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Abstract: A surface acoustic wave (SAW) gyroscope has many unique advantages, but a low detection
sensitivity limits its development. Previous studies have shown that adding a metal dot array to the
acoustic wave propagation path of the SAW delay line can enhance the Coriolis force and further
improve sensitivity. Therefore, in order to optimize the detection sensitivity performance of the
sensor, 128◦YX-LiNbO3, ST-X Quartz and X112◦Y-LiTaO3 piezoelectric substrates were selected by
finite element method to analyze the influence of the metal dot array size on the SAW gyroscopic
effect in this paper. The most suitable metal dot size for 128◦YX-LiNbO3 and X112◦Y-LiTaO3 obtained
by simulation are 5/16λ and 1/16λ, respectively; for example, when the normalized angular velocity
is 1 × 10−3, the SAW gyroscopic effect factor g of the two piezoelectric substrates distributing the
optimum size metal dots can reach 22.4 kHz and 5.2 kHz. For ST-X quartz, there is a threshold
between the rotation speed of the substrate and the optimum size of the metal dot. When the rotating
speed is lower than the threshold, the SAW gyroscopic effect is strongest when the metal dot size is
3/16λ; otherwise, the SAW gyroscopic effect is strongest when the size is 11/16λ. These research
results provide new ideas for improvement of the SAW gyroscope.

Keywords: Coriolis force; finite element simulation; SAW gyroscopic effect; piezoelectric substrate;
metal dot array

1. Introduction

In recent years, the surface acoustic wave (SAW) gyroscope has been widely studied
by scholars because of its significant advantages, such as its simple structure, small size,
long service life, superior inherent shock robustness, and so on, and it has the prospect of
broad applications in attitude monitoring and motion control [1–5]. The SAW gyroscopes
mainly include the traveling wave mode and standing wave mode. The standing wave
mode SAW gyroscope cannot be put into use due to its output signal being difficult to
detect, and it cannot achieve temperature compensation [6]. The traveling wave mode
SAW gyroscope, which uses a differential scheme for temperature compensation and the
output signal is easy to detect, has been studied deeply [7]. However, a weak Coriolis force
leads to a low detection sensitivity, which limits its practicality. Therefore, recently, many
teams have devoted themselves to solving the bottleneck problem of the low detection
sensitivity of the SAW gyroscope, and they proposed various methods to improve the
sensor performance in terms of selection and optimal design of the interdigital transducer
and the piezoelectric substrate [8–12]. In addition, our team proposed a traveling wave
mode SAW gyroscope structure combined with a metal dot array in the previous research
work, and verified the effectiveness of this structure in improving the detection sensitivity
performance of the SAW gyroscope, both theoretically and experimentally [13,14].

The principle of the SAW gyroscope is based on the SAW gyroscopic effect, which is
specifically explained as follows: a Rayleigh wave (a wave pattern of SAW) propagates
on the surface of the substrate, and the particles in the medium (elements of infinitesimal
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size) vibrate along an elliptical trajectory in the plane composed of the direction of the
acoustic wave propagation and the normal direction of the substrate. When the Coriolis
force induced by external rotation acts on the particles, a secondary SAW will be induced
and coupled with the initial SAW; thus, the particle vibration trajectory changes, resulting
in the change of the velocity and the frequency of the SAW. In this way, the magnitude
of the rotation vector can be characterized by detecting the change in frequency [13]. The
schematic diagram is shown in Figure 1. The Rayleigh wave propagates along the x-axis
direction, and the amplitude decays exponentially along the z-axis direction. The particle
in the medium (hereinafter referred to as the vibrating particle) moves along an elliptical
trajectory in the plane formed by the x-axis and the z-axis.
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Commonly used piezoelectric substrates in SAW devices include quartz, AIN, ZnO,
LiNbO3, LiTaO3, etc. The performance parameters of the substrate, such as the electrome-
chanical coupling coefficient (κ2), dielectric constant (εij), elastic constant (Cij), piezoelectric
constant (eij) and temperature coefficient (TCF), will directly affect the performance of
the SAW gyroscope devices [15,16]. In this paper, three piezoelectric substrates that can
excite Rayleigh wave are selected as research objects; among them, 128◦YX-LiNbO3 has a
strong electromechanical coupling coefficient, ST-X Quartz has an excellent temperature
characteristic close to 0 and X112◦Y-LiTaO3, with a moderate temperature coefficient and
electromechanical coupling coefficient, is taken as a contrast [17–22] We established 3D
models of these three piezoelectric substrates, distributing copper dot arrays of different
sizes, and calculated the influence of angular velocity on the phase velocity and frequency
of the SAW using the finite element method [23]. Finally, the optimum distribution pa-
rameters of the metal dot array for the piezoelectric substrate with different characteristics
under different rotation speeds are determined, which provides theoretical guidance for
further development of a high-performance SAW gyroscope.

