
Citation: Barkalov, A.; Titarenko, L.;

Krzywicki, K. Improving Hardware

in LUT-Based Mealy FSMs. Appl. Sci.

2022, 12, 8065. https://doi.org/

10.3390/app12168065

Academic Editor: Amalia Miliou

Received: 18 July 2022

Accepted: 10 August 2022

Published: 11 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Improving Hardware in LUT-Based Mealy FSMs
Alexander Barkalov 1,2,* , Larysa Titarenko 1,3 and Kazimierz Krzywicki 4,*

1 Institute of Metrology, Electronics and Computer Science, University of Zielona Gora, Ul. Licealna 9,
65-417 Zielona Gora, Poland

2 Department of Computer Science and Information Technology, Vasyl Stus’ Donetsk National University,
600-Richya Str. 21, 21021 Vinnytsia, Ukraine

3 Department of Infocommunication Engineering, Faculty of Infocommunications,
Kharkiv National University of Radio Electronics, Nauky Avenue 14, 61166 Kharkiv, Ukraine

4 Department of Technology, The Jacob of Paradies University, Ul. Teatralna 25,
66-400 Gorzow Wielkopolski, Poland

* Correspondence: a.barkalov@imei.uz.zgora.pl (A.B.); kkrzywicki@ajp.edu.pl (K.K.)

Abstract: The main contribution of this paper is a novel design method reducing the number of
look-up table (LUT) elements in the circuits of three-block Mealy finite-state machines (FSMs). The
proposed method is based on using codes of collections of outputs (COs) for representing both FSM
state variables and outputs. The interstate transitions are represented by output collections generated
during two adjacent cycles of FSM operation. To avoid doubling the number of variables encoding of
COs, two registers are used. The first register keeps a code of CO produced in the current cycle of
operation; the code of a CO produced in the previous cycle is kept in the second register. There is
given a synthesis example with applying the proposed method. The results of the research are shown.
The research is conducted using the CAD tool Vivado by Xilinx. The experiments prove that the
proposed approach allows reducing the hardware compared with such known methods as auto and
one-hot of Vivado, and JEDI. Additionally, the proposed approach gives better results than a method
based on the simultaneous replacement of inputs and encoding of COs. Compared to circuits of the
three-block FSMs, the LUT counts are reduced by an average of 7.21% without significant reduction
in the performance. Our approach loses in terms of power consumption (on average 9.62%) and
power–time products (on average 10.44%). The gain in LUT counts and area–time products increases
with the increase in the numbers of FSM states and inputs.

Keywords: Mealy FSM; FPGA; LUT count; synthesis; collection of outputs

1. Introduction

Nowadays, it is characteristic the fact that numerous digital systems are widely used in
the daily life of human society [1,2]. Among other digital equipment, contemporary systems
include a lot of various sequential devices [3]. The law of operation of a sequential device
can be described by the model of the Mealy finite state machine (FSM) [4]. This model is
used, for example, to set the behavior of (1) control devices [5,6]; (2) serial communication
and display protocols [7]; (3) various software tools of embedded systems [8]; (4) control-
dominated systems [9]; (5) different systems in robotics [10] and so on. This analysis led to
the choice of the Mealy FSM model in our recent research.

The process of FSM-based design is connected with raising some optimization prob-
lems [5,7]. As a rule, the following characteristics of FSM circuits should be improved:
the occupied chip area, the time of cycle (the maximum operating frequency) and the
consumed power. The approaches used for reducing these values depend strongly on the
peculiarities of logic elements used for implementing the FSM circuits. Changing the type
of logic elements leads to the necessity for changing the optimization approaches. This is
the reason for the continuous interest in developing new design methods aiming at the
optimization of FSM circuits. These characteristics are interrelated. For example, the area

Appl. Sci. 2022, 12, 8065. https://doi.org/10.3390/app12168065 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168065
https://doi.org/10.3390/app12168065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4941-3979
https://orcid.org/0000-0001-9558-3322
https://orcid.org/0000-0002-1088-5784
https://doi.org/10.3390/app12168065
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168065?type=check_update&version=2

Appl. Sci. 2022, 12, 8065 2 of 35

reduction leads to reducing the power consumption [11,12]. Due to the great importance of
the area reduction, we devote our article to this problem.

The area reduction of LUT-based FSM circuits may be achieved using the methods
of structural decomposition (SD) [13]. In this case, an FSM circuit is represented as a
composition of two to four large logical blocks. These blocks have unique systems of input
variables and output functions distinguishing them from other circuit blocks [14]. In this
article, we propose an alternative to the method discussed in [15]. The original method [15]
is reduced to joint applying the replacement of inputs and encoding of collections of outputs
(COs) [5]. Applying these methods is connected with generating two additional systems
of functions. Implementing circuits for these additional systems requires using some chip
resources. In this article, we propose to use the same variables both for encoding the
COs and for the replacement of the FSM inputs. This leads to the elimination of a block
generating the additional variables replacing the FSM inputs. As a result, this reduces the
number of LUTs compared to this number for the equivalent circuit based on the approach
of [15].

The main contribution of this paper is a novel design method which allows diminish-
ing the LUT count (the number of LUTs) in the circuits of three-level Mealy FSMs with the
joint use of two methods of structural decomposition. The proposed method is based on
using the same additional variables as inputs of logic blocks generating both input memory
functions (IMFs) and FSM outputs. Due to this, there is eliminated a block replacing FSM
inputs inherent in the method [15]. The main purpose of the proposed method is to reduce
the LUT count in the FSM circuit without significantly impairing the FSM performance.

The further text of the paper is organized in the following order. The second section
contains basic information related to LUT-based Mealy FSMs. The third section discusses
the necessary elements of the state of the art. In this section, we provide a critical analysis
of existing synthesis methods and show the need for their improvement. The fourth section
highlights the main idea of the proposed method. An example of synthesis is presented
and analyzed in the fifth section. The sixth section includes the results of experiments and
their analysis. A brief conclusion ends the paper.

2. Basics of LUT-Based Mealy FSM Design

In this section, we show the basics of designing FSMs circuits using internal resources
of FPGAs. Here, we introduce the main notation used in the rest of the text and show the
features of the logic elements used. At last, we introduce the simplest structural diagram of
a Mealy FSM circuit implemented with LUTs and programmable flip-flops.

For a better understanding of the material of the article by readers, we introduce
Table 1. This table shows the main sets of variables and the notation adopted in our article.

To start the designing process, it is necessary to set the law of the FSM behavior. For
this, various mathematical apparatuses can be used [1]. Two methods are most commonly
used for this purpose: (1) a state transition graph (STG) and (2) a state transition table
(STT) [16]. We use both forms in this article. These forms are used to derive systems of
Boolean functions (SBFs) defining dependencies between FSM outputs and input memory
functions on the one hand, and FSM inputs and state variables on the other hand. These
SBFs are used to design FSM logic circuits [16].

The FSM inputs create a set X = {x1, . . . , xL}, the FSM outputs form a set Y =
{y1, . . . , yN}. The inputs determine transitions between FSM states combined into a set
A = {a1, . . . , aM}. To synthesize an FSM circuit, the states am ∈ A are represented by
binary codes K(am) having R bits. The states are encoded using state variables from the set
T = {T1, . . . , TR}. The r-th bit of a state code is represented by an internal state variable
Tr ∈ T. The minimum value of R is calculated using the following formula:

R = dlog2Me. (1)

The formula (1) determines so-called maximum state codes [17]. A special register RG
is entered into the FSM circuit as a memory of the state codes [5]. In the case of FPGA-based

Appl. Sci. 2022, 12, 8065 3 of 35

FSMs, the RG is implemented using D flip-flops [17,18]. The content of RG is determined
by the input memory functions combined into a set Φ = {D1, . . . , DR}. The IMFs are inputs
of RG showing a direction of a particular interstate transition.

Table 1. The main notation used in the article.

A = {a1, . . . , aM} The set of FSM internal states having M elements.

B = {b1, . . . , bJ} The set of additional variables replacing FSM inputs having J
elements where J � L.

I The number of LUT inputs.

K(am) The binary code of state am ∈ A.

K(Yq) The binary code of collection of outputs Yq ⊆ Y with
Rq = dlog2Qe bits.

NA(φk) The number of literals in a function φk ∈ Φ ∪Y.

Pg =< Yi, Yj > A pair of collections of outputs replacing a pair <state, input>.

Φ = {D1, . . . , DR} The set of FSM input memory functions having R elements.

Q The number of collections of outputs Yq ⊆ Y.

R The number of bits in the codes K(am) determined as
R = dlog2Me.

T = {T1, . . . , TR} The set of state variables for creating the codes K(am) with R bits.

V = {v1, . . . , vRQ} The set of additional variables encoding collections of outputs
from the current cycle of FSM operation having RQ bits.

X = {x1, . . . , xL} The set of FSM inputs having L elements.

Y = {y1, . . . , yN} The set of FSM outputs having N elements.

Z = {z1, . . . , zRQ} The set of additional variables encoding collections of outputs
from the previous cycle of FSM operation having RQ bits.

The SBFs that make it possible to synthesize an FSM circuit can be formed using a
direct structure table (DST) [5]. A DST is constructed on the base of either the initial STT or
STG. An STT includes the following columns [16]: a current state am (a state for the current
instant); a state of transition aT (a state for the next instant); an input signal Xh determining
the transition from am into aT (it is a certain conjunction of inputs); a collection of outputs
(CO) Yh formed during the transition < am, aT >; and the numbers of transitions are shown
in the column h. There are H lines in an STT. A DST includes all these columns and three
additional columns. These additional columns are [5] the current state code K(am), the next
state code K(aT), and IMFs Φh ⊆ Φ, which allows loading the next state code into RG.

Using a DST, the following SBFs are constructed:

Φ = Φ(T, X); (2)

Y = Y(T, X). (3)

The SBF (2) corresponds to the FSM transition function [5] that specifies the depen-
dence of the states of transition on the current states and input variables. The SBF (2)
represents rules of generating IMFs necessary to load a next state code into the RG. The
SBF (3) corresponds to the FSM output function [5] that specifies the dependence of the
FSM outputs on the current states and input variables. The SBF (3) represents rules of
generating FSM outputs during each interstate transition. The SBFs (2) and (3) are the basis
for the synthesis of FSM U1, whose structural diagram is shown in Figure 1.

Appl. Sci. 2022, 12, 8065 4 of 35

RG

X

BlockYF

FY

Clk

Res

T

Figure 1. Structural diagram of FSM U1.

In Figure 1, the BlockYΦ implements the SBFs (2) and (3). The RG includes R flip-flops.
The pulse Res loads the code of the initial state a1 ∈ A into RG. Very often, there are only
zeros in the code K(a1) [18]. The synchronization pulse Clk allows loading state codes
into RG.

Consider a transition between the states a3 and a5 of some Mealy FSM. Let it be the
transition with h = 6. The transition is represented using fragments of three equivalent
forms: an STG, an STT and a DST (Figure 2).

a3 a5

x x / y y1 2 2 4

(a) (b)
am aT Xh Yh h

a3 a5 x x1 2 y y2 4 6

am aT Xh Yh hK(a)m

(c)

K(a)T Fh

a3 a5 y y2 4 6x x1 2010 100 D1

Figure 2. Equivalent fragments of STG (a), STT (b) and DST (c).

As follows from Figure 2a, the transition < a3, a5 > is caused by the input signal
X6 = x1x2. The transition is accompanied by the producing of a CO Y6 = {y2, y4}. Row 6
of the STT (Figure 2b) is a sequence of characters corresponding to the fragment of STG
(Figure 2a). If, for example, there is M = 7, then using (1) gives R = 3 and two sets:
T = {T1, T2, T3} and Φ = {D1, D2, D3}. For a trivial state assignment [5], there are the
codes K(a3) = 010 and K(a5) = 100. These codes and IMF D1 are written in the sixth line
of DST (Figure 2c). This line determines a product term F6 = T1T2T3x1x2. This term is a
part of the sum of products (SOPs) of Boolean functions D1 ∈ Φ and y2, y4 ∈ Y. All other
terms of SOPs for (2) and (3) are obtained in the same way [5].

In this paper, we discuss a case of implementing SBFs (2) and (3) using configurable
logic blocks (CLBs) and other internal resources of FPGA chips [19]. To form an FSM circuit,
the CLBs are connected using a programmable routing matrix [17,20]. In this paper, we
consider CLBs, including LUTs, multiplexers and programmable flip-flops. Similar to the
notation used in the paper [21], we use a symbol I–LUT to denote a single-output LUT
having I inputs. Such a LUT can implement an arbitrary Boolean function having up to
I arguments. The analysis of the FPGA market shows that AMD Xilinx dominates this
market [19]. Due to it, we focus our current research on the solutions of Xilinx. These
solutions are very popular at present for the implementation of various projects. This fact
is confirmed by the analysis of the literature [22–28].

