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Abstract: Pavement icing imposes a great threat to driving safety and impacts the efficiency of the
road transportation system in cold regions. This has attracted research predicting pavement icing
time to solve the problems brought about by icing. Different models have been proposed in the past
decades to predict pavement icing, within which support vector regression (SVR) is a widely used
algorithm for calibrating highly nonlinear relationships. This paper presents a hybrid improved
SVR algorithm to predict the time of pavement icing with an enhancement operation by response
surface method (RSM) and particle swarm optimization (PSO). RSM is used to increase the number
of input data collected onsite. Based on that, the optimal SVR model is established by optimizing
the kernel function parameters and penalty coefficient with the particle swarm optimization (PSO)
algorithm. The hybrid improved SVR is compared with SVR, PSO-SVR, and RSM-PSO for coefficient
of determination (R2), mean absolute error, mean absolute percentage error, and root mean square
error to check the effectiveness of PSO and RSM in optimizing SVR. The results show that the
combination of two methods in the hybrid improved algorithm has a better optimization capability
with R2 of 0.9655 and 0.9318 in a train set and test set, respectively, which outperforms PSO-SVR,
RSM-SVR, and SVR. In addition, the R2 of the hybrid improved SVR and PSO-SVR both reach the
optimal fitness value approximately at the iteration of 20, which suggests that convergence capacity
remains relatively constant with the predictive accuracy being improved.

Keywords: icing prediction; support vector regression; particle swarm optimization; response
surface method

1. Introduction

Pavement icing constitutes a main factor impacting the driving safety and the efficiency
of road transportation systems because the formation of ice on pavement texture induces
the dramatic decline of friction coefficient of pavements, especially for cold regions with
long winters. How to solve this problem has attracted research in different fields, and many
methodologies or practice have been proposed in the past decades. Over the years, one of
the commonly used practices applied to alleviate this adverse effect is to apply salt after the
ice is formed on the pavement due to the convenience of application, though it needs four
to ten times the salt to remove the ice from the pavement than to prevent its formation by
pre-salting. Moreover, previous studies have found that the excess use of salt induces the
deterioration of the roadside environment, such as soil pollution, death of some buds, and
delay in growth of trees [1–3]. Additionally, salting is also an important contributor to the
corrosion of pavement structures, which is unfavorable for the maintenance of roads [4,5].
Recently, one alternative, icing sensor, has appeared as a new approach to monitor the
formation of ice and guide the treatments for the pavement icing problem. This approach
distinguishes the freezing conditions based on the different properties of ice, water, and
air to monitor the formation of ice. It can be divided into contacting and non-contacting
type with a wide application in pavement structures [6]. Due to its real-time feature, it is
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considered as an effective technique in pavement icing prediction, while the accuracy and
cost of the sensor, as well as the difference between road construction material and sensor
equipment, still demand further research. Thus, it appears necessary to propose different
approaches to solve this problem.

Recently, different icing prediction models have been proposed. In order to build an
accurate prediction model, researchers investigate the impact of different environmental fac-
tors on pavement icing. It is suggested that pavement temperature, temperature, dew point,
relative humidity, wind speed, and precipitation are commonly considered as the main
factors in the process of freezing [7,8]. Based on that, highway engineers and meteorologists
have adopted numerical models to predict the formation of ice with advance knowledge
of where and when ice will occur. This technique can provide valuable information for
winter maintenance services with a good performance in different countries. However,
most numerical models are empirical due to the complex properties of ice and this may not
reflect the real ice formation process without an adequate database [9]. The disadvantages
have hindered its usage in regions without complete systems to collect climatic information
over the long term. The support vector machine (SVM) is a promising technique for small
sample prediction. In the past research, it has been combined with an optimization method
of differential evolution to forecast the road icing, and shows feasibility and effective-
ness [10]. Besides that, different environmental factors that affect the freezing of pavements
are considered to build the road icing prediction model by support vector classification
(SVC), and the model can predict the pavement icing warning accurately [11]. While most
published studies focus on the judgment of pavement icing conditions, the prediction of
pavement icing time is seldom involved. Derived from SVM, support vector regression
offers unique advantages over nonlinear regression analysis. It has been verified that the
SVR model is valid in different areas, such as air pollutant concentration prediction [12],
soil internal friction angle [13], and prediction of remaining service life of pavement [14].
The results in past research have demonstrated that SVR can predict the nonlinear problems
with high accuracy and robustness [15]. This algorithm calibrates the relation of input
and output variables by transforming the nonlinear problem in a low-dimensional space
into high dimension and finding a hyperplane to fit the relation between the input and
output. Commonly used kernel functions of SVR include linear kernel functions, poly-
nomial kernel functions, radial basis kernel functions, and sigmoid kernel functions [16].
Gaussian radial basis kernel function is the most widely used kernel in SVR and it has been
applied in related fields [17]. In SVR, insensitive loss coefficient ε, penalty parameter C,
and parameter of kernel function directly affect the accuracy of prediction, while obtaining
the optimal parameter combination is usually time-consuming. Therefore, it demands a
proper optimization algorithm to enhance the accuracy of prediction.