2. Theoretical Analysis

Previous research showed that distributing a metal dot array on the propagation path
of the SAW is an effective method to improve the detection sensitivity performance of
a SAW gyroscope [24]. The typical structure of a SAW gyroscope, as shown in Figure 2,
includes interdigital transducers (IDTs), a metal dot array and a piezoelectric substrate.
The structure consists of two parallel and reverse SAW delay lines to form a differential
sensing mode [7]. When the SAW gyroscope rotates, the vibrating particles, in dual delay
lines arranged in opposite directions, are subjected to a Coriolis force in the opposite
direction [25]. Taking the frequency difference of dual delay lines as the output signal can
not only realize temperature compensation, but also obtain stronger detection sensitivity
performance [26].
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Figure 2. SAW sensor structure.

Compared with a metal dot array, the thickness of the piezoelectric substrate is much
larger; therefore, we can regard the piezoelectric substrate in SAW gyroscope devices as a
semi-infinite space [27]. Taking a single metal dot element on a semi-infinite piezoelectric
substrate as the research object (as shown in Figure 3), we studied the relationship between
the intensity of the SAW gyroscopic effect and the distribution parameters of the metal
dot array.
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The value h in Figure 3 represents the thickness of the metal dot, and z < 0 represents
the piezoelectric substrate in the semi-infinite space. SAW propagates along the x-axis
direction with speed V0, and the whole model rotates around the y-axis with angular
velocity Ω [28,29].

When the substrate model rotates around the y-axis at a constant angular velocity Ω,
the vibrating particles are subjected to the action of the Coriolis force and centrifugal force,
which can be, respectively, expressed as [30]:

Fcor = 2mV ×Ω (1)

Fcen = mΩ× (Ω× u) (2)

In which, Fcor represents the Coriolis inertia force, Fcen represents the centrifugal inertia
force, m represents the mass, V represents the vibration velocity, u represents the elastic
displacement and Ω represents the angular velocity. Since the angular frequency of the
SAW is much larger than the angular velocity, the influence of the centrifugal force on the
particle is much smaller than that of the Coriolis force which can be ignored. Equation (1)
shows that the strength of the Coriolis force depends on three factors: the mass m of the
vibrating particle, the vibration velocity V and the angular velocity Ω. Therefore, adding a
metal dot array on the path of the acoustic wave propagation can increase the mass of the
particles; in particular, the metal dots with an appropriate size can make the Coriolis force
superimpose in the same direction to enhance the sensitivity. On the contrary, an improper
metal dot array will cause Coriolis force cancelling in the opposite direction and weaken
the sensitivity.

In the SAW gyroscope devices distributed with a metal dot array, the periodic metal
dot array plays a role similar to the interdigital electrode and causes the characteristic
frequency to split into two, namely the symmetric frequency ( fsc+) and the anti-symmetric
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frequency ( fsc−). When the substrate model rotates around the y-axis, the symmetric
and anti-symmetric frequencies will change accordingly. However, it should be noted
that with the change of the normalized angular velocity Ω/ω, the variation of symmetric
frequency and anti-symmetric frequency is not the same, which corresponds to the change
in the characteristic frequencies of the SAW propagating along the +x and −x axes of the
dual delay lines with Ω/ω, respectively, in Figure 2 [11,31]. Therefore, in this study, the
difference between the symmetric frequency and the anti-symmetric frequency is used to
represent the output signal of the differential SAW gyroscope. When the substrate model is
stationary, the output signal of the SAW gyroscope can be expressed as:

f0 = fsc+ − fsc− (3)