If the number of arguments of a Boolean function is greater than I, then the cor-
responding circuit can be implemented with the help of the functional decomposition
(FD) [29–32]. In this case, the resulting circuits are, as a rule, multi-level. Additionally, they
are characterized by very complex systems of “spaghetti-type” interconnections [13].

Appl. Sci. 2022, 12, 8065 5 of 35

In LUT-based FSMs, the RG is hidden and distributed among CLBs generating IMFs.
Due to it, the logic circuit of LUT-based FSM U1 consists of two logic blocks (Figure 3).

LSV

Clk

Res

Y

LY

X

T

Figure 3. Structural diagram of LUT-based FSM U1.

In Mealy FSM U1, the block LSV consists of CLBs generating SBF (2). The state code is
kept in the hidden register RG. Due to it, the pulses Res and Clk enter the block LSV. The
outputs yn ∈ Y are generated by the block LY. This block does not include flip-flops; it
implements SBF (3).

3. Related Work

This section provides a brief analysis of basic methods used for reducing the number
of LUTs in FSM circuits. We show that this problem can be solved using either a certain
state assignment or various methods of functional and structural decomposition. We show
the disadvantages inherent in the methods from these three groups. The method proposed
in this paper belongs to the group of structural decomposition methods.

Under certain conditions, there is only one level of LUTs in the circuit of U1. To
implement a single-level circuit, each function φk ∈ Φ ∪Y should depend on no more than
I arguments. However, there are up to six address inputs in the present-day LUTs [19,33,34].
To balance the area-spatial-power characteristics of a LUT, it is necessary that the number of
inputs does not exceed six [35]. Nevertheless, the total number of inputs and state variables
of an FSM can significantly exceed the value of I. This leads to an imbalance between a
very large number of FSM inputs, outputs and states, on the one hand, and a very small
number of LUT inputs, on the other hand. To reduce the negative impact of this imbalance,
it is necessary to improve the design methods of FPGA-based FSMs.

The required chip area can be reduced due to the optimizing of the system of inter-
connections for a particular circuit. Improving interconnections can reduce the power
consumption because more than 70% of the power consumption is due to the interconnec-
tions [36]. Additionally, the interconnections are responsible for the value of maximum
operating frequency of a resulting FSM circuit. As it is shown in [36], the complexity
of the interconnection system is beginning to have an increasing negative impact on the
propagation time of signals in the FSM circuits. As follows from [15], the regularization
of interconnections results in reducing both the time and power consumption. To reg-
ularize the interconnection system, it is necessary to use the structural decomposition
methods [13,37].

If the condition
NA(φk) ≤ I (4)

holds for each function φk ∈ Φ ∪Y, then there are L + R I-LUTs in a single-level circuit of
the corresponding FSM U1. However, if the condition (4) does not hold for some functions
φk ∈ Φ ∪ Y, then it becomes impossible to represent such an FSM with a single level of
LUTs. To improve the characteristics of multi-level circuits, various methods can be applied.

A significant number of optimization methods aimed at FPGA-based FSMs can be
found in the literature [13,17,18,21,32,38–41]. As a rule, these methods can improve the
value of one of the characteristics of the FSM circuit [39,40]. Additionally, there are methods
which simultaneously reduce the values of two characteristics (area and power consump-
tion, or area and performance). In our current paper, a method is proposed which aims at
reducing the LUT count of three-block circuits of Mealy FSMs [15].

Appl. Sci. 2022, 12, 8065 6 of 35

The values of NA(φk) can be reduced with the help of a proper state assignment [41–43].
The number of FSM state memory elements is in the range from R = dlog2Me to R = M.
The upper limit of this amount (R = M) corresponds to a one-hot state assignment. Both of
these extreme approaches can be found in many CAD tools, such as SIS [44], ABC [32,45] or
Sinthagate [46]. The manufacturers of FPGA chips also have their tools for implementing
the technology mapping of LUT-based circuits. Examples of such systems are Vivado [47],
Vitis [48], and Quartus [49]. The first two CAD systems were developed by AMD Xilinx,
and the third one is a product of Intel (Altera).

It is impossible to specify the approach that is optimal for any FSM. For example,
in [50], there is given the comparison of the synthesis results for FSM circuits based on state
codes with R = dlog2Me and one-hot state codes. Note that both of these approaches are
widely used in most modern CAD tools. As follows from the comparison, the one-hot codes
are the best choice for FSMs with more than 16 states. However, in addition to the value of
R, the number of input variables also has a very strong influence on the characteristics of
LUT-based FSM circuits. For example, the experiments [51] definitely show the following:
if the number of FSM inputs exceeds 10, then it is better to use the codes with a minimum
number of bits.

As follows from this analysis, it is necessary to check which method leads to the
best results for a specific combination of characteristics of a particular FSM. In this paper,
we compared the results produced by our new approach with the characteristics of FSM
circuits produced using the algorithm JEDI [44], and the methods auto (R = dlog2Me) and
one-hot (R = M) of Vivado [47] by Xilinx [19]. Our choice of JEDI is due to the fact that it is
considered one of the best deterministic methods of the state encoding [44].

If condition (4) is violated, then various methods of functional decomposition should
be applied to implement an FSM circuit [29,39]. All these methods are based on splitting
the original SOP into sub-SOPs for which the number of arguments does not exceed the
number of LUT inputs. Each sub-SOP corresponds to a partial function which differs from
the initial function φk ∈ Φ∪Y [39]. This splitting should be executed in a way that increases
the number of logic levels of the final FSM circuit as little as possible [29]. Practically, the
methods of FD are included in each academic and industrial CAD tool dealing with the
LUT-based design. The main disadvantage of FD-based methods: they produce the FSM
circuits with spaghetti-type interconnections [13]. It is known that such circuits lose in all
three main characteristics to their counterparts with a regular interconnection system [52].

The methods of structural decomposition [13] are an alternative to the methods of
FD. The main idea of these methods is the elimination of the direct connection between
FSM inputs and state variables, on the one hand, and FSM outputs and IMFs , on the other
hand. In the case of SD, an FSM circuit is represented as a composition of unique logic
blocks. This leads to an increase in the number of implemented functions, but these partial
functions are much simpler than functions (2) and (3). The analysis of these methods can
be found, for example, in [13].

The first known methods of SD are the replacement of inputs (RI) and the encoding of
the collections of outputs (ECO). They were proposed in the mid-twentieth century by M.
Wilkes for the optimization of microprogram control units [53]. In [15], we proposed the
joint use of these methods for the optimization of LUT-based Mealy FSMs’ circuits. Let us
briefly describe these two methods.

In the case of RI, the set X = {x1, . . . , xL} is replaced by a set of additional variables
B = {b1, . . . , bJ}, where J � L. The replaced inputs are represented by an SBF

B = B(T, X). (5)

Each function of (5) represents a multiplexor. Its control inputs are connected with
the state variables, and the data inputs are connected with the replaced inputs. In the case
of CLB-based solutions, these multiplexors are implemented using LUTs and dedicated
multiplexors [54].

Appl. Sci. 2022, 12, 8065 7 of 35

There are Q different COs. Each collection Yq ⊆ Y includes FSM outputs generated
during a particular interstate transition. As a rule, the condition Q < H holds, where H is
a number of interstate transitions. The COs are encoded by binary codes K(Yq). The bits of
K(Yq) are represented by elements of an additional set Z = {z1, . . . , zRQ}. The cardinality
number of the set Z is determined as

R = dlog2Qe. (6)

To encode COs, two additional SBFs should be constructed:

Z = Z(T, X); (7)

Y = Y(Z). (8)

The SBFs (7) and (8) are implemented using LUTs. Obviously, the system (8) is
represented by RQ decoders.

Combining the methods of RI and ECO leads to the replacement of both SBFs (2)
and (7). Now, the following SBFs should be constructed:

Φ = Φ(T, B); (9)

Z = Z(T, B). (10)

The SBFs (5), (8)–(10) determine a structural diagram of FSM U2 (Figure 4).

Z

BlockB

X

B

BlockY

Y

BlockZF

RG
Clk

Res

T

F

Figure 4. Structural diagram of Mealy FSM U2.

In FSM U2, a BlockB implements SBF (5). The variables bj ∈ B enter a BlockZΦ
implementing SBFs (9) and (10). The IMFs Dr ∈ Φ enter the state code register RG. The
variables zr ∈ Z are transformed into the FSM outputs yn ∈ Y by a BlockY.

In LUT-based FSMs, these blocks are implemented using the internal resources of
CLBs, inter-slice interconnections, programmable input–outputs and synchronization tree
buffers [54]. In [15], we compared the characteristics of U1- and U2-based FSMs. The
research results obtained in [15] show that the joint use of RI and ECO allows to significantly
reduce the LUT counts in FSM circuits.

To optimize an FSM circuit, we propose using the variables zr ∈ Z for generating both
FSM outputs and IMFs. To make it possible, we propose to use codes of COs generated in
two neighboring instances of the FSM discrete time.

4. Main Idea of the Proposed Method

The analysis of FSM U2 (Figure 4) allows finding its shortcomings. The main drawback
of U2 is the need to form two systems of additional variables. One of them serves to replace
the inputs xl ∈ X, and the second system is used to encode the collections of outputs. These
systems are represented by SBFs (5) and (10), respectively. To implement these systems, it
is necessary to use some internal resources of FPGA chip. The amount of resources used
can be reduced by using the same additional variables to implement both input memory
functions and FSM outputs. In our article, there is proposed such an approach. Our analysis

Appl. Sci. 2022, 12, 8065 8 of 35

of the extensive literature shows that so far, there has been no such a method. Due to it, the
proposed method has an undeniable scientific novelty.

Our method is based on using the codes of collections of FSM outputs for generating
IMFs Dr ∈ Φ. Consider Figure 5 where this idea is illustrated.

a3 a4

x / Y1 5

a5

x / Y2 3

Clk

t -1 t t +1

Figure 5. Illustration of the main idea of proposed method.

A subgraph of some STG is shown in Figure 5. The generator of pulses Clk sets the
course of discrete time t(t = 0, 1, 2, . . .). Three instances of time are shown in Figure 5. In
the instant of time t, the FSM is in the state a(t) = a4. The transition from a3 into a4 is
accompanied by producing a CO Y5. So, the following relation takes place: Yq(t) = Y5.
From STG (Figure 5), we can find that a(t + 1) = a5 and Yq(t + 1) = Y3. So, the transition
< a4, a5 > corresponds to a pair of COs < Y5, Y3 >. This transition is caused by an input
x2 ∈ X. So, the pair < a4, x2 > also corresponds to a pair of COs < Y5, Y3 >. This means
that IMFs can be represented using only codes of COs.

In FSM U2, the SOPs of functions Dr ∈ Φ include product terms Fh determined as

Fh = Am ∧ Bh. (11)

In (11), the symbol Am stands for a conjunction of the state variables corresponding to
the code of a current state am written in the h-th row of DST; the symbol Bh stands for a
conjunction of additional variables replacing the input signal Xh written in the h-th row
of DST (h ∈ {1, . . . , H}). If a pair < am, Xh > determines the h-th transition of an FSM,
then we propose to replace it by a pair of COs (as it follows from Figure 5). So, we propose
to construct the SOPs of functions Dr ∈ Φ using product terms formed by conjunctions
corresponding to codes of COs replacing a pair < am, Xh >.

To do it, we should use different sets of variables to encode COs Y(t) and Y(t + 1).
For example, we use the elements of the set Z = {z1, . . . , zRQ} to encode a CO Y(t + 1)
and the elements of a set V = {v1, . . . , vRQ} to encode a CO Y(t). Obviously, this actually
doubles the number of variables encoding the collections of outputs compared to (6). To
avoid doubling the resources used for the encoding, we propose using two interconnected
registers for storing the codes of COs. This approach results in FSM U3 (Figure 6).

Z

LZ

X

Y

RV

Clk

Res

Clk

ResLY

LT
T

V

Figure 6. Structural diagram of LUT-based Mealy FSM U3.

In FSM U3, a block LZ implements SBF (7). There is a distributed register RZ inside
of the block LZ. The register keeps the codes of COs Y(t + 1). This explains the presence
of pulses Clk and Res entering LZ. The variables zr ∈ Z are inputs of both a block LY and
a register RV. The block LY implements SBF (8). The register RV de facto transforms the
variables zr ∈ Z into the variables vr ∈ V representing the codes of COs Y(t). As follows

Appl. Sci. 2022, 12, 8065 9 of 35

from Figure 6, the same pulses Clk and Res are used by both registers. A block LT generates
the state variables Tr ∈ T represented by an SBF

T = T(Z, V). (12)

There are the following product terms in SOPs of the SBF (12):

Eh = Zh ∧Vh (h ∈ {1, . . . , HZV}). (13)

In (13), the symbols Zh and Vh stand for conjunctions of the variables zr ∈ Z and
vr ∈ V, respectively. As we show a bit later, the following condition can take place:
H 6= HZV .

