generating the ground truth, the phase error compared
with 12-step phase-shift can be calculated conveniently. The phase errors of the traditional
three-step phase-shifting algorithm and the proposed method are listed in the left and
right of Figure 5b. The error distributions along the marked red dotted line are shown in
Figure 5c. Figure 5d–f show the corresponding results of two owl sculptures with more
complex details and faster movement speed. Figure 5g–i show the results of a hat-shaped
object rotated along x axis. Figure 5j–l show this for two industrial components rotated
along the y axis. Figure 5m–r are the results of a Buddhist sculpture and two owl sculptures
both translated and rotated around their centroids.

It can be seen from Figure 5 that the phase errors of the three-step PSP show a double
frequency distribution and have an offset compared with their own ground truth, which
is consistent with the Equation (9). The RMS of phase errors of the proposed method are
reduced by 75%–93% compared with that of the traditional three-step PSP. The results show
that the proposed method can successfully suppress the motion-induced error caused by
different motion types.

Then, we tested the trained model in an actual FPP system shown in Figure 2a to
evaluate the performance of the presented model in a real scene. In Figure 6, a standard
ceramic plate shown in Figure 6a placed on a motorized linear stage translated in-depth
direction. The movement speed of the translation stage was 1 mm/step; one fringe pattern
was projected for each step. The camera was triggered synchronously by the projector and
captured a deformed fringe pattern for each step. To quantitatively analyze the influence of
motion-induced error, the ground truth was obtained by projecting 12-step fringe patterns at
each position of the stage and shown in Figure 6b. The three-step fringe patterns modulated
by oving plate were generated by selecting the first, fifth, and ninth images of the 12-step
PSP. The 3D shape was reconstructed using the multiple-frequency phase unwrapping
method [39] and triangular stereo calibration model [35]. As shown in Figure 6c,d, the result
of the three-step PSP has obvious periodical distribution in surface, while the proposed
method significantly reduces the fluctuations and the bias (shown in Figure 6e) caused by
direct-current (DC) component in Equation (9). The root mean square (RMS) error in height
(Z) dimension of the three-step PSP and the proposed method are 1.07 mm and 0.12 mm,
respectively. The motion-induced error has been decreased about 90%.
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Figure 5. Measurement results of the scenes of different motion types in the validation set. (a) One
fringe pattern of a translational fist-shaped object. (b) Phase error of three-step PSP (left) and proposed
method (right), and their RMS errors (top). (c) Section line of phase errors along the red dotted
line marked in (b). (d–r) Corresponding results of translational two owl sculptures, one rotating
hat-shaped object, two rotating components, one translational and rotating Buddhist sculpture, and
owl sculptures.
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Figure 6. Measurement results of a translational scene in actual FPP system. (a) Standard ceramic
plate translated in depth direction to be tested. (b–d) Reconstructed results of 12-step PSP, three-step
PSP and proposed method, respectively. (e) Section line in 600th row of the height (Z) distributions
of three methods.

Two standard spheres were measured under the same condition with ceramic plate.
The diameters of two standard spheres are 50.7991 mm and 50.7970 mm, respectively, and
the center distance is 100.2537 mm, as shown in Figure 7a. One of the deformed fringe
patterns is shown in Figure 7b. Figure 7c,d illustrate the reconstructed results of traditional
three-step PSP and our method, respectively. It is shown that the largest STD error of the
two reconstructed spheres by two methods are 0.4001 mm and 0.1254 mm and the largest
diameter error of two methods are 2.6746 mm and 0.5486 mm. The results demonstrate
that the proposed method can efficiently reduce the motion-induced error.
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Figure 7. Measurement results of two standard spheres in actual FPP system. Symbol d represents
diameter, c represents center distance. (a) Standard spheres translated in-depth direction to be tested.
(b) One of deformed fringe patterns. (c,d) Reconstructed results of three-step PSP and proposed
method, respectively.
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In Figure 8, we measured a rotating sculpture with a speed of about 0.1 rad per
frame. The experimental conditions are the same with the ceramic plate, except that the
motorized linear stage was replaced with a rotation stage. The rotating sculpture and
one of the deformed fringe patterns are shown in Figure 8a,c, respectively. It can be seen
from Figure 8d,g that the three-step method has obvious periodical waves at nose area.
The results in Figure 8e,h demonstrate that the proposed method can also deal with the
motion-induced error caused by such rotational motion. Figure 8i exhibits the profile
distribution of three methods along the same line.
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Figure 8. Measurement results of a rotating scene in an actual FPP system. (a) Rotating sculpture.
(b) One of the deformed fringe patterns. (c–e) Reconstructed results of 12-step PSP, 3-step PSP, and
proposed method, respectively. (f–h) Local enlarged results corresponding to (c–e). (i) Section line in
400th row of the height (Z) distributions of three methods.

4. Conclusions and Discussion

In this paper, we present a motion-induced error compensation method based on
deep learning and computer graphics. By building the virtual system referring to an actual
FPP system and performing image rendering, we can simulate the measurement process
of a dynamic scene realistically and provide sufficient data for network training. Then,
the proposed three-stream neural networks are trained using synthetic data and process
three different orders of three-step fringe patterns in time series. The experimental results
demonstrate that the motion-induced error introduced by various motion types can be
reduced effectively compared with the traditional three-step PSP.

Compared with existing methods, the proposed method has several improvements in
accuracy, ability of dealing with non-uniform motion and efficiency. Compared with FTP
assisted methods, the well-trained neural networks can avoid artificial filter design, which
enable our method to provide more detailed and lossless results in dealing with complex
objects. Compared with motion prediction methods, the proposed dataset generation
method can realize the accurate simulation of non-uniform motion and has the advantage
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of dealing this type of motion. Moreover, there are no additional images except basic
three-step PSP fringe patterns needed during the experiment, and each high frequency
deformed fringe patterns can reconstruct a new 3D result, which improves the efficiency of
3D reconstruction.

However, there are several aspects that need to be further improved in the future
investigation. Firstly, the simulated environment is confined in a laboratory condition, that
is, the background behind the measured object is black, and rendered images should not be
overexposed, which may cause a limited performance of the model in practical application.
Moreover, there are three main noise sources that remain to be researched, including
capturing noise of the camera and light of the source, motion noise that related to the camera
and projector, and rendering noise in a virtual FPP system. Therefore, a more general
dataset establishment method should be considered to adapt different situation. Secondly,
due to the difficulty of modeling the complex 3D rigid motion (for example, irregular
shake, random walk) and non-rigid motion, and the limited generalization capabilities
of designed three-streams neural networks, our method might not perform an effective
error compensation in these cases. Thirdly, with the decrease of projection–acquisition
rate relative to motion, the phase error of the proposed method will inevitably increase, as
shown in Figure 9. According to our simulation, to achieve a high accuracy measurement
(phase error < 0.01π), the projection–acquisition rate should be at least about 30 fps when
the movement speed of object is 50 mm/s. Lastly, the binary defocus techniques [40] are
usually used to improve the measurement speed, and it will lead to a hybrid phase error
caused by defocusing and motion, which are not considered in our work. So, how to design
a model to balance both of mentioned factors is the key point of high-speed measurement.
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