Numerous optimization algorithms with different applications have been developed
by researchers in the published studies [18–20]. The grid search (GS) algorithm tests
all possible parameter values to optimize and compares the result of each parameter
combination for the optimal solution [21]. Numerous attempts guarantee the effectiveness
in optimizing the penalty parameter and kernel function parameter, leading to high time
consumption as well. Thus, research has been conducted to reduce the time cost by
automatically changing the search range and step [22]. The genetic algorithm (GA) method
is another optimization algorithm imitating the revolution of creatures and is applicably
administered to determine optimal SVR parameters [23]. However, the genetic variation
and crossover in GA cannot be controlled, which may induce poor prediction capability
at times. Swarm intelligence [24], a subset of artificial intelligence (AI), has gained more
attention, as more high-complexity problems require the acquisition of optimal solutions
that are not achievable within a reasonable time by previous methods. It can be divided into
insect-based algorithms and animal-based algorithms, according to the previous research.
Among these algorithms, the firefly algorithm (FFA) has exhibited promising accuracy
in monthly rainfall forecasting [25]. The main parameters of FFA, including α, β0, and γ,
unavoidably affect the result of optimization, and the determination of optimal parameter
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combination is costly; thus, applying FFA in an SVR model may not be quite favorable.
Besides FFA, the particle swarm optimization (PSO) algorithm is another popular and
straightforward optimization methodology, inspired by the collective behavior of social
animals [26]. The inertia factor of PSO is the major factor affecting the result of optimization,
thus this algorithm has been applied in nonlinear problem prediction and demonstrates
good performance [27]. To avoid the local optimal solution, different methods are proposed
to change the inertia coefficient in the process of iteration [28]. Besides SVR parameters,
the input data is another factor dominating the accuracy of prediction. Thus, it is necessary
to calibrate the input data for modeling icing time prediction. To obtain better accuracy,
response surface methodology (RSM) is used in this paper for the optimization of input
variables. RSM is a collection of mathematical techniques based on the fit of equation
to experimental or real statistics [29], which describes the relation between response and
input data. In recent studies, RSM has been gradually utilized to optimize the input
variables for modeling SVR [30]. The prediction accuracy of SVR is greatly promoted
after RSM is utilized to calibrate the input variables, which shows superiority to other
methodologies [31]. The commonly used SVR prediction models are summarized in Table 1.

Table 1. Different SVR prediction models.

SVR Model Feature Limitation

SVR The model parameters are set manually To obtain the optimal is costly

GA-SVR
Optimize the parameter combination by

simulating the genetic variation
and crossover

The optimization of prediction
capability is not always favorable

GS-SVR Optimize the parameter combination by
searching every possible solution

The optimization
is time-consuming

PSO-SVR Optimize the parameter combination by
imitating the collective behaviors

The local optimal solution may
affect the prediction capability

FFA-SVR Optimize the parameter combination by
imitating the accumulation of fireflies

The determination of parameters
for FFA increases the computation
consumption of prediction model

RSM-SVR The prediction accuracy is improved by
expanding the number of input variables Same limitation as SVR