In this paper, we propose a synthesis method for U3-based Mealy FSMs. We assume
that the FSM to be synthesized is represented by its STG. The proposed method includes
the following steps:

1. Constructing the STT corresponding to an initial STG.
2. Executing the state assignment using maximum binary codes K(am).
3. Encoding of collections of outputs Yq ⊆ Y by binary codes K(Yq).
4. Finding the SBF Y = Y(Z).
5. Creating the modified DST of FSM U1.
6. Creating a table of pairs Pg =< Yi, Yj > corresponding to pairs < am, Xh >.
7. Creating a table representing the block LZ and SBF Z = Z(T, X).
8. Creating a table representing the block LT and SBF T = T(Z, V).
9. Implementing the LUT-based circuit of Mealy FSM U3 using internal resources of a

particular FPGA chip.

Let us analyze the complexity of the proposed method. Because each FSM transition
should be transformed into a pair of COs, the time of synthesis depends on the number
of FSM transitions. The synthesis algorithm does not include iterations. The pairs of COs
are formed strictly sequentially: at each moment of time, the next in line transition is
transformed into a pair of COs. In this regard, the algorithm has a linear character.

5. Example of Synthesis

We use the symbol Ui(Sa) to show that the model Ui(i ∈ {1, 2, 3}) of Mealy FSM is
used to implement the circuit of an FSM Sa . Let us consider an example of the synthesis of
Mealy FSM U3(S1) shown in Figure 7. We use 4-LUTs to implement the circuit.

a 1

a 2

x1/y 1y 2

a 3

x1/y 3

x1/y 2y 4

a 4

x1x2/y 3

a 5

x1x2/y 3y 5

1/y 1y 3y 6

x3/-

x3/y 3y 5

1/-

Figure 7. STG of Mealy FSM S1.

Using an STG, we can find the sets of states, inputs and outputs, as well as the
number of interstate transitions. Using Figure 7, we can find the sets A = {a1, . . . , a5},

Appl. Sci. 2022, 12, 8065 10 of 35

X = {x1, x2, x3} and Y = {y1, . . . , y6}. This gives the following values: M = 3, L = 3, and
N = 6. The analysis of Figure 7 shows that there are H = 9 transitions between the states
of FSM S1. Naturally, the state a1 ∈ A is the initial state.

Step 1. The transformation of an STG into an equivalent STT is executed in the trivial
way [16]. As follows from Figure 2, each arc of the STG is transformed in a row of the
corresponding STT. In our case, Table 2 is an STT of Mealy FSM S1 corresponding to the
STG shown in Figure 7.

Table 2. State transition table of Mealy FSM S1.

am aT Xh Yh h

a1 a2 x1 y1y2 Y1 1
a3 x1 y3 Y2 2

a2 a3 x1 y2y4 Y3 3
a4 x1x2 y3 Y2 4
a5 x1 x2 y3y5 Y4 5

a3 a4 1 y1y3y6 Y5 6

a4 a5 x3 y3y5 Y4 7
a1 x3 – Y0 8

a5 a1 1 – Y0 9

In the column Yh of Table 2, we show the collections of outputs Yq ⊆ Y. As a rule, such
information is not given in the classical STT [5].

Step 2. For FSM S1, there is M = 5. Using (1) gives R = 3. This determines the set
of state variables T = {T1, T2, T3}. It is possible to encode the states in a way optimizing
the system (7). For example, this can be done using the algorithm JEDI [44]. In our simple
example, we use the trivial way of state assignment [5] with the following state codes:
K(a1) = 000, K(a2) = 001,. . . , K(a5) = 100.

Step 3. Using Table 2, we can find the following collections of outputs: Y0 = ∅,
Y1 = {y1, y2}, Y2 = {y3}, Y3 = {y2, y4}, Y4 = {y3, y5}, and Y5 = {y1, y3, y6}. So, in our
example, there is Q = 6.

As shown in [13], it is necessary to encode the collections in a way that minimizes the
number of literals in functions from (8). If the condition

RQ > I (14)

holds, then such an approach could minimize the LUT count for the block LY [13,15,37].
To encode the COs, we use the approach proposed in [55]. The outcome of encoding is

shown in Figure 8.

z1z2

z3 00 01 11 10

0

1

Y0 ∗ Y1Y3

Y2 Y4 Y5∗

Figure 8. The outcome of encoding of COs for FSM S1.

Appl. Sci. 2022, 12, 8065 11 of 35

Step 4. Using the distribution of FSM outputs by COs and codes (Figure 8), we obtain
the following SBF:

y1 = Y1 ∨Y5 = z1z2;
y2 = Y1 ∨Y3 = z1z3;
y3 = Y2 ∨Y4 ∨Y5 = z3;
y4 = Y3 = z1z2;
y5 = Y4 = z2z3;
y6 = Y5 = z1z3;

(15)

The analysis of (15) shows that there are 11 literals in this system. So, there are
11 interconnections between the blocks LZ and LY. As shown in [13], in the common
case, there are NRQ = 21 interconnections between these blocks. Therefore, using the
approach [55] allows reducing the number of interconnections by 1.91 times.

Step 5. The columns of a DST are shown in Figure 2c. We have modified the traditional
DST. The column Yh is replaced by a column Zh (Table 3).

Table 3. Modified DST of Mealy FSM U1(S1).

am K(am) aT K(aT) Xh Φh Zh h

a1 000 a2 001 x1 D3 z1 1
a3 010 x1 D2 z3 2

a2 001 a3 010 x1 D2 z1z2 3
a4 011 x1x2 D2D3 z3 4
a5 100 x1 x2 D1 z2z3 5

a3 010 a4 011 1 D2D3 z1z3 6

a4 011 a5 100 x3 D1 z2z3 7
a1 000 x3 – – 8

a5 100 a1 000 1 – – 9

Step 6. The first five steps of this example are performed using known techniques [13,15].
Starting from the sixth step, the features of our method appear. Since we propose to
represent the terms of IMFs in the form of conjunctions corresponding to the codes of COs
at adjacent operation cycles, it is necessary to find these pairs of COs. For these purposes, a
table of pairs should be built.

A table of pairs Pg =< Yi, Yj > shows a correspondence between these pairs and the
pairs < am, Xh >. There are six columns in this table: am (a current state); aT (a transition
state); Ym (a CO produced during the transition into the state am); YT (a CO produced
during the interstate transition < am, aT >); Pg (a pair < Ym, YT >); and g (the number of a
table row, g ∈ {1, . . . , G}). The following condition holds:

G ≥ H. (16)

For example, in the discussed case, there is G = 12 (Table 4).
Let us explain why the relation (16) takes place. For example, there is a single transition

< a3, a4 > in Table 2. This transition is accompanied by CO Y5. At the same time, there
are two rows in Table 4 representing this transition. This is explained by the fact that two
different COs are produced during the transitions into a3 ∈ A. As follows from either
the STG (Figure 7) or the STT (Table 2), the transition < a1, a3 > is accompanied by the
generating CO Y2 (the row 2 of Table 2), and the transition < a2, a3 > is accompanied by the
generating CO Y3 (the row 3 of Table 2). Due to it, the transition < a3, a4 > is represented
by the pairs P6 =< Y2, Y5 > and P7 =< Y3, Y5 >.

The similar analysis allows filling all rows of Table 4. Each transition from states
a1, a2, a5 ∈ A is represented by a single pair. However, two transitions from a4 ∈ A are
represented by four pairs P8 − P11 (Table 4).

Appl. Sci. 2022, 12, 8065 12 of 35

Step 7. The table of block LZ (Table 5) is created using the modified DST (Table 3). This
table includes only a part of the DST columns: am, K(am), Xh; Zh and h.

Table 4. Table of pairs Pg for Mealy FSM U3(S1).

am aT Ym YT Pg g

a1 a2 Y0 Y1 P1 1

a1 a3 Y0 Y2 P2 2

a2 a3 Y1 Y3 P3 3

a2 a4 Y1 Y2 P4 4

a2 a5 Y1 Y4 P5 5

a3 a4 Y2 Y5 P6 6

a3 a4 Y3 Y5 P7 7

a4 a5 Y2 Y4 P8 8

a4 a1 Y2 Y0 P9 9

a4 a5 Y5 Y4 P10 10

a4 a1 Y5 Y0 P11 11

a5 a1 Y4 Y0 P12 12

Obviously, SOPs of SBF (7) include the product terms Fh = AmXh(h ∈ {1, . . . , H}).
Using Table 5 gives the following minimized SOPs:

z1 = (F1 ∨ F3) ∨ F6 = T1 T2 x1 ∨ T1 T2 T3;
z2 = F3 ∨ F5 ∨ F7;
z3 = (F2 ∨ F4 ∨ F5) ∨ F6 ∨ F7 = T1 T2 x1 ∨ T2 T3 ∨ T2T3x3.

(17)

Step 8. This step is presented only in our proposed method. As follows from (12), the
state variables Tr ∈ T depend on variables encoding COs. So, it is necessary to construct a
table reflecting this dependence. To do it, each transition from the initial state transition
table (Table 2) must be represented as a transition between the COs from the adjacent cycles
of operation times. This dependence is shown in the table of LT.

The table of LT includes seven columns. They are the following: Ym,K(Ym), YT , K(YT),
aT , Tg, and g. This table is constructed using the columns Ym, YT , aT of the table of pairs
(Table 4), the codes of COs (Figure 8) and state codes K(aT). In the discussed case, there are
G = 12 rows in this table (Table 6).

Table 5. Table of block LZ of Mealy FSM U3(S1).

am K(am) Xh Zh h

a1 000 x1 z1 1
x1 z3 2

a2 001 x1 z1z2 3
x1x2 z3 4
x1 x2 z2z3 5

a3 010 1 z1z3 6

a4 011 x3 z2z3 7
x3 – 8

a5 100 1 – 9

Appl. Sci. 2022, 12, 8065 13 of 35

Table 6. Table of block LT of Mealy FSM U3(S1).

Ym K(Ym) YT K(YT) aT Tg g

Y0 000 Y1 100 a2 T3 1

Y0 000 Y2 001 a3 T2 2

Y1 100 Y3 110 a3 T2 3

Y1 100 Y2 001 a4 T2T3 4

Y1 100 Y4 011 a5 T1 5

Y2 001 Y5 101 a4 T2T3 6

Y3 110 Y5 101 a4 T2T3 7

Y2 001 Y4 011 a5 T1 8

Y2 001 Y0 000 a1 – 9

Y5 101 Y4 011 a5 T1 10

Y5 101 Y0 000 a1 – 11

Y4 011 Y0 000 a1 – 12

For example, the following relations take places for the first row of Table 4: Ym = Y0,
YT = Y1 and aT = a2. As follows from Figure 8, there are the codes K(Y0) = 000 and
K(Y1) = 100. As follows, for example, from Table 5, there is the state code K(a2) = 001. So,
the column Tg of Table 6 contains the symbol T3 for the row g = 1. All other rows are filled
in the same manner.

Using the table of LT, the SBF (12) is derived. The SOPs of corresponding functions
include the terms (13). In the discussed case, this is the following SBF:

T1 = P5 ∨ P8 ∨ P10 = v1 v2 v3 z1 z2 ∨ v1 v2 v3 z1 z2 ∨ v1v3 z1 z2;
T2 = P2 ∨ P3 ∨ P4 ∨ P6 ∨ P7;
T3 = P4 ∨ P6 ∨ P7.

(18)

Step 9. To obtain the LUT-based circuit of Mealy FSM U3(S1), the step of technology
mapping should be executed [31]. This can be done only with the help of some industrial
CAD tools. In the case of Virtex-7-based circuits, the industrial package Vivado [47] should
be used. This CAD tool executes the process of technology mapping. As a result, we can
extract the real characteristics of an FSM circuit (such as the LUT count, number of slices,
number of flip-flops, maximum operating frequency, and power consumption) from the
Vivado reports.

This CAD tool can be used starting from the FPGAs of the Virtex-7 family. So, it is
impossible to use Vivado for implementing the circuit of FSM U3(S1) using LUTs with four
inputs. In the next section, there are shown the results of experiments conducted with
the help of the industrial CAD package Vivado and the library of standard benchmark
FSMs [56].

6. Experimental Results

In this section, there are shown the results of experiments which were conducted
to compare the characteristics of U3-based Mealy FSMs with the characteristics of FSM
circuits based on some other models. The benchmark FSMs from the library [56] are used
for these experiments. This library includes 48 benchmarks represented in the format KISS2
taken from the practice of logic design. Although the library dates back to the 1990s of the
twentieth century, it has been used by various authors for 30 years to compare the new
and existing methods of implementing FSM circuits. Let us indicate only some examples
of articles and monographs, where the library [56] is used in experimental research. Such

Appl. Sci. 2022, 12, 8065 14 of 35

works include, for example, articles [31,35,52,57–59] and monographs [6,39]. The basic
characteristics of benchmarks are shown in Table 7.