When a rotation vector is applied to the piezoelectric substrate distributed metal dot
array, fsc+ and fsc− will changed accordingly. At this time, the output signal of the SAW
gyroscope can be defined as [32]:

fc = f ′sc+ − f ′sc− (4)

where, f ′sc+ and f ′sc− are the symmetric and antisymmetric frequencies under rotation,
respectively. By subtracting Equation (3) from Equation (4), the magnitude of the SAW
gyroscopic effect caused by the rotation can be obtained. Here we define a parameter g, as
shown in Equation (5) below, to represent the SAW gyroscopic effect intensity. In this way,
the optimum distribution parameters of the metal dot array in the sensor can be determined
by comparing the value of g under the same rotation speed:

g = fc − f0 = ( f ′sc+ − fsc+)− ( f ′sc− − fsc−) (5)

3. Modeling and Simulation
3.1. Modeling

The finite element method (FEM) is a common method for accurately simulating SAW
gyroscopes [33], which is based on the acoustic wave equation considering the Coriolis
force shown in Equation (6) and specific boundary conditions. The FEM is suitable for
analyzing SAW characteristics in different structures because it is highly flexible [18,34].ρ ∂2ui

∂t2 − Cijkl
∂2ul

∂xj∂xk
+ 2ρεijkΩj

∂uk
∂t + ρ(ΩiΩjuj −Ω2

j ui) = 0

Ti3 = Ci3kl
∂uk
∂xl

= 0
(6)

where ρ is the density of the medium, Cijkl is the elastic stiffness tensor, εijk is the Levi-Civita
symbol, ui is a component of the elastic displacement vector, Tik is the stress and i, j, k, l = 1,
2, 3. The first two terms on the left-hand side of Equation (6) are related to inertia and
elasticity. The third and the fourth terms are due to the Coriolis force and the centrifugal
force, respectively.

The metal dot array in the SAW gyroscope is composed of many periodically arranged
metal dots, and due to the periodicity of the structure, this paper models the single-period
piezoelectric substrate and the metal dots distributed on it as the research object [35].
Meanwhile, the Rayleigh wave mainly concentrates within the range of 1~2 wavelengths
on the surface of the piezoelectric substrate and attenuates rapidly along the depth [36].
Therefore, it is sufficient to set the model height to three wavelengths and then set a PML
layer with a thickness of one wavelength to eliminate reflections [37]. Although previous
research have shown that the thickness of the metal dot array increase, the SAW gyroscopic
effect will be stronger, but we can only set the thickness of metal dot to 0.9 um due to
the technological limitations. In addition, the metal dot is arranged in the center of the
piezoelectric substrate for each period.

To improve the authenticity and the accuracy of the simulation experiment, based
on the solving object (Figure 3), through the finite element simulation software, we have
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established a single-period 3D reference model, as shown in Figure 4 [38], and the material
parameters used in the simulation are listed in Table 1. The boundary conditions of
the model are as follows: (1) mechanical boundary conditions: the upper surface of the
piezoelectric substrate is free, and the lower surface of the PML is fixed; (2) electrical
boundary conditions: the upper surface of the piezoelectric substrate has zero charge or
is grounded, and the lower surface of the PML has zero electric charge; and (3) the front
and back sides, and the left and right sides of the piezoelectric substrate and PML have
periodic boundary conditions [39].
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Table 1. Material parameters used in FEM simulations [19–21].