This paper develops a hybrid improved SVR model for the prediction of pavement
icing time by combining the advantages of RSM and PSO when calibrating SVR. The
collected environmental data, including initial pavement temperature, average pavement
temperature, average circumstance temperature, humidity, radiation, wind speed, and wa-
ter film thickness, are initially calibrated by RSM to provide the input variables for SVR.
After the first calibration process, the input variables in the train set are combined with
corresponding icing time to model SVR using Gaussian radial kernel function, predefined
penalty coefficient C, and kernel function parameter γ. Considering the simplicity of the
PSO algorithm, it is used to obtain the optimal parameter combination of penalty coefficient
C and kernel function parameter γ for the SVR model established in the last step. Finally,
the experimental results of the hybrid improved SVR are compared with SVR, PSO-SVR,
and RSM-SVR in R2, MAE, MSE, and MAPE to verify the performance of RSM and PSO.
The results demonstrate that the hybrid improved SVR outperforms SVR, PSO-SVR, and
RSM-SVR in R2 of train set and test set, respectively, 0.9655 and 0.9318, indicating that
the combination of PSO and RSM shows better performance in enhancing the prediction
capability of SVR. In addition, the hybrid improved SVR and PSO-SVR both converge
approximately at the iteration age of 20, suggesting that the prediction accuracy of the
proposed model increases as the convergence speed stays relatively constant.

The structure of this paper is arranged as follows. Section 2 illustrates three compo-
nents of the hybrid improved SVR, including SVR, RSM, and PSO, with the framework of
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the proposed hybrid model diagrammed by figure. Based on that, four prediction models,
SVR, PSO-SVR, RSM-SVR, and hybrid improved SVR, are calibrated in Section 3, and the
accuracy and convergence speed are used to verify the performance of PSO and RSM.
Finally, the conclusions are drawn in Section 4.

2. Modeling Method

In this paper, the commonly used SVR model is optimized by an improved PSO and
polynomial RSM to calibrate the high-accuracy icing time prediction model, using the data
collected onsite. The collected environmental data are initially calibrated by RSM and split
into a train set and test set by cross validation (CV) method for the construction of SVR
with predefined parameters including ε, σ, and C. The parameter combination of σ and C
is updated in the iteration of the improved PSO, and the optimal solution is found to build
the hybrid improved SVR model. The whole procedure is diagrammed in Figure 1.

Train set of environmental data collected in-site 

RSM to calibrate input data for SVR

RSM-SVR model
Train set of pavement 

icing time data 

PSO optimizes SVR parameters

Penalty factor C Kernel function parameter 

Maximum 
iteration

No

Yes

Hybrid improved 
SVR model

Test set of data verifies the 
performance of model 

Figure 1. The framework of the hybrid improved SVR.

2.1. Support Vector Regression

SVR is derived from support vector machine (SVM) and is usually used as classi-
fication methodology. This model converts the nonlinear problem in low-dimensional
space into high-dimensional space and finds a hyperplane to fit the relation between input
and output. Researchers have developed different kinds of SVR models in the previous
studies. Among these types, ε-SVR is considered as the most applied type and is utilized
in this paper with an introduction in the following paragraphs. Given a training dataset
D = {(xi, yi), i = 1, 2, . . . , m} with m samples, where xi and yi represent input vector and
actual value respectively, a regression function can be built to approximate the target
value yi,

f (χ) = ωTφ(χ) + b, (1)



Appl. Sci. 2022, 12, 8109 5 of 14

where χ = (x1, x2, . . . , xm)T refers to m groups of input vectors, φ(χ) transforms the sample
from Euclidean space to high-dimension space, ω is a weight vector, superscript T denotes
transpose, and b is a bias value. ε-SVR method adopts a new type of loss function, which
creates an insensitive zone by maximum ε value. ε refers to the maximum deviation from
optimal hyperplane. When the absolute value of deviation between hyperplane function
f (χ) and target y = (y1, y2, . . . , ym)T is less than ε, the loss is acceptable. Based on that, the
SVR problem can be formalized as

min
ω,b

1
2
‖ω‖2 + C ∑m

i=1 lε( f (xi)− yi), (2)

where C is the penalty factor regulating the tolerance for samples beyond insensitive zone,
and `ε represents the ε-insensitive loss function in Equation (3):

`ε( f (xi)− yi) =

{
0, i f | f (xi)− yi |≤ ε,
| f (xi)− yi | −ε, otherwise.