Table 7. Basic characteristics of benchmarks from library [56].

Benchmark L N R + L M/R H Group

bbara 4 2 8 12/4 60 1

bbsse 7 7 12 26/5 56 1

bbtas 2 2 6 9/4 24 0

beecount 3 4 7 10/4 28 1

cse 7 7 12 32/5 91 1

dk14 3 5 8 26/5 56 1

dk15 3 5 8 17/5 32 1

dk16 2 3 9 75/7 108 1

dk17 2 3 6 16/4 32 0

dk27 1 2 5 10/4 14 0

dk512 1 3 6 24/5 15 0

donfile 2 1 7 24/5 96 1

ex1 9 19 16 80/7 138 2

ex2 2 2 7 25/5 72 1

ex3 2 2 6 14/4 36 0

ex4 6 9 11 18/5 21 1

ex5 2 2 6 16/4 32 0

ex6 5 8 9 14/4 34 1

ex7 2 2 12 17/5 36 1

keyb 7 7 12 22/5 170 1

kirkman 12 6 18 48/6 370 2

lion 2 1 5 5/3 11 0

lion9 2 1 6 11/4 25 0

mark1 5 16 10 22/5 22 1

mc 3 5 6 8/3 10 0

modulo12 1 1 5 12/4 24 0

opus 5 6 10 18/5 22 1

planet 7 19 14 86/7 115 2

planet1 7 19 14 86/7 115 2

pma 8 8 14 49/6 73 2

s1 8 7 14 54/6 106 2

s1488 8 19 15 112/7 251 2

s1494 8 19 15 118/7 250 2

s1a 8 6 15 86/7 107 2

s208 11 2 17 37/6 153 2

s27 4 1 8 11/4 34 1

s386 7 7 12 23/5 64 1

s420 19 2 27 137/8 137 4

s510 19 7 27 172/8 77 4

s8 4 1 8 15/4 20 1

s820 18 19 25 78/7 232 4

s832 18 19 25 76/7 245 4

sand 11 9 18 88/7 184 3

shiftreg 1 1 5 16/4 16 0

sse 7 7 12 26/5 56 1

styr 9 10 16 67/7 166 2

tma 7 9 13 63/6 44 2

Appl. Sci. 2022, 12, 8065 15 of 35

To conduct the research, we use a personal computer with the following characteristics:
CPU, Intel Core i7 6700 K 4.2@4.4 GHz and memory, 16 GB RAM 2400MHz CL15. As
a platform for FSM circuits implementation, the Virtex-7 VC709 Evaluation Platform
(xc7vx690tffg1761-2) [60] is used. As a CAD tool, we use the package Vivado v2019.1
(64-bit) of Xilinx [47]. The circuits are implemented using CLBs from the slices SLICEL.
They include LUTs having six inputs. To create the tables with research results, the reports
of Vivado are used. To link the initial KISS2-based files with Vivado, we create VHDL-based
descriptions of these models. To do it, the CAD tool K2F [40] is used.

Using the Vivado reports, we compare some parameters of produced FSM circuits.
These parameters are (1) the required chip area occupied by an FSM circuit (the LUT
count represents this characteristic); (2) the maximum operating frequency achievable
for a particular FSM; (3) the required number of flip-flops; (4) the power consumption;
(5) the area-time products; and (6) the power–time products. In our experiments, we use
the following FSM models: (1) auto of Vivado (it is based on the maximum binary state
codes); (2) one-hot of Vivado (in this case, R = M); (3) JEDI; (4) U2-based FSMs [15]; and
(5) U3-based FSMs proposed in this article.

As it is in our previous research [15], the benchmark FSMs are divided by five groups.
The groups are determined by the value of a parameter D(R, L, I). This parameter is
calculated as

D(R, L, I) = L + R− I. (19)

Using (19), we create the following groups. The relation D(R, L, I) ≤ 0 determines
the group of trivial FSMs (the group G0). The relation 0 < D(R, L, I) ≤ 6 determines
the group of simple FSMs (G1). The relation 6 < D(R, L, I) ≤ 12 determines the group
of average FSMs (G2). The relation 12 < D(R, L, I) ≤ 18 determines the group of big
FSMs (G3). The relation D(R, L, I) > 18 determines the group of very big FSMs (G4). As
research [15] shows, the larger the group number, the greater the gain from the use of
methods of structural decomposition.

The results of the experiments are shown in Tables 8–20. We have organized these
tables in the following way. In the table columns, we show the names of the methods
used. The table rows are marked by the names of benchmarks. At the intersection of
a column with a method and a row with a benchmark, we show the result of a specific
experiment obtained from the Vivado report. Inside each table, the benchmarks are listed
in alphabetical order and sorted by ascending group number. The rows “Total” contain
the results of summation of values for each column. The row “Percentage” includes the
percentage of summarized characteristics of FSM circuits produced by other methods,
respectively, to U3-based FSMs. We use the model of Mealy FSM U1 for methods auto,
one-hot, and JEDI.

These tables include the following information: (1) the LUT counts for all benchmarks
(Table 8); (2) the LUT counts for benchmarks of the group G0 (Table 9); (3) the LUT
counts for benchmarks of the group G1 (Table 10); (4) the LUT counts for benchmarks of
groups G2, G3 and G4 (Table 11); (5) the maximum operating frequency for all benchmarks
(Table 12); (6) the maximum operating frequency for benchmarks of the group G0
(Table 13); (7) the maximum operating frequency for benchmarks of the group G1
(Table 14); and (8) the maximum operating frequency for benchmarks of the groups G2–G4
(Table 15).

To fill in the tables with the research results, we use data from our previous articles.
Basically, all numbers are taken from papers [13,61]. However, information about the
number of flip-flops is mentioned only in paper [14]. Therefore, we used Ref. [14] to fill
in Table 16. The necessary information regarding the proposed method is taken from the
Vivado reports.

The following conclusions can be made from the analysis of Tables 8–15.

Appl. Sci. 2022, 12, 8065 16 of 35

Table 8. Experimental results (LUT counts for all benchmarks).

Benchmark Auto [13] One-Hot [13] JEDI [14] U2 [61] Our Approach Group

bbtas 5 5 5 8 8 0

dk17 5 12 5 8 8 0

dk27 3 5 4 7 7 0

dk512 10 10 9 12 13 0

ex3 9 9 9 11 11 0

ex5 9 9 9 10 10 0

lion 2 5 2 6 6 0

lion9 6 11 5 8 8 0

mc 4 7 4 6 6 0

modulo12 7 7 7 9 9 0

shiftreg 2 6 2 4 4 0

bbara 17 17 10 10 11 1

bbsse 33 37 24 26 24 1

beecount 19 19 14 14 13 1

cse 40 66 36 33 32 1

dk14 16 27 10 12 11 1

dk15 15 16 12 6 7 1

dk16 15 34 12 11 10 1

donfile 31 31 24 21 20 1

ex2 9 9 8 8 9 1

ex4 15 13 12 11 10 1

ex6 24 36 22 21 20 1

ex7 4 5 4 6 7 1

keyb 43 61 40 37 38 1

mark1 23 23 20 19 18 1

opus 28 28 22 21 20 1

s27 6 18 6 6 7 1

s386 26 39 22 25 22 1

s8 9 9 9 9 10 1

sse 33 37 30 26 25 1

ex1 70 74 53 40 34 2

kirkman 42 58 39 33 29 2

planet 131 131 88 78 71 2

planet1 131 131 88 78 71 2

pma 94 94 86 72 68 2

s1 65 99 61 54 50 2

s1488 124 131 108 89 86 2

s1494 126 132 110 90 80 2

s1a 49 81 43 38 34 2

s208 12 31 10 9 11 2

styr 93 120 81 70 62 2

tma 45 39 39 30 29 2

sand 132 132 114 99 82 3

s420 10 31 9 8 9 4

s510 48 48 32 22 20 4

s820 88 82 68 52 48 4

s832 80 79 62 50 46 4

Total 1808 2104 1489 1323 1234

Percentage,% 146.52 170.50 120.66 107.21 100.00

Appl. Sci. 2022, 12, 8065 17 of 35

Table 9. Experimental results (LUT counts for benchmarks of G0).

Benchmark Auto [13] One-Hot [13] JEDI [14] U2 [61] Our Approach

bbtas 5 5 5 8 8

dk17 5 12 5 8 8

dk27 3 5 4 7 7

dk512 10 10 9 12 13

ex3 9 9 9 11 11

ex5 9 9 9 10 10

lion 2 5 2 6 6

lion9 6 11 5 8 8

mc 4 7 4 6 6

modulo12 7 7 7 9 9

shiftreg 2 6 2 4 4

Total 62 86 61 89 90

Percentage,% 68.89 95.56 67.78 98.89 100.00

Table 10. Experimental results (LUT counts for benchmarks of G1).

Benchmark Auto [13] One-Hot [13] JEDI [14] U2 [61] Our Approach

bbara 17 17 10 10 11

bbsse 33 37 24 26 24

beecount 19 19 14 14 13

cse 40 66 36 33 32

dk14 16 27 10 12 11

dk15 15 16 12 6 7

dk16 15 34 12 11 10

donfile 31 31 24 21 20

ex2 9 9 8 8 9

ex4 15 13 12 11 10

ex6 24 36 22 21 20

ex7 4 5 4 6 7

keyb 43 61 40 37 38

mark1 23 23 20 19 18

opus 28 28 22 21 20

s27 6 18 6 6 7

s386 26 39 22 25 22

s8 9 9 9 9 10

sse 33 37 30 26 25

Total 406 525 337 322 314

Percentage,% 129.30 167.20 107.32 102.55 100.00

Appl. Sci. 2022, 12, 8065 18 of 35

Table 11. Experimental results (LUT counts for benchmarks of G2–G4).

Benchmark Auto [13] One-Hot [13] JEDI [14] U2 [61] Our Approach

ex1 70 74 53 40 34

kirkman 42 58 39 33 29

planet 131 131 88 78 71

planet1 131 131 88 78 71

pma 94 94 86 72 68

s1 65 99 61 54 50

s1488 124 131 108 89 86

s1494 126 132 110 90 80

s1a 49 81 43 38 34

s208 12 31 10 9 11

styr 93 120 81 70 62

tma 45 39 39 30 29

sand 132 132 114 99 82

s420 10 31 9 8 9

s510 48 48 32 22 20

s820 88 82 68 52 48

s832 80 79 62 50 46

Total 1340 1493 1091 912 830

Percentage,% 161.45 179.88 131.45 109.88 100.00

Table 12. Experimental results (the maximum operating frequency for all benchmarks).

Benchmark Auto [13] One-Hot [13] JEDI [14] U2 [14] Our Approach Group

bbtas 204.16 204.16 206.12 200.38 199.48 0

dk17 199.28 167 199.39 199.87 198.03 0

dk27 206.02 201.9 204.18 196.65 194.18 0

dk512 196.27 196.27 199.75 194.17 192.34 0

ex3 194.86 194.86 195.76 191.22 188.14 0

ex5 180.25 180.25 181.16 178.06 176.74 0

lion 202.43 204 202.35 200.18 199.12 0

lion9 205.3 185.22 206.38 199.12 197.07 0

mc 196.66 195.47 196.87 193.17 191.52 0

modulo12 207 207 207.13 201.12 200.23 0

shiftreg 262.67 263.57 276.26 256.69 253.24 0

bbara 193.39 193.39 212.21 202.23 201.12 1

bbsse 157.06 169.12 182.34 181.23 178.64 1

beecount 166.61 166.61 187.32 185.14 183.72 1

Appl. Sci. 2022, 12, 8065 19 of 35

Table 12. Cont.