Material Constants
Materials

128◦YX-LiNbO3 X112◦Y-LiTaO3 ST−X Quartz Cu

SAW type RSAW RSAW RSAW

Euler angle (0◦, 37.86◦, 0◦) (90◦, 90◦, 112.2◦) (0◦, 132.75◦, 0◦)

κ2 (%) 5.4 0.71 0.11

TCF (ppm/◦C) −72 −18.2 0

Stiffness constants (1011 N/m2)
C11 1.98 2.32 0.87 1.77
C12 0.54 0.46 0.07 1.24
C13 0.65 0.83 0.12
C14 0.07 −0.11 −0.18
C33 2.27 2.75 1.07
C44 0.59 0.95 0.58 0.82

Piezoelectric constants (C/m2)
ex1 0.171
ex4 −0.0436
ex5 3.69 2.64
ey2 2.42 1.86
ez1 0.30 −0.22
ez3 1.77 1.71
ez6 0.14

Dielectric constants (10−12 F/m)
ε11 45.6 × ε0 40.9 × ε0 4.5 × ε0
ε33 26.3 × ε0 42.5 × ε0 4.6 × ε0
ε0 8.854 8.854 8.854

3.2. Simulation Results and Discussion

The vibration modes of the SAW in the piezoelectric substrate can be derived by
characteristic frequency analysis; when a metal dot array is distributed on a piezoelectric
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substrate, the characteristic frequency will split into two modes: symmetric mode and
anti-symmetric mode [18]. According to the model established in Section 3.1, taking the
128◦YX-LiNbO3 substrate distributed with a metal dot of size 1/16λ as an example, we set
the initial operation frequency f0 to be 100 MHz. Since the SAW velocity of the 128◦YX-
LiNbO3 Vf = 3986 m/s [40], we set the acoustic wavelength λ to 39.86 µm, the parameter
‘width’ is defined to achieve a parametric sweep of the metal dot size, and its value is set
from 1/16λ to 15/16λ with a step interval of 1/16λ, the grid size is selected to be ultra-
refinement, and the number of characteristic frequency searches is set to 30. Finally, a rotate
coordinate system is added, and the angular velocity is set to 2π f0 × a (a is a constant used
to control the angular velocity of the substrate). The simulation results shown in Figure 5a,b
demonstrate the SAW of the symmetric mode and anti-symmetric mode, respectively [41],
where the depth of the color indicates the magnitude of the displacement (i.e., amplitude
of displacement), and the darker the color, the greater the displacement. In addition, the
right side of the figure is the specific value of the displacement [42].
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It can be clearly seen from Figure 5a,b that the Rayleigh waves propagate on the
surface of the medium, and the elastic displacement is only in the x-axis and z-axis planes;
there is no displacement in the y-axis. Besides, the particle displacement is mainly concen-
trated in the depth of one wavelength, and is almost invisible in when the depth reaches
two wavelengths [43], which is completely consistent with the theory that the energy of the
SAW is mainly concentrated in one to two wavelengths [44].

3.2.1. The Influence of the Size of the Metal Dot Array on the SAW Gyroscope Effect

When the model size of the piezoelectric substrate is fixed, the influence on the SAW
gyroscopic effect is calculated by adjusting the distribution parameters of the metal dot on
the upper surface of the piezoelectric substrate. Taking ω to denote the angular frequency
of the SAW, which is defined as ω = 2π f0, and taking a parameter a to represent the
normalized angular velocity, that is, a = Ω/ω, then the angular velocity of the model can
be expressed as Ω = 2π f0 × a [45]. In simulation, a is used as one of the parameters of the
parametric sweep to control the angular velocity of the substrate.

Firstly, the factor g that represents the SAW gyroscopic effect of three piezoelectric
substrates is analyzed, respectively, when a = 1× 10−3, and the simulation results shown
in Figure 6 demonstrate the variation rule of the factor g with the size of the metal dot
‘width’. It is clear from Figure 6 that the value of the ‘width’ affects the intensity of the SAW
gyroscopic effect significantly. When metal dots of different sizes are distributed on each
piezoelectric substrate, the intensity of the SAW gyroscopic effect exhibited is very different
from the results in the figure. It can be concluded that distributing a metal dot array of
suitable size on the piezoelectric substrate can effectively improve the intensity of the SAW
gyroscopic effect. The simulation results also show that, for three different piezoelectric
substrates, the optimum sizes of the metal dot that can make the SAW gyroscopic effect
the strongest are: 3/16λ for ST-X quartz, 5/16λ for 128◦YX-LiNbO3 and 1/16λ for X112◦Y-
LiTaO3. Besides, ST-X quartz with metal dots of 3/16λ has the strongest SAW gyroscopic
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effect, followed by 128◦YX-LiNbO3 with metal dots of 5/16λ, and X112◦Y-LiTaO3 with
metal dots of 1/16λ is the weakest.
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3.2.2. Influence of Rotation Speed on the Distribution Parameters of the Metal Dot Array