(3)

We introduce slack variables ξi and ξ∗i to consider the training samples outside
ε-insensitive zone, then the Equation (3) can be rewritten as

min
ω,b,ξi ,ξ∗i

1
2
‖ω‖2 + C ∑m

i=1(ξi + ξ∗i ), (4)

s.t


f (xi)− yi ≤ ε + ξi,
yi − f (xi) ≤ ε + ξ∗i ,
ξi, ξ∗i ≥ 0, i = 1, 2 . . . m.

(5)

By introducing a set of Lagrange multipliers, including µi ≥ 0, µ∗i ≥ 0, αi ≥ 0, α∗i ≥ 0,
a Lagrange can be created as

L(ω, B, α, α∗, ξ, ξ∗, µ, µ∗) =
1
2
‖ω‖2 + C

m

∑
i=1

(ξi + ξ∗i )−
m

∑
i=1

(µiξi + µ∗i ξ∗i )+

m

∑
i=1

αi( f (xi)− yi − ε− ξi) +
m

∑
i=1

α∗i (yi − f (xi)− ε− ξ∗i ).
(6)

Let the partial derivativesfor L with respect to ω, b, ξi, and ξ∗i equal zero. The formula
can be transformed into a dual problem and the solution is shown as follows:

f (χ) =
m

∑
i=1

(α∗i − αi)xT
i χ + b. (7)

After mapping into higherdimension space, Equation (7) can be expressed as

f (χ) =
m

∑
i=1

(α∗i − αi)κ(xi, xj) + b

=
m

∑
i=1

ωiκ(xi, xj) + b,
(8)

where κ(xi, xj) = φ(xi)φ(xj) is the kernel function that converts the nonlinear cases into
linear ones.

As one of the commonly used kernel functions, radial basis function (RBF) is used in
this paper:

κ(xi, xj) = exp(−1
2
(

∥∥xi − xj
∥∥

σ
)2), (9)

where σ is the parameter of RBF, which controls the smoothness of kernel function varied by
a positive infinite domain. The schematic view of SVR is shown in Figure 2. In this figure,
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the input layer represents the environmental data, including pavement initial temperature,
pavement average temperature, environment average temperature, humidity, radiation,
wind speed, and water film thickness, while the output layer refers to the pavement icing
time. It should be pointed out that the input variables limit the prediction accuracy; thus,
it is necessary to optimize the input. RSM, a conventional method used to optimize the
design parameters by manipulating the relationship between input and output variables,
has been gradually used to improve the predict accuracy of SVR in recent studies [32].
Therefore, RSM is utilized in this paper to calibrate the input variables for SVR.

X2

X3

Xn

X1

.

.

.

K(x,x1)

.

.

.

Input layer Hidden layer Output layer

y

K(x,x2)

K(x,x3)

K(x,xN)

.

.

.

b

Figure 2. SVR structure.

2.2. Response Surface Methodology

Response surface methodology contains a collection of mathematical and statistical
techniques used to develop the relationship between response and its related input factors.
In general, the relationship is unknown, but can be approximated by a polynomial basis
function of the form

r = f (q)η + ε, (10)

where q = (q1, q2, . . . , qk)
T , r is the response corresponding to q, f (q) is a vector consisting

of the powers and cross products of powers of q1, q2, . . . , qk, η is the coefficient correspond-
ing to the element in f (q), and ε is a random error that usually assumed to be zero. In
this paper, a second-degree polynomial function is used, as shown in Figure 3, to calibrate
the input variables for SVR. The formula of second-degree polynomial function is shown
in (11):

r = η0 +
n

∑
i=1

ηiqi +
n

∑
i=1

n

∑
j=i

ηijqiqj. (11)

The weight coefficients of different components in Equation (11) are calibrated by the
following equation [33]:

η = [PT P]−1[PTO], (12)

where O is the output variables in the training datasets, P = [1, q1, q2, q1q2, q2
1, q2

2] for
quadratic polynomial. The schematic view of RSM for calibrating hybrid improved SVR
is shown in Figure 4. Total k sets of environmental data in input layer1 are initially
calibrated by RSM to produce input variables in input layer 2 using m = n!