Benchmark Auto [13] One-Hot [13] JEDI [14] U2 [14] Our Approach Group

cse 146.43 163.64 178.12 175.18 172.42 1

dk14 191.64 172.65 193.85 190.18 188.86 1

dk15 192.53 185.36 194.87 192.23 191.48 1

dk16 169.72 174.79 197.13 194.34 192.83 1

donfile 184.03 184 203.65 200.92 198.47 1

ex2 198.57 198.57 200.14 198.32 197.26 1

ex4 180.96 177.71 192.83 190.14 188.32 1

ex6 169.57 163.8 176.59 171.27 170.18 1

ex7 200.04 200.84 200.6 198.14 197.38 1

keyb 156.45 143.47 168.43 162.01 161.25 1

mark1 162.39 162.39 176.18 170.18 168.04 1

opus 166.2 166.2 178.32 175.29 173.41 1

s27 198.73 191.5 199.13 196.13 194.17 1

s386 168.15 173.46 179.15 176.85 174.62 1

s8 180.02 178.95 181.23 178.23 176.22 1

sse 157.06 169.12 174.63 170.12 167.43 1

ex1 150.94 139.76 176.87 182.34 180.01 2

kirkman 141.38 154 156.68 167.15 165.62 2

planet 132.71 132.71 187.14 189.12 187.07 2

planet1 132.71 132.71 187.14 189.12 187.07 2

pma 146.18 146.18 169.83 178.19 176.26 2

s1 146.41 135.85 157.16 162.23 164.12 2

s1488 138.5 131.94 157.18 168.32 167.14 2

s1494 149.39 145.75 164.34 172.27 170.95 2

s1a 153.37 176.4 169.17 178.21 176.25 2

s208 174.34 176.46 178.76 181.72 180.29 2

styr 137.61 129.92 145.64 161.87 159.25 2

tma 163.88 147.8 164.14 176.72 175.06 2

sand 115.97 115.97 126.82 145.68 152.49 3

s420 173.88 176.46 177.25 187.23 190.56 4

s510 177.65 177.65 181.42 187.32 190.24 4

s820 152 153.16 176.58 181.96 183.12 4

s832 145.71 153.23 173.78 186.12 187.45 4

Total 8127.08 8061.22 8701.97 8536.27 8658.86

Percentage,% 93.86 93.10 100.50 98.58 100.00

Appl. Sci. 2022, 12, 8065 20 of 35

Table 13. Experimental results (the maximum operating frequency for G0).

Benchmark Auto [13] One-Hot [13] JEDI [14] U2 [14] Our Approach

bbtas 204.16 204.16 206.12 200.38 199.48

dk17 199.28 167 199.39 199.87 198.03

dk27 206.02 201.9 204.18 196.65 194.18

dk512 196.27 196.27 199.75 194.17 192.34

ex3 194.86 194.86 195.76 191.22 188.14

ex5 180.25 180.25 181.16 178.06 176.74

lion 202.43 204 202.35 200.18 199.12

lion9 205.3 185.22 206.38 199.12 197.07

mc 196.66 195.47 196.87 193.17 191.52

modulo12 207 207 207.13 201.12 200.23

shiftreg 262.67 263.57 276.26 256.69 253.24

Total 2254.90 2199.70 2275.35 2032.57 2190.09

Percentage,% 102.96 100.44 103.89 92.81 100.00

Table 14. Experimental results (the maximum operating frequency for G1).

Benchmark Auto [13] One-Hot [13] JEDI [14] U2 [14] Our Approach

bbara 193.39 193.39 212.21 202.23 201.12

bbsse 157.06 169.12 182.34 181.23 178.64

beecount 166.61 166.61 187.32 185.14 183.72

cse 146.43 163.64 178.12 175.18 172.42

dk14 191.64 172.65 193.85 190.18 188.86

dk15 192.53 185.36 194.87 192.23 191.48

dk16 169.72 174.79 197.13 194.34 192.83

donfile 184.03 184 203.65 200.92 198.47

ex2 198.57 198.57 200.14 198.32 197.26

ex4 180.96 177.71 192.83 190.14 188.32

ex6 169.57 163.8 176.59 171.27 170.18

ex7 200.04 200.84 200.6 198.14 197.38

keyb 156.45 143.47 168.43 162.01 161.25

mark1 162.39 162.39 176.18 170.18 168.04

opus 166.2 166.2 178.32 175.29 173.41

s27 198.73 191.5 199.13 196.13 194.17

s386 168.15 173.46 179.15 176.85 174.62

s8 180.02 178.95 181.23 178.23 176.22

sse 157.06 169.12 174.63 170.12 167.43

Total 3339.55 3335.57 3576.72 3508.13 3475.82

Percentage,% 96.08 95.96 102.90 100.93 100.00

Appl. Sci. 2022, 12, 8065 21 of 35

Table 15. Experimental results (the maximum operating frequency for G2–G4).

Benchmark Auto [13] One-Hot [13] JEDI [14] U2 [14] Our Approach

ex1 150.94 139.76 176.87 182.34 180.01

kirkman 141.38 154 156.68 167.15 165.62

planet 132.71 132.71 187.14 189.12 187.07

planet1 132.71 132.71 187.14 189.12 187.07

pma 146.18 146.18 169.83 178.19 176.26

s1 146.41 135.85 157.16 162.23 164.12

s1488 138.5 131.94 157.18 168.32 167.14

s1494 149.39 145.75 164.34 172.27 170.95

s1a 153.37 176.4 169.17 178.21 176.25

s208 174.34 176.46 178.76 181.72 180.29

styr 137.61 129.92 145.64 161.87 159.25

tma 163.88 147.8 164.14 176.72 175.06

sand 115.97 115.97 126.82 145.68 152.49

s420 173.88 176.46 177.25 187.23 190.56

s510 177.65 177.65 181.42 187.32 190.24

s820 152 153.16 176.58 181.96 183.12

s832 145.71 153.23 173.78 186.12 187.45

Total 2532.63 2525.95 2849.90 2995.57 2992.95

Percentage,% 84.62 84.40 95.22 100.09 100.00

As follows from Table 8, the U3-based FSMs require fewer LUTs than do the other
investigated methods. Our approach produces circuits with 46.52% less 6-LUTs than for
equivalent auto-based FSMs; 70.50% less 6-LUTs than for equivalent one-hot-based FSMs;
and 20.66% less 6-LUTs than for equivalent JEDI-based FSMs. Additionally, our approach
provides the gain (7.21%) respectively to equivalent U2–based FSMs. However, the amount
of gain (or loss) depends on each group that a particular benchmark belongs to.

As follows from Table 9, our approach loses compared to all other investigated meth-
ods. There are the following losses: 30.11% relative to auto-based FSMs; 4.44% relative to
one-hot-based FSMs; 32.22% relative to JEDI-based FSMs (7.58% loss); and 1.11% relative
to U2-based FSMs. So, it does not make sense to use the U3-based FSMs to implement the
circuits for FSMs of the group G0.

Let us explain the reasons for these losses. Comparing the results for group G0 shows
that both multilevel approaches (U2 and U3) lose out to the other methods. For FSM U2,
the loss is 30% compared to auto-based FSMs, 3.43% compared to one-hot-based FSMs,
and 31.11% compared to JEDI-based FSMs. We explain this by the fact that condition (4)
holds for benchmarks of G0. In this case, only a single LUT is needed to implement any
function from SBFs (2) and (3). So, there is no need in the encoding of COs. However, as
follows from Figures 4 and 6, this method is always used in both multi-level FSMs U2 and
U3. Due to it, for the group G0, the multilevel FSMs have higher LUT counts than for the
other investigated design methods.

Appl. Sci. 2022, 12, 8065 22 of 35

Table 16. Experimental results (number of flip-flops).

Benchmark Auto [14] One-Hot [14] JEDI [14] U2 [14] Our Approach Group

bbtas 4 9 4 4 6 0

dk17 4 16 4 4 6 0

dk27 4 10 4 4 6 0

dk512 5 24 5 5 6 0

ex3 4 14 4 4 6 0

ex5 4 16 4 4 6 0

lion 3 5 3 3 4 0

lion9 4 11 4 4 4 0

mc 3 8 3 3 6 0

modulo12 4 12 4 4 6 0

shiftreg 4 16 4 4 6 0

bbara 4 12 4 4 4 1

bbsse 5 26 5 5 8 1

beecount 4 10 4 4 6 1

cse 5 32 5 5 10 1

dk14 5 26 5 5 8 1

dk15 5 17 5 5 8 1

dk16 7 75 7 7 6 1

donfile 5 24 5 5 2 1

ex2 5 25 5 5 4 1

ex4 5 18 5 5 8 1

ex6 4 14 4 4 8 1

ex7 5 17 5 5 4 1

keyb 5 22 5 5 10 1

mark1 5 22 5 5 8 1

opus 5 18 5 5 8 1

s27 4 11 4 4 4 1

s386 5 23 5 5 10 1

s8 4 15 4 4 4 1

sse 5 26 5 5 10 1

ex1 7 80 7 7 12 2

kirkman 6 48 6 6 12 2

planet 7 86 7 7 12 2

planet1 7 86 7 7 12 2

pma 6 49 6 6 10 2

s1 6 54 6 6 12 2

s1488 7 112 7 7 14 2

Appl. Sci. 2022, 12, 8065 23 of 35

Table 16. Cont.

Benchmark Auto [14] One-Hot [14] JEDI [14] U2 [14] Our Approach Group

s1494 7 118 7 7 16 2

s1a 7 86 7 7 14 2

s208 6 37 6 6 12 2

styr 7 67 7 7 14 2

tma 6 63 6 6 10 2

sand 7 88 7 7 14 3

s420 8 137 8 8 16 4

s510 8 172 8 8 12 4

s820 7 78 7 7 14 4

s832 7 76 7 7 16 4

Total 251 2011 251 251 414

Percentage,% 60.63 485.75 60.63 60.63 100.00

Table 17. Experimental results (number of flip flops with regard to the register of outputs).

Benchmark Auto One-Hot JEDI U2 Our Approach Group

bbtas 6 11 6 6 6 0

dk17 7 19 7 7 6 0

dk27 6 12 6 6 6 0

dk512 8 27 8 8 6 0

ex3 6 16 6 6 6 0

ex5 6 18 6 6 6 0

lion 4 6 4 4 4 0

lion9 5 12 5 5 4 0

mc 8 13 8 8 6 0

modulo12 5 13 5 5 6 0

shiftreg 5 17 5 5 6 0

bbara 6 14 6 6 4 1

bbsse 12 33 12 12 8 1

beecount 12 18 12 12 6 1

cse 19 46 19 19 10 1

dk14 10 31 10 10 8 1

dk15 10 22 10 10 8 1

dk16 10 78 10 10 6 1

donfile 6 25 6 6 2 1

ex2 7 27 7 7 4 1

ex4 14 27 14 14 8 1

ex6 12 22 12 12 8 1

ex7 7 19 7 7 4 1

keyb 12 29 12 12 10 1

mark1 21 38 21 21 8 1

opus 11 24 11 11 8 1

Appl. Sci. 2022, 12, 8065 24 of 35

Table 17. Cont.

Benchmark Auto One-Hot JEDI U2 Our Approach Group

s27 5 12 5 5 4 1

s386 12 30 12 12 10 1

s8 5 16 5 5 4 1

sse 12 33 12 12 10 1

ex1 26 99 26 26 12 2

kirkman 12 54 12 12 12 2

planet 26 105 26 26 12 2

planet1 26 105 26 26 12 2

pma 14 57 14 14 10 2

s1 13 61 13 13 12 2

s1488 26 131 26 26 14 2

s1494 26 137 26 26 16 2

s1a 13 92 13 13 14 2

s208 8 39 8 8 12 2

styr 17 77 17 17 14 2

tma 15 72 15 15 10 2

sand 16 97 16 16 14 3

s420 10 139 10 10 16 4

s510 15 179 15 15 12 4

s820 26 97 26 26 14 4

s832 26 95 26 26 16 4

Total 584 2344 584 584 414

Percentage,% 141.06 566.18 141.06 141.06 100

Table 18. Experimental results (total on-chip power, Watts).

Benchmark Auto [61] One-Hot [61] JEDI [61] U2 [61] Our Approach Group

bbtas 0.533 0.533 0.533 0.661 0.681 0

dk17 1.901 1.935 1.891 2.363 2.412 0

dk27 1.168 0.854 1.158 1.459 1.682 0

dk512 1.496 1.496 1.345 1.708 1.824 0

ex3 0.391 0.391 0.391 0.501 0.543 0

ex5 0.387 0.387 0.385 0.496 0.418 0

lion 0.542 0.629 0.547 0.711 0.725 0

lion9 0.733 0.97 0.728 0.939 0.839 0

mc 0.447 0.561 0.443 0.567 0.743 0

modulo12 0.559 0.559 0.563 0.715 0.797 0

shiftreg 0.523 0.603 0.512 0.645 0.875 0

bbara 0.569 0.569 0.488 0.399 0.292 1

bbsse 2.22 1.206 1.713 1.522 1.613 1

beecount 1.631 1.631 1.021 0.835 0.828 1

Appl. Sci. 2022, 12, 8065 25 of 35

Table 18. Cont.