Next, it is analyzed whether the change of the rotation speed of the substrate will
affect the optimum size of the metal dot array. Increasing the value of a from 1× 10−3

to 1× 10−2 to analyze the relationship between the factor g and the ‘width’ of the metal
dot on the three substrates at high rotation speed. As shown in Figure 7, the optimum
sizes of the metal dot on the 128◦YX-LiNbO3 substrate and X112◦Y-LiTaO3 substrate do
not change with the increase in the rotation speed, and their strongest SAW gyroscopic
effect appears when the metal dot size is 5/16λ and 1/16λ, respectively. In contrast, the
optimum metal dot size of ST-X quartz has changed from 3/16λ to 11/16λ. Combined
with the simulation results in Figures 6 and 7, it can be seen that the optimum metal dot
sizes of the 128◦YX-LiNbO3 substrate and X112◦Y-LiTaO3 substrate are not affected by the
rotation speed, while that of ST-X quartz substrates are closely related to the rotation speed
of the substrate.
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3.2.3. The Relationship between the Metal Dot Array Distribution Parameters and Rotation
Speed in a ST-X Quartz Substrate

In order to clarify the relationship between the distribution parameters of the metal
dot array and the rotation speed when ST-X quartz is used as the substrate, the growth rates
of the SAW gyroscopic effect with the rotation speed when the metal dot size is 3/16λ and
11/16λ, respectively, are calculated based on the SAW gyroscopic effect when a = 1× 10−3.
The results are shown in Figure 8. With the increase in the rotation speed, the growth rate
of the SAW gyroscopic effect at 3/16λ and 11/16λ is obviously different, and the growth
rate at 11/16λ is much higher than that at 3/16λ. As shown in Figure 9, when the rotation
speed increases to a certain extent, for example, when the value increases from 6× 10−3 to
7× 10−3, the optimum size of the metal dot for the ST-X quartz substrate will change from
3/16λ to 11/16λ, which is also consistent with the conclusion mentioned above that the
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optimum metal dot size of the ST-X quartz substrate will change with the increase in the
rotation speed.
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Table 2 lists the strongest SAW gyroscopic effect obtained for three piezoelectric
substrates with different characteristics under the condition of matching the optimum
metal dot array (i.e., the data obtained from the simulation in Figure 6). Among them are
128◦YX-LiNbO3 with a large electromechanical coupling coefficient and ST-X quartz with a
temperature coefficient close to zero; both of which show a very strong SAW gyroscopic
effect. However, the specific reasons for the superior performance of 128◦YX-LiNbO3 and
ST-X quartz piezoelectric substrates in angular velocity detection are not clear and require
more in-depth study.

Table 2. SAW gyroscopic effect of different piezoelectric substrates.

a Piezoelectric
Substrate Width κ2

(%)
TCF

(ppm/◦C) g

1× 10−3
ST-X Quartz 3/16λ 0.11 0 29.5 kHz

128◦YX-LiNbO3 5/16λ 5.4 −72 22.4 kHz
X112◦Y-LiTaO3 1/16λ 0.71 −18.2 5.2 kHz

4. Conclusions

In this paper, the influence of distributing metal dot array with different sizes on
piezoelectric substrates on the intensity of the SAW gyroscopic effect, and the influence of
the rotation speed on the optimum size of the metal dot array are discussed. Based on the
differential sensing structure, finite element simulation software was used to simulate the
optimum metal dot distribution parameters of ST-X quartz, 128◦YX-LiNbO3, and X112◦Y-
LiTaO3 piezoelectric substrates at different rotation speeds, and the relationship between
the SAW gyroscopic effect and the rotation speed. The research results provide theoretical
support for further development of a high-sensitivity SAW angular velocity sensor.
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