2!×(n−2)! , where
n is the number of environmental factors affecting the pavement icing time in each set
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of environmental data, and m is the number of parameters after the calibration of RSM.
Then, the input variables are used to calibrate the SVR model by kernel function. Since the
parameters of the SVR model greatly affect the performance of prediction, it is necessary
to obtain the optimal parameter combination for the pavement icing time prediction.
The conventional approach for finding the optimal parameter combination is manual
operation. This method takes a large amount of time and the final outcome may not be
favorable. Considering its drawbacks, the PSO algorithm is used in this paper to calibrate
the optimal SVR model.

q1

q2

qn

1

.

.

.

q1

q2

1

qn

q1
2

q1q2

q1qn

q2
2

q2qn

qn
2

.

.

.

.

.

.

.

.

.

.

.

.

Input layer Hidden layer Output layer

r
η 11

Figure 3. RSM schematic structure.
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φ2
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.
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K(φ ,φ2)

K(φ ,φ3)
.
.
.

.

.

.

K(φ ,φk)

Output

b

Convert the input 
components from 
n to m using RSM

Input layer1
First modeling using RSM

Input layer2 Hidden layer Third layer
Second modeling using SVR

qk1

qkn

.

.

.

qk2

φk

φk1

φkm

.

.

.

φk2

Figure 4. RSM-SVR framework.
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2.3. Improved Particle Swarm Optimization (PSO)

PSO algorithm was first developed by Kennedy and James in 1995 based on a dis-
tributed behavior model [26]. This model is initialized with a swarm of particles in a
D-dimension space, where D represents the number of parameters to be optimized. Each
particle is composed of a speed vector (Vi) and a individual position vector in D dimensions.
During the iteration, individual optimal position (pbest) of each particle is selected from
individual position in the history and the global best optimal position (gbest) is determined
among pbest for the whole swarm. To identify the optimal solution, each particle adjusts
its flying according to the two optimal positions:

Vt+1
i = ωtVt

i + c1r1(pbestt
i − Xt

i ) + c2r2(gbestt − Xt
i ), (13)

Xt+1
i = Xt

i + Vt+1
i , (14)

where Vt
i denotes the speed of particle i at iteration t, Xt

i denotes the position of particle i
at iteration t, pbestt

i is the individual optimal position of particle i at iteration t, gbestt is the
global optimal position at iteration t, c1 and c2 are acceleration constant with the default
value, 2, r1 and r2 are the random numbers ranging from 0 to 1, and ωt is the inertia factor.
Equation (13) contains three parts. The first part is called the momentum part, reflecting
the flying inertia of the particle. The second part represents the particles approximating
individual optimal position in the history, and the last part reflects the tendency to the
global optimal position.

Previous studies have proved the performance of PSO in optimizing SVR parame-
ters [34–36], while the local optimal solution has prevented the PSO to further optimize
parameters after a certain number of iterations. Self-adaptive evolution strategy (ES) is a
method used to enhance the operation of PSO when the global best position cannot be im-
proved after some successive generations. This method applies small Gaussian mutations;
thus, it is suitable for local optimization [37]. The Gaussian mutation is used by mutating
the particle speed Vi and inertia factor ωi:

V′i = Viexp[τ′N(0, 1) + τNi(0, 1)], (15)

w′i = wi + V′i Ni(0, αT(g)), (16)

T(g) = 1− exp(− f itness(g)), (17)

where Ni(0, 1) is the normal distribution for each particle, the value of τ and τ′ are (
√

2n)−1

and (
√

2
√

n)−1, respectively, Ni(0, αT(g)) represents the random value created by nor-
mal distribution, α is a positive proportional constant, f itness(g) is the fitness value of
individual, and T(g) is the degree of mutation. After the resetting of velocity and inertia
factor, pbest and gbest are evolved by self-adaptive evolution strategy. This has proved the
diversity of the particles and enabled the particles to find a better optimal solution in the
next iteration.