Benchmark Auto [61] One-Hot [61] JEDI [61] U2 [61] Our Approach Group

cse 0.958 1.019 0.891 0.683 0.795 1

dk14 2.959 3.33 2.952 2.892 3.076 1

dk15 1.403 1.905 1.399 1.312 1.832 1

dk16 2.967 2.742 2.512 2.335 2.119 1

donfile 0.709 0.709 0.603 0.478 0.298 1

ex2 0.368 0.386 0.342 0.267 0.201 1

ex4 1.562 1.241 1.187 0.923 1.017 1

ex6 2.269 3.85 2.242 1.975 2.115 1

ex7 0.992 1.181 0.994 0.998 0.878 1

keyb 1.093 1.071 1.075 0.796 0.848 1

mark1 1.445 1.445 1.227 1.087 1.211 1

opus 1.344 1.344 1.283 1.121 1.138 1

s27 0.756 1.95 0.765 0.564 0.512 1

s386 1.251 1.393 1.121 0.998 1.218 1

s8 0.736 0.805 0.732 0.682 0.602 1

sse 1.22 1.296 1.089 0.907 1.028 1

ex1 4.102 2.968 2.342 1.728 1.832 2

kirkman 1.693 1.844 1.439 1.127 1.248 2

planet 4.122 4.122 2.456 2.028 2.195 2

planet1 4.122 4.122 2.456 2.028 2.296 2

pma 1.37 1.37 1.253 0.803 0.889 2

s1 2.685 3.13 2.518 2.048 2.325 2

s1488 3.982 4.096 3.548 1.883 2.451 2

s1494 3.079 3.178 2.982 2.358 2.869 2

s1a 1.322 2.01 1.208 0.885 1.132 2

s208 1.367 2.82 1.249 0.957 1.371 2

styr 4.044 4.771 3.187 2.632 2.898 2

tma 1.589 1.314 1.321 0.918 1.145 2

sand 1.149 1.149 0.988 0.617 0.857 3

s420 1.337 2.82 1.286 0.892 0.994 4

s510 1.543 1.543 1.091 0.852 0.897 4

s820 2.054 1.801 1.463 0.843 1.042 4

s832 2.096 2.087 1.828 0.932 1.329 4

Total 76.788 83.136 64.747 55.070 60.930

Percentage,% 126.03 136.45 106.26 90.38 100

Appl. Sci. 2022, 12, 8065 26 of 35

Table 19. Experimental results (area–time products).

Benchmark Auto [14] One-Hot [14] JEDI [14] U2 Our Approach Group

bbtas 24.49 24.49 24.26 39.92 40.10 0

dk17 25.09 71.86 25.08 40.03 40.40 0

dk27 14.56 24.76 19.59 35.60 36.05 0

dk512 50.95 50.95 45.06 61.80 67.59 0

ex3 46.19 46.19 45.97 57.53 58.47 0

ex5 49.93 49.93 49.68 56.16 56.58 0

lion 9.88 24.51 9.88 29.97 30.13 0

lion9 29.23 59.39 24.23 40.18 40.59 0

mc 20.34 35.81 20.32 31.06 31.33 0

modulo12 33.82 33.82 33.80 44.75 44.95 0

shiftreg 7.61 22.76 7.24 15.58 15.80 0

bbara 87.91 87.91 47.12 49.45 54.69 1

bbsse 210.11 218.78 131.62 143.46 134.35 1

beecount 114.04 114.04 74.74 75.62 70.76 1

cse 273.17 403.32 202.11 188.38 185.59 1

dk14 83.49 156.39 51.59 63.10 58.24 1

dk15 77.91 86.32 61.58 31.21 36.56 1

dk16 88.38 194.52 60.87 56.60 51.86 1

donfile 168.45 168.48 117.85 104.52 100.77 1

ex2 45.32 45.32 39.97 40.34 45.63 1

ex4 82.89 73.15 62.23 57.85 53.10 1

ex6 141.53 219.78 124.58 122.61 117.52 1

ex7 20.00 24.90 19.94 30.28 35.46 1

keyb 274.85 425.18 237.49 228.38 235.66 1

mark1 141.63 141.63 113.52 111.65 107.12 1

opus 168.47 168.47 123.37 119.80 115.33 1

s27 30.19 93.99 30.13 30.59 36.05 1

s386 154.62 224.84 122.80 141.36 125.99 1

s8 49.99 50.29 49.66 50.50 56.75 1

sse 210.11 218.78 171.79 152.83 149.32 1

ex1 463.76 529.48 299.66 219.37 188.88 2

kirkman 297.07 376.62 248.91 197.43 175.10 2

planet 987.11 987.11 470.24 412.44 379.54 2

planet1 987.11 987.11 470.24 412.44 379.54 2

pma 643.04 643.04 506.39 404.06 385.79 2

s1 443.96 728.74 388.14 332.86 304.66 2

Appl. Sci. 2022, 12, 8065 27 of 35

Table 19. Cont.

Benchmark Auto [14] One-Hot [14] JEDI [14] U2 Our Approach Group

s1488 895.31 992.88 687.11 528.75 514.54 2

s1494 843.43 905.66 669.34 522.44 467.97 2

s1a 319.49 459.18 254.18 213.23 192.91 2

s208 68.83 175.68 55.94 49.53 61.01 2

styr 675.82 923.65 556.17 432.45 389.32 2

tma 274.59 263.87 237.60 169.76 165.66 2

sand 1138.23 1138.23 898.91 679.57 537.74 3

s420 57.51 175.68 50.78 42.73 47.23 4

s510 270.19 270.19 176.39 117.45 105.13 4

s820 578.95 535.39 385.09 285.78 262.12 4

s832 549.04 515.56 356.77 268.64 245.40 4

Total 12,228.61 14,168.64 8859.93 7540.03 7035.28

Percentage,% 173.82 201.39 125.94 107.17 100.00

Table 20. Experimental results (power–time products, nJ).

Benchmark Auto One-Hot JEDI U2 Our Approach Group

bbtas 2.61 2.61 2.59 3.30 3.41 0

dk17 9.54 11.59 9.48 11.82 12.18 0

dk27 5.67 4.23 5.67 7.42 8.66 0

dk512 7.62 7.62 6.73 8.80 9.48 0

ex3 2.01 2.01 2.00 2.62 2.89 0

ex5 2.15 2.15 2.13 2.79 2.37 0

lion 2.68 3.08 2.70 3.55 3.64 0

lion9 3.57 5.24 3.53 4.72 4.26 0

mc 2.27 2.87 2.25 2.94 3.88 0

modulo12 2.70 2.70 2.72 3.56 3.98 0

shiftreg 1.99 2.29 1.85 2.51 3.46 0

bbara 2.94 2.94 2.30 1.97 1.45 1

bbsse 14.13 7.13 9.39 8.40 9.03 1

beecount 9.79 9.79 5.45 4.51 4.51 1

cse 6.54 6.23 5.00 3.90 4.61 1

dk14 15.44 19.29 15.23 15.21 16.29 1

dk15 7.29 10.28 7.18 6.83 9.57 1

dk16 17.48 15.69 12.74 12.02 10.99 1

donfile 3.85 3.85 2.96 2.38 1.50 1

ex2 1.85 1.94 1.71 1.35 1.02 1

ex4 8.63 6.98 6.16 4.85 5.40 1

ex6 13.38 23.50 12.70 11.53 12.43 1

Appl. Sci. 2022, 12, 8065 28 of 35

Table 20. Cont.

Benchmark Auto One-Hot JEDI U2 Our Approach Group

ex7 4.96 5.88 4.96 5.04 4.45 1

keyb 6.99 7.46 6.38 4.91 5.26 1

mark1 8.90 8.90 6.96 6.39 7.21 1

opus 8.09 8.09 7.19 6.40 6.56 1

s27 3.80 10.18 3.84 2.88 2.64 1

s386 7.44 8.03 6.26 5.64 6.98 1

s8 4.09 4.50 4.04 3.83 3.42 1

sse 7.77 7.66 6.24 5.33 6.14 1

ex1 27.18 21.24 13.24 9.48 10.18 2

kirkman 11.97 11.97 9.18 6.74 7.54 2

planet 31.06 31.06 13.12 10.72 11.73 2

planet1 31.06 31.06 13.12 10.72 12.27 2

pma 9.37 9.37 7.38 4.51 5.04 2

s1 18.34 23.04 16.02 12.62 14.17 2

s1488 28.75 31.04 22.57 11.19 14.66 2

s1494 20.61 21.80 18.15 13.69 16.78 2

s1a 8.62 11.39 7.14 4.97 6.42 2

s208 7.84 15.98 6.99 5.27 7.60 2

styr 29.39 36.72 21.88 16.26 18.20 2

tma 9.70 8.89 8.05 5.19 6.54 2

sand 9.91 9.91 7.79 4.24 5.62 3

s420 7.69 15.98 7.26 4.76 5.22 4

s510 8.69 8.69 6.01 4.55 4.72 4

s820 13.51 11.76 8.29 4.63 5.69 4

s832 14.38 13.62 10.52 5.01 7.09 4

Total 484.24 528.25 365.05 301.91 337.11

Percentage,% 143.64 156.70 108.29 89.56 100

However, our approach gives a win starting from group G1. As follows from
Tables 10 and 11, using the model U3 gives a win for groups G1–G4. Compared with
auto-based FSMs, there is either a 29.3% win rate (G1) or 61.45% of gain in LUT counts
(groups G2–G4). Compared with one-hot-based FSMs, there is either a 67.2% win rate (G1)
or 79.88% of gain in LUT counts (groups G2–G4). Compared with JEDI-based FSMs, there
is either 7.32% of gain (G1) or a 31.45% win rate (G2–G4). Compared with U2-based FSMs,
there is either 2.55% of gain (G1) or a 9.88% win rate (G2–G4). So, the gain from apply-
ing the proposed approach increases with the growth of the number of FSM inputs and
state variables.

Let us explain the nature of this situation. Starting from G1, the condition (4) is violated.
This means that the methods of functional decomposition should be applied for FSMs
based on auto, one-hot and JEDI. However, both FSMs U2 and U3 are based on the methods
of structural decomposition. As follows from [13], using the SD-based methods allows
improving LUT counts compared with the FD-based methods. A similar phenomenon

Appl. Sci. 2022, 12, 8065 29 of 35

also occurs in our case. There is only one set of additional variables in FSMs U3. However,
FSMs U2 have two such sets. As follows from the research results, the implementation
of systems (5) and (10) requires more internal resources than the implementation of the
system (7). This advantage of FSMs U3 in relation to FSMs U2 explains the gain in LUTs
that the method proposed in this article gives.

From the analysis of Table 10, it follows that for group G1, the following phenomenon
takes place. In some cases, the circuits of FSMs U2 require fewer LUTs than it is for
equivalent FSMs U3. This situation takes place for benchmarks: bbara, dk15, ex2, ex7, keyb,
s27, and s8. However, for other benchmarks of G1, the circuits of FSMs U3 have better LUT
counts than for equivalent FSMs U2. Let us explain this phenomenon.

In LUT-based FSMs, the LUT counts depend on the relation among NA(φk) and I.
Both FSMs U2 and U3 include logic blocks generating outputs yn ∈ Y. Obviously, these
blocks consume the same amount of LUTs. So, the difference in LUTs depends on LUT
counts for other blocks of these FSMs. For FSMs U2, the number of LUTs depends on the
distribution of FSM inputs among the functions belonging to SBFs (5), (9) and (10). For
FSMs U3, the LUT count depends on relation among the value of 2RQ and the number of
LUT inputs, I. If the condition (4) holds but the condition 2RQ ≤ I is violated, then there
are fewer LUTs in the circuits of FSMs U2 compared to the circuits of equivalent FSMs U3.
We think that such situation takes place for the benchmarks bbara, dk15, ex2, ex7, keyb, s27,
and s8. For other benchmarks of G1, the following situation takes place: the condition (4)
is violated but the condition 2RQ ≤ I holds. As a result, for these benchmarks, there are
fewer LUTs in the circuits of FSMs U3 compared to the circuits of equivalent FSMs U2. It
seems that this situation takes place for all benchmarks from the groups G2–G4. As a result,
our approach allows obtaining better LUT counts for all benchmarks from these groups.

As follows from Table 12, our approach produces slightly faster LUT-based FSM
circuits compared to the three other investigated methods. The average win is equal to
(1) 6.14% (compared with auto-based FSMs); (2) 6.9% (relative to one-hot-based FSMs);
(3)1.42% (compared with U2-based FSMs). The winning relative to U2-based FSMs is
especially important. It shows that our method not only improves the LUT counts, but
also does not degrade the performance compared to three-block FSMs U2. Note that our
approach loses in the performance of the obtained FSM circuits relative to JEDI-based FSMs
(only 0.5%).

For the group G0 (Table 13), our approach provides a gain relative to U2-based FSMs
(7.19%). However, other investigated methods win in the values of maximum operating
frequency. The auto-based state encoding provides to 2.96% of gain. The JEDI-based state
encoding provides 3.89% of gain. It means that our approach should not be applied if
the number of LUT inputs is not less than the total number of FSM inputs (L) and state
variables (R).