2.4. Performance Indicators

To evaluate the effectiveness of RSM and PSO methods in enhancing the prediction
capability of SVR, four models, including SVR, PSO-SVR, RSM-SVR, and hybrid improved
SVR, are trained and tested using the data obtained onsite, within which the hybrid
improved SVR combines RSM and PSO to construct a prediction model. CV is used to
divide the data into train set and test set and evaluate the prediction capability using four
statistical comparative metrics, including the coefficient of correlation (R2), mean absolute
error (MAE), mean absolute percentage error (MAPE), and root mean square error (MSE).
Generally, the R2 indicates the correlation between variables, while the MAE, MAPE,
and MSE measure the difference between predicted values and actual values in an equal
manner. Lower MAE, MAPE, and MSE and higher R2 correspond to higher prediction
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accuracy and better agreement with actual data. These indicators are computed in terms
of equations:

R2 =
∑N

i=1(ŷi − ȳi)

∑N
i=1(yi − ȳi)2

, (18)

MAE =
N

∑
i=1

|ŷi − yi|
N

, (19)

MAPE =
1
N

N

∑
i=1

|ŷi − yi|
yi

, (20)

MSE =
∑N

i=1(ŷi − yi)
2

N
, (21)

where ȳi =
1
N ∑N

i=1 yi, N is the amount of test data. Besides that, the PSO-SVR and proposed
algorithm are also compared from the change of fitness to evaluate the convergence speed.

3. The Application Results and Discussion
3.1. The Raw Data of Pavement Icing Information

The hybrid improved SVR is applied in the pavement icing prediction and compared
with the SVR, PSO-SVR, and RSM-SVR to evaluate its performance. A total of 188 sets of
data, including icing time, pavement initial temperature, pavement average temperature,
environment average temperature, humidity, radiation, wind speed, and water film thick-
ness, are obtained onsite for the prediction. CV method is used in this paper to separate the
input data into training set and test set. To guarantee the reliability of the prediction model,
80% of the data are selected as training set and the remaining 20% are used to verify the
accuracy of the model. The details can be seen in Table 2.

Table 2. Pavement icing information.

Item
Data Set

1 2 3 . . . 188

Icing time (min) 43 40 45 . . . 16
Pavement initial

temperature −2 −1.31 −1.68 . . . −4.5

Pavement average
temperature −0.75 −0.71 −1.09 . . . −3.52

Environment average
temperature −3.27 −2.49 −2.24 . . . −8.4

Humidity 58.25% 60.24% 60.78% . . . 62.06%
Radiation 0 0 0 . . . 0

Wind speed 0 0 0 . . . 0.39
Water film thickness (cm) 1 0.8 2.4 . . . 1.8

3.2. Comparison and Analysis of Accuracy

Figure 5 illustrates the different scatter plots of the train set and test set for the
prediction value of four models and the true value of the measured icing time.In the
figure, the y = x line is plotted to represent the best performance, and a confidence zone
is formed by 15% and −15% error line. It shows that fewer data points fall beyond the
confidence zone ranging from −15% to 15% for both train set and test set after SVR is
improved by RSM or PSO. RSM-SVR shows better performance compared with PSO-SVR,
for which 52 data points are in the train set and 25 data points are included in the confidence
zone. In RSM-SVR, the value of R2 for train set and test set is, respectively, 0.9258 and
0.8771, which sees an enhancement of 2.73% and 1.74% compared with PSO-SVR. It is
concluded that the calibration of input variables by RSM will outperform the effect of PSO
if the parameter combination, σ and C, is already approximated to the optimal solution.
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Moreover, the combination of two methodologies appears to demonstrate best optimization
effects with 61 in train set and 31 in test set, and the R2 are, respectively, 0.9655 and 0.9318.
It indicates the availability of coupling these two methods for optimization.

In Figure 6, the four models are compared for MAE, MAPE, and RMSE. The original
MAE, MAPE, and RMSE for SVR are, respectively, 10.7087, 2.6735, and 0.2116 in training
and 9.8709, 2.5748, and 0.2038. After the application of RSM or PSO, the three items
all see an enhancement, which indicates the effectiveness of the two methodologies in
improving SVR. This trend is similar to the results in past research [27,31]. It suggests
that RSM and PSO can both contribute to the improvement of prediction accuracy of
SVR, while RSM demonstrates better performance than PSO, for which the three indexes
are, respectively, 7.4895, 2.2990, and 0.1833 in training and 8.2087, 2.2472, and 0.1642 in
testing. This demonstrates that the optimization of input variables can achieve better
performance in enhancing the prediction capability of SVR compared with optimizing
the SVR parameters. In addition, the combination of two methodologies obtains the best
optimization result with 3.4849, 1.3437, and 0.1032 in training and 4.5519, 1.7646, and 0.1233
in testing. More details are shown in Table 3.

Figure 7 displays the predictive value of four models and the true value in the test set.
According to the ratio set in CV method, 38 sets of data are used in this section to verify
the capability of four models established in this paper. The comparison demonstrates that
predictive value of hybrid improved SVR, PSO-SVR, and RSM-SVR is more approximated
to the true value than the original SVR. The data points of PSO-SVR are more deviated
from the true value in contrast to RSM-SVR, while the result is further improved as the
two optimization methodologies, RSM and PSO, are combined to optimize SVR. This
corresponds to the results in Figure 5 and Table 3.
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Figure 6. The comparison of accuracy.

Table 3. The accuracy data of three models.

Item

Train Set Test Set

SVR PSO-SVR RSM-SVR
Hybrid

Improved
SVR

SVR PSO-SVR RSM-SVR
Hybrid

Improved
SVR

MSE 10.7087 9.9797 7.4895 3.4849 9.8709 9.2145 8.2087 4.5519
MAE 2.6735 2.5443 2.2990 1.3437 2.5748 2.3709 2.2472 1.7646

MAPE 0.2116 0.2003 0.1833 0.1032 0.2038 0.1713 0.1642 0.1233
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Figure 7. The prediction capability of different models.

3.3. Comparison and Analysis of Convergence Speed

The hybrid improved SVR and PSO-SVR utilize PSO to optimize the SVR kernel
parameters; thus, the convergence speeds of the two models are compared with each other.
In this paper, R2 is defined as the fitness of PSO to change the combination of σ and C for
the optimal solution in the iteration. The fitness change from the initial age to the end is
displayed in Figure 8. It can be observed that the fitness value at the beginning stage is
approximately 0.87 and 0.857 for hybrid improved SVR and PSO-SVR. The higher fitness
value of hybrid improved SVR at the first iteration age is due to the calibration process
of RSM that increases the number of input variables by polynomial expression. As the
iteration continues, the two methods both see a rise of fitness value with the functionality
of PSO. Around the age of 20, the two methods attain their optimal fitness, and successive
minor change is observed before that because of the slight adjustment of self-adaptive
evolution strategy. This means that the similar convergence speed is obtained after PSO is
combined with RSM to calibrate SVR, compared with PSO-SVR.
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4. Conclusions

Pavement icing is a critical factor affecting traffic safety and efficiency, and it is difficult
to predict icing time due to the complexity of freezing. Support vector regression is a newly
developed algorithm with the advantages of small-scale sample, high accuracy, and easier
training. Thus, it is suitable for predicting icing time. This paper investigates the utility
of RSM and self-adaptive ES-based PSO for calibrating SVR in order to obtain a hybrid
improved model, applied for predicting icing time. A total of 188 sets of environmental data
and the corresponding icing time collected onsite were divided into train set and test set by
CV method using a train set percentage of 80%. The input variables of SVR were generated
by RSM using the environmental data in train set, and the input variables were combined
with corresponding icing time data to construct the original SVR model. The adopted
improved PSO was used to optimize the penalty coefficient C and kernel function parameter
γ to obtain the hybrid improved SVR model. To evaluate the performance of the proposed
model, the test set was used to verify the accuracy of model through different indicators,
including R2, MAE, MAPE, and MSE. Besides that, the convergence speeds were used to
compare the convergence capability between the hybrid improved SVR and PSO-SVR. It
indicates that the convergence speed remains constant while the accuracy of SVR is greatly
improved with the combined optimization of RSM and PSO.

The proposed algorithm provides an alternative in predicting pavement icing time
and it is helpful to the road transportation system. The algorithm considers the input
variables and the model parameters and greatly enhances the prediction performance
of the model with the combination of RSM and PSO, which signifies a new approach to
improve SVR. Meanwhile, the calculation consumption and the complexity of the proposed
model is relatively high compared with the SVR, without the application of optimization
methodology, due to the iteration of PSO and the calibration of RSM, which hinders its
application in long-term pavement icing time prediction. We are conducting research to
reduce the calculation consumption of SVR while keeping the accuracy relatively high
by simplifying the composition of PSO. Besides that, related work is also conducted to
investigate the approach for the calibration of SVR input variables with simple composition.
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