So, for the group G0, there is the performance loss of SD-based FSMs in comparison
with FD-based FSMs. This loss can be explained in the following way. Because the
condition (4) holds, there is only a single logic level in the circuits of FD-based FSMs (auto,
one-hot, JEDI). However, as follows from Figures 4 and 6, there are three logic levels in the
circuits of U2-based FSMs and two logic levels in the circuits of U3-based FSMs. Therefore,
the SD-based FSMs produce slower circuits compared to their FD-based counterparts.

As follows from Table 14, for the group G1, our approach produces faster circuits than
both auto- and one-hot-based FSMs. Our gain is equal to 3.92% and 4.04%, respectively.
However, the FSM circuits produced by two other methods are slightly faster than U3-based
circuits. The JEDI-based FSMs win 2.9%. The U2-based FSMs win 0.93%. Thus, the number
of logic levels in the FD-based FSMs has increased, but still remains less than this number
in the equivalent SD-based FSMs. The analysis of Table 15 shows that only U2-based FSM
circuits are a bit faster than the equivalent circuits based on our approach. This win is equal
to 0.09%. However, our approach allows producing the faster circuits as compared with
auto (15.38%), one-hot (15.6%) and JEDI (4.78%).

Appl. Sci. 2022, 12, 8065 30 of 35

Note that to compare different FPGA-based circuits of equivalent devices, such es-
timates as the number of flip-flops in the circuit, its power consumption, the product of
the number of LUTs and the cycle time (the area-time characteristic), the product of the
power consumption and the cycle time (the power-time characteristic) can be used. We
also compared these characteristics of FSM circuits for the models used in the research. The
numbers of flip-flops used in FSM circuits are shown in Tables 16 and 17. Table 18 contains
information about the power consumption. The area–time characteristics are shown in
Table 19. The power–time characteristics are shown in Table 20.

As follows from Table 16, our method significantly loses in the number of flip-flops to
all other methods (except for the one-hot approach). This is determined by the fact that
the number of flip-flops is the same as the number of bits in the state codes K(am). For the
proposed FSM U3, the number of flip-flops is equal to twice the number of bits in the codes
of COs. Due to it, our method loses an average of 39.37% to FSMs based on methods auto,
JEDI and U2.

However, this is not entirely true if we consider an FSM as a block of some digital
system. It is known that the outputs of the Mealy FSM are not stable. They can change when
the input signals change. The FSM inputs are the outputs of the remaining system blocks.
This phenomenon can lead to malfunctions in the functioning of the digital system. To
eliminate possible failures, an intermediate register is introduced into the system. The FSM
outputs are recorded in this register after the end of transient processes in the remaining
blocks of the system. So, to find the required number of flip-flops, it is necessary to add
a value of N (the number of FSM outputs) to the value obtained from the Vivado reports.
For example, there are 7 flip-flops in FSM s1494 for the model U2 and 16 flip-flops for
the model U3 (Table 16). As follows from Table 7, there is N = 19 for FSM s1494. So, as a
block interacting with other blocks of a digital system, this U2-based FSM s1494 requires 26
flip-flops. Using the same approach, we can create Table 17.

The proposed method does not require such an additional output register. This is due
to the fact that the codes of COs are written to the registers. Therefore, for the model U3,
the FSM outputs are stable after being written to the registers. So, when choosing an FSM
model, the designer must add the number of outputs to all numbers from the Table 16
except for the numbers obtained for U3-based FSMs. This fact explains the coincidence of
information in columns “Our approach” of Tables 16 and 17.

As follows from Table 17, our method allows the use of fewer flip-flops compared to
other methods studied. The gain is 41.06% compared to methods auto, JEDI and U2 and
166.18% compared to the FSMs based on the one-hot approach.

To estimate the power consumption, we also used Vivado. Vivado uses the value of
maximum operating frequency achieved for each benchmark and calculates the value of
power consumption basing on this frequency. To conduct the research, the core volt-
age (VCCINT) was set to 1.0V. The data in the Table 18 are taken from the Vivado
Power Reports.

As follows from Table 18, the U3–based FSMs consume more power than equivalent
U2–based FSMs (the loss is on average 9.62%). We think this is because (1) U3–based FSMs
have more flip-flops compared to the equivalent U2-based FSMs and (2) the switching
activity of flip-flops from U3 is significantly higher than it is for equivalent U2-based FSMs.
However, the application of our method allows reducing the power consumption compared
to the FSM circuits based on auto (26.03%), one-hot (36.45%) and JEDI (6.26%).

Let us point out that Table 18 shows the power consumption characteristics for FSMs
as stand-alone units. If we consider an FSM as some part of a digital system, then the
situation can change significantly in favor of our method. This conclusion can be made
from the analysis of Table 17.

So far, we have only discussed estimates for one of the FSM circuit characteristics.
However, the quality of FSM circuits is often evaluated by integral estimates. One such
assessment is that which shows how much chip area is used to achieve a certain cycle time.
In the case of LUT-based FSM circuits, the required FPGA chip area is usually estimated by

Appl. Sci. 2022, 12, 8065 31 of 35

the number of LUTs used [12]. This approach is adopted in our article, and the results are
shown in Table 19.

As follows from Table 19, our approach provides an average gain of 7.17% compared
to the equivalent U2-based FSMs. The gain compared to other methods is even more
significant: (1) 73.82% compared to auto; (2) 101.39% compared to one-hot and (3) 25.94%
compared to JEDI. We do not provide here tables for each of the FSM groups. However, we
conducted such a study, and its results showed the following. Our approach is an outsider
for the group G0, where we lose (1) 32.45% compared to auto; (2) 3.79% compared to
one-hot; (3) 33.96% compared to JEDI and (4) 2.04% compared to U2-based FSMs. Winning
starts with group G1. In this group, our method wins (1) 36.84% with respect to auto;
(1) 75.98% with respect to one-hot; (1) 4.08% with respect to JEDI; and (4) 1.57% compared
to the equivalent U2-based FSMs. The greatest gain is observed for the most complex
FSMs belonging to the groups G2–G4. For these groups, our method wins (1) 97.68% with
respect to auto; (1) 120.88% with respect to one-hot; (1) 39.76% with respect to JEDI; and
(4) 10.13% compared to the equivalent U2-based FSMs. So, the gain from the application of
our method increases as the FSM complexity increases.

The power–time (power–delay) product shows how much energy is spent on the
execution of one cycle of operation [62]. In case of discussed benchmarks, the cycle time is
measured in nanoseconds. Since the power is measured in Watts, the resulting power–time
products are presented in nanojoules (nJ). These results are shown in Table 20.

As follows from Table 20, the U3–based FSMs have higher energy values than the
equivalent U2-based FSMs (the loss is on average 10.44%). We think this is because (1) U3-
based FSMs have more flip-flops compared to the equivalent U2-based FSMs, and (2) the
switching activity of flip-flops from U3 is significantly higher than it is for the equivalent
U2-based FSMs. However, U3-based FSMs require less energy compared to FSM circuits
based on auto (43.64%), one-hot (56.70%) and JEDI (8.29%).

For a better understanding of the experimental results, we created Table 21. The
first column of this table contains the total values for each of the studied characteristics.
The remaining columns contain the values of these characteristics for each of the studied
methods. The best values for each of the characteristics are shown in bold. The goal of our
method is to reduce the number of LUTs without a significant decrease in frequency in
relation to three-level U2-based FSMs. Due to it, in the “Gain” column, we show the gain
or loss (negative gain) of our method with respect to U2-based FSMs.

As follows from Table 21, our method allows reducing the LUT counts (the chip area
occupied by FSM circuit) compared to equivalent U2-based FSM having three logic blocks.
The results of experiments show that there is no degradation in FSM performance. On
the contrary, there is a slight gain in this characteristic (1.42%). So, the results of our
experiments show that the proposed approach can be used instead of other models starting
from the simple FSMs (the group G1). However, the proposed method cannot be used if
the dominant factor determining the FSM circuit optimality is its power consumption. We
think that the proposed model can be used in CAD systems targeting LUT-based Mealy
FSMs if the dominant factor determining the FSM circuit optimality is either the number of
LUTs or area–time products.

Appl. Sci. 2022, 12, 8065 32 of 35

Table 21. Final comparative table.

Methods Auto One-Hot JEDI U2 Our Approach Gain, %

LUT counts 1808 2104 1489 1323 1234 +7.21

Maximum operating frequency, MHz 8127.08 8061.22 8701.97 8536.27 8658.86 +1.42

Number of FFs without output register 251 2011 251 251 414 −39.37

Number of FFs with output register 584 2344 584 584 414 +41.06

Power, Watts 76.788 83.136 64.747 55.070 60.930 −9.62

Area–time products 12,228.61 14,168.64 8859.93 7540.03 7035.28 +7.17

Power–time products, nJ 484.24 528.25 365.05 301.91 337.11 −10.46

7. Conclusions

Nowadays, the majority of digital systems are implemented using FPGAs. So, FPGAs
are used for implementing circuits of FSMs representing various sequential blocks. As
the complexity of the FSMs (the numbers of inputs, outputs and states) increases, the
contradiction between this significant complexity and a very small number of LUT inputs
increases, too. Modern LUTs have around six inputs. This value is still rather small
compared with numbers of literals in SBFs representing FSM circuits. This leads to using
various methods of functional decomposition in the LUT-based FSM design. It is known [39]
that the functional decomposition leads to multi-level LUT-based FSM circuits having
spaghetti-type interconnections.

In many cases, the characteristics of FPGA-based FSM circuits can be improved due
to applying the methods of structural decomposition instead of using the methods of
functional decomposition [13]. Our research [15] shows that three-block circuits of LUT-
based Mealy FSM circuits require fewer LUTs than some of their counterparts. But this
gain is connected with the introduction of some additional functions. This requires using
additional chip internal resources to generate these functions. This is the main disadvantage
of the three-block FSM circuits.

In this article, we propose to use the codes of collections of outputs to represent
both the outputs and state variables of Mealy FSMs. This is connected with using two
registers keeping codes of COs. Using this approach, it is possible to generate in parallel
FSM outputs and codes of the transition states. This leads to Mealy FSM circuits having
two levels of LUTs. These circuits require fewer LUTs than it is in the equivalent three-
block FSM circuits. The experiments prove that the proposed approach allows reducing
hardware compared with such known methods as auto and one-hot of Vivado, and JEDI.
Additionally, the proposed approach gives better results than a method based on the
simultaneous replacement of inputs and encoding of COs.

Compared to circuits of the three-block FSMs, the LUT counts are reduced by an
average of 7.21% without a significant reduction in the performance. The gain in LUT
counts and area–time products increases with the increase in the numbers of FSM states
and inputs. Our approach loses in terms of power consumption (on average 9.62%) and
power–time products (on average 10.44%). As the experiments show, the proposed two-
block FSMs have practically the same cycle times (maximum operating frequencies) as their
three-block counterparts. This analysis allows us to conclude that the proposed method
can be used for improving the LUT counts of various FPGA-based sequential devices.

Author Contributions: Conceptualization, A.B., L.T. and K.K.; methodology, A.B., L.T. and K.K.; for-
mal analysis, A.B., L.T. and K.K.; writing—original draft preparation, A.B., L.T. and K.K.; supervision,
A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2022, 12, 8065 33 of 35

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CAD computer-aided design
CLB configurable logic block
CO collection of outputs
DST direct structure table
ECO encoding of collections of outputs
LUT look-up table
FD functional decomposition
FSM finite-state machine
FPGA field-programmable gate array
IMF input memory function
LUT look-up table
RI replacement of inputs
SBF system of Boolean functions
SD structural decomposition
STG state transitions graph
STT state transition table
SOP sum of products

References
1. Grout, I. Digital Systems Design with FPGAs and CPLDs; Elsevier Science: Amsterdam, The Netherlands, 2011.
2. Ruiz-Rosero, J.; Ramirez-Gonzalez, G.; Khanna, R. Field Programmable Gate Array Applications—A Scientometric Review.

Computation 2019, 7, 63. [CrossRef]
3. Gajski, D.D.; Abdi, S.; Gerstlauer, A.; Schirner, G. Embedded System Design: Modeling, Synthesis and Verification; Springer Science &

Business Media: Berlin/Heidelberg, Germany, 2009.
4. Baranov, S. Finite State Machines and Algorithmic State Machines: Fast and Simple Design of Complex Finite State Machines; Amazon:

Seattle, WA, USA, 2018; p. 185.
5. Baranov, S. Logic Synthesis of Control Automata; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994.
6. Czerwinski, R.; Kania, D. Finite State Machine Logic Synthesis for Complex Programmable Logic Devices; Volume 231 of Lecture Notes

in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2013.
7. Gazi, O.; Arli, A. State Machines Using VHDL: FPGA Implementation of Serial Communication and Display Protocols; Springer:

Berlin/Heidelberg, Germany, 2021; p. 326
8. Koo, B.; Bae, J.; Kim, S.; Park, K.; Kim, H. Test case generation method for increasing software reliability in Safety-Critical

Embedded Systems. Electronics 2020, 9, 797. [CrossRef]
9. Baranov, S. High-Level Synthesis of Digital Systems: For Data-Path and Control Dominated Systems; Amazon: Seattle, WA, USA, 2018;

p. 207.
10. Zhao, X.; He, Y.; Chen, X.; Liu, Z. Human-Robot collaborative Assembly Based on Eye-Hand and a Finite State Machine in a

Virtual Environment. Appl. Sci. 2021, 11, 5754. [CrossRef]
11. Jozwiak, L.; Slusarczyk, A.; Chojnacki, A. Fast and compact sequential circuits for the FPGA-based reconfigurable systems. J. Syst.

Archit. 2003, 49, 227–246. [CrossRef]
12. Islam, M.M.; Hossain, M.S.; Shahjalal, M.D.; Hasan, M.K.; Jang, Y.M. Area-time efficient hardware implementation of modular

multiplication for elliptic curve cryptography. IEEE Access 2020, 8, 73898–73906. [CrossRef]
13. Barkalov, A.; Titarenko, L.; Krzywicki, K. Structural Decomposition in FSM Design: Roots, Evolution, Current State—A Review.

Electronics 2021, 10, 1174. [CrossRef]
14. Barkalov, A.; Titarenko, L.; Krzywicki, K.; Saburova, S. Improving the Characteristics of Multi-Level LUT-Based Mealy FSMs.

Electronics 2020, 9, 1859. [CrossRef]
15. Barkalov, A.; Titarenko, L.; Krzywicki, K. Reducing LUT Count for FPGA-Based Mealy FSMs. Appl. Sci. 2020, 10, 5115. [CrossRef]
16. Micheli, G.D. Synthesis and Optimization of Digital Circuits; McGraw-Hill: Cambridge, MA, USA, 1994.
17. Kubica, M.; Kania, D.; Kulisz, J. A technology mapping of fsms based on a graph of excitations and outputs. IEEE Access 2019, 7,

16123–16131. [CrossRef]

http://doi.org/10.3390/computation7040063
http://dx.doi.org/10.3390/electronics9050797
http://dx.doi.org/10.3390/app11125754
http://dx.doi.org/10.1016/S1383-7621(03)00070-5
http://dx.doi.org/10.1109/ACCESS.2020.2988379
http://dx.doi.org/10.3390/electronics10101174
http://dx.doi.org/10.3390/electronics9111859
http://dx.doi.org/10.3390/app10155115
http://dx.doi.org/10.1109/ACCESS.2019.2895206

Appl. Sci. 2022, 12, 8065 34 of 35

18. Sklarova, D.; Sklarov, V.A.; Sudnitson, A. Design of FPGA-Based Circuits Using Hierarchical Finite State Machines; TUT Press: Tallinn,
Estonia, 2012.

19. AMD Xilinx FPGAs. Available online: https://www.xilinx.com/products/silicon-devices/fpga.html (accessed on 25 May 2022).
20. Trimberger, S.M. Field-Programmable Gate Array Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.
21. Mishchenko, A.; Brayton, R.; Jiang, J.H.R.; Jang, S. Scalable don’t-care-based logic optimization and resynthesis. ACM Trans.

Reconfigurable Technol. Syst. (TRETS) 2011, 4, 1–23. [CrossRef]
22. Kubica, M.; Opara, A.; Kania, D. Logic Synthesis Strategy Oriented to Low Power Optimization. Appl. Sci. 2021, 11, 8797.

[CrossRef]
23. Nguyen, T.T.; Kim, S.; Eom, Y.; Lee, H. Area-Time Efficient Hardware Architecture for CRYSTALS-Kyber. Appl. Sci. 2022, 12, 5305.

[CrossRef]
24. Ney, J.; Hammoud, B.; Dörner, S.; Herrmann, M.; Clausius, J.; ten Brink, S.; Wehn, N. Efficient FPGA Implementation of an

ANN-Based Demapper Using Cross-Layer Analysis. Electronics 2022, 11, 1138. [CrossRef]
25. Jarrah, A.; Haymoor, Z.S.; Al-Masri, H.M.; Almomany, A. High-Performance Implementation of Power Components on FPGA

Platform. J. Electr. Eng. Technol. 2022, 17, 1555–1571. [CrossRef]
26. Nikolic, S.; Zgheib, G.; Ienne, P. Detailed Placement for Dedicated LUT-Level FPGA Interconnect. ACM Trans. Reconfig. Technol.

Syst. (TRETS) 2022. [CrossRef]
27. Skliarova, I. A Survey of Network-Based Hardware Accelerators. Electronics 2022, 11, 1029. [CrossRef]
28. Senhadji-Navarro, R.; Garcia-Vargas, I. Mapping Arbitrary Logic Functions onto Carry Chains in FPGAs. Electronics 2022, 11, 27.

[CrossRef]
29. Scholl, C. Functional Decomposition with Application to FPGA Synthesis; Kluwer Academic Publishers: Boston, MA, USA, 2001.
30. Kubica, M.; Kania, D. Technology mapping oriented to adaptive logic modules. Bull. Pol. Acad. Sci. 2019, 67, 947–956.
31. Mishchenko, A.; Chattarejee, S.; Brayton, R. Improvements to technology mapping for LUT-based FPGAs. IEEE Trans. CAD 2006,

27, 240–253.
32. Brayton, R.; Mishchenko, A. ABC: An Academic Industrial-Strength Verification Tool. In Computer Aided Verification:

Berlin/Heidelberg, Germany, 2010; Touili, T., Cook, B., Jackson, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 24–40.
33. Soloviev, V.V. Architetures Xilinx FPGA: Family CPLD and FPGA 7; Hot-line-Telecom: Moskwa, Russia, 2016; p. 392. (In Russian)
34. Altera. Cyclone IV Device Handbook. Available online: http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.

pdf (accessed on 25 May 2022).
35. El-Maleh, A.H. A Probabilistic Tabu Search State Assignment Algorithm for Area and Power Optimization of Sequential Circuits.

Arab. J. Sci. Eng. 2020, 45, 6273–6285. [CrossRef]
36. Feng, W.; Greene, J.; Mishchenko, A. Improving FPGA performance with a S44 LUT structure. In Proceedings of the 2018

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 25–27 February 2018;
pp. 61–66.

37. Barkalov, A.; Titarenko, L.; Krzywicki, K.; Saburova, S. Improving Characteristics of LUT-Based Mealy FSMs with Twofold State
Assignment. Electronics 2021, 10, 901. [CrossRef]

38. Senhadji-Navarro, R.; Garcia-Vargas, I. Methodology for Distributed-ROM-based Implementation of Finite State Machines. IEEE
Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2020, 40, 2411–2415. [CrossRef]

39. Kubica, M.; Opara, A.; Kania, D. Technology Maping for LUT-Based FPGA; Springer: Berlin/Heidelberg, Germany, 2021; p. 208.
40. Barkalov, A.; Titarenko, L.; Mielcarek, K.; Chmielewski, S. Logic Synthesis for FPGA-Based Control Units—Structural Decomposition

in Logic Design; Volume 636 of Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2020.
41. Salauyou, V.; Ostapczuk, M. State Assignment of Finite-State Machines by Using the Values of Output Variables. In Theory and

Applications of Dependable Computer Systems. DepCoS-RELCOMEX 2020. Advances in Intelligent Systems and Computing; Zamojski
W., Mazurkiewicz J., Sugier J., Walkowiak T., Kacprzyk J., Eds.; Springer: Cham, Switzerland, 2020; Volume 1173, pp. 543–553.

42. Solov’ev, V.V. Implementation of finite-state machines based on programmable logic ICs with the help of the merged model of
Mealy and Moore machines. J. Commun. Technol. Electron. 2013, 58, 172–177. [CrossRef]

43. Park, J.; Yoo, H. Area-efficient fault tolerance encoding for Finite State Machines. Electronics 2020, 9, 1110. [CrossRef]
44. Sentovich, E.M.; Singh, K.J.; Lavagno, L.; Moon, C.; Murgai, R.; Saldanha, A.; Sangiovanni-Vincentelli, A. SIS: A System for

Sequential Circuit Synthesis; University of California: Berkely, CA, USA, 1992.
45. ABC System. Available online: https://people.eecs.berkeley.edu/~alanmi/abc/ (accessed on 25 May 2022).
46. Baranov, S. From Algorithm to Digital System: HSL and RTL tool Sinthagate in Digital System Design; Amazon: Seattle, WA, USA,

2020; p. 76.
47. Vivado Design Suite User Guide: Synthesis. UG901 (v2019.1). Available online: https://www.xilinx.com/support/documentation/

sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf (accessed on 25 May 2022).
48. Xilinx Vitis. Available online: https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html (accessed on 25 May 2022).
49. Quartus Prime. Available online: https://www.intel.pl/content/www/pl/pl/software/programmable/quartus-prime/

overview.html (accessed on 25 May 2022).
50. Khatri, S.P.; Gulati, K. Advanced Techniques in Logic Synthesis, Optimizations and Applications; Springer: New York, NY, USA, 2011.
51. Sklyarov, V. Synthesis and implementation of RAM-based finite state machines in FPGAs. In International Workshop on Field

Programmable Logic and Applications; Springer: Berlin/Heidelberg, Germany, 2000; pp. 718–727.

https://www.xilinx.com/products/silicon-devices/fpga.html
http://dx.doi.org/10.1145/2068716.2068720
http://dx.doi.org/10.3390/app11198797
http://dx.doi.org/10.3390/app12115305
http://dx.doi.org/10.3390/electronics11071138
http://dx.doi.org/10.1007/s42835-022-01005-6
http://dx.doi.org/10.1145/3501802
http://dx.doi.org/10.3390/electronics11071029
http://dx.doi.org/10.3390/electronics11010027
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
http://dx.doi.org/10.1007/s13369-020-04697-y
http://dx.doi.org/10.3390/electronics10080901
http://dx.doi.org/10.1109/TCAD.2020.3039913
http://dx.doi.org/10.1134/S106422691302006X
http://dx.doi.org/10.3390/electronics9071110
https://people.eecs.berkeley.edu/~alanmi/abc/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.intel.pl/content/www/pl/pl/software/programmable/quartus-prime/overview.html
https://www.intel.pl/content/www/pl/pl/software/programmable/quartus-prime/overview.html

Appl. Sci. 2022, 12, 8065 35 of 35

52. Tiwari, A.; Tomko, K.A. Saving power by mapping finite-state machines into embedded memory blocks in FPGAs. Proc. Des.
Autom. Test Eur. Conf. Exhib. 2004, 2, 916–921.

53. Wilkes, M.V.; Stringer, J.B. Micro-programming and the design of the control circuits in an electronic digital computer. In
Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, MA, USA, 1953;
Volume 49, pp. 230–238.

54. Chapman, K. Multiplexer Design Techniques for Data-Path Performance with Minimized Routing Resources; Xilinx All Programmable;
Xilinx Inc.: San Jose, CA, USA, 2014 ; Version 1.2, pp. 1–32.

55. Achasova, S. Synthesis Algorithms for Automata with PLAs; M: Soviet Radio: Russia, Moscow 1987. (In Russian)
56. McElvain, K. LGSynth93 Benchmark; Mentor Graphics: Wilsonville, OR, USA, 1993.
57. Benini, L.; Bogliolo, A.; De Micheli, G. A survey of design techniques for system-level dynamic power management. IEEE Trans.

Very Large Scale Integr. (VLSI) Syst. 2000, 8, 299–316. [CrossRef]
58. De Micheli, G.; Brayton, R.K.; Sangiovanni-Vincentelli, A. Optimal state assignment for finite state machines. IEEE Trans.-Comput.-

Aided Des. Integr. Circuits Syst. 2006, 4, 269–285. [CrossRef]
59. El-Maleh, A.H. A probabilistic pairwise swap search state assignment algorithm for sequential circuit optimization. Integration

2017, 56, 32–43. [CrossRef]
60. VC709 Evaluation Board for the Virtex-7 FPGA User Guide; UG887 (v1.6); Xilinx, Inc.: San Jose, CA, USA, 2019.
61. Barkalov, A.; Titarenko, L.; Krzywicki, K.; Saburova, S. Improving Characteristics of LUT-Based Three-Block Mealy FSMs’ Circuits.

Electronics 2022, 11, 950. [CrossRef]
62. Han, Z. The power-delay product and its implication to CMOS Inverter. J. Phys. Conf. Ser. 2021, 1754, 1–12.

http://dx.doi.org/10.1109/92.845896
http://dx.doi.org/10.1109/TCAD.1985.1270123
http://dx.doi.org/10.1016/j.vlsi.2016.08.001
http://dx.doi.org/10.3390/electronics11060950

	Introduction
	Basics of LUT-Based Mealy FSM Design
	Related Work
	Main Idea of the Proposed Method
	Example of Synthesis
	Experimental Results
	Conclusions
	References

