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Abstract: The additive technologies widely used in recent years provide enormous flexibility in the
production of cellular structures. Material extrusion (MEX) technology has become very popular
due to the increasing availability of relatively inexpensive desktop 3D printers and the capability of
fabricating parts with complex geometries. Poly-lactic acid (PLA) is a biodegradable and commonly
applied thermoplastic material in additive manufacturing (AM). In this study, using a simulation
method based on the user subroutine titled “user subroutine to redefine field variables at a material
point” (USDFLD) in the finite element method (FEM) ABAQUS software, the elastic stiffness (ES)
of a cylindrical lightweight cellular PLA sample with a 2.4 mm infill line distance (ILD), which was
designed as a layered structure similar to the laboratory mode with a MEX method and was subjected
to cyclic compressive loading, was investigated by considering the variation of the Young’s modulus
depending on the variation of the equivalent plastic strain (PEEQ). It was observed that the PLA
sample’s elastic stiffness increases during cyclic loading. This increase is high in the initial cycles and
less in the subsequent cycles. It was also observed that the simulation results are in good agreement
with the experimental results.

Keywords: three-dimensional printing; numerical simulation; PLA; elastic stiffness; compression
test; loading–unloading

1. Introduction

Although 3D printing technology was developed in the early 1980s and has been
used in the automotive and aerospace industries for over three decades, it is relatively new
and rapidly growing. Three-dimensional printing, also known as additive manufacturing
(AM), is a technique in which three-dimensional objects are made layer-by-layer, based on
computer models designed for the fusion of materials [1–4].

Nowadays, AM is extensively used in various industrial products [5,6]. Compared to
other common manufacturing processes, such as injection molding, the essential benefit
of additive manufacturing is the capability to manufacture more complex shapes [7–9].
This feature is due to the layer-by-layer build process. AM technologies play a vital role in
production [10–12]. Particularly, one of their most substantial strengths is the production of
small series parts with innovative geometries [13,14].

Rapid prototype (RP) technologies have steadily improved over the past three decades
as they have proliferated. Some of the benefits of the RP process include the capability
to produce geometries with increased complexity in very short times without the need
for additional costs for tooling [15,16]; the ability to create functional sets by integrating
sub-sets into a single unit in the computer-aided design phase (CAD), reducing the number
of parts, time displacement, storage needs, and connection problems; the ability to optimize
material consumption by manufacturing parts that are complex or even impossible to
manufacture using conventional manufacturing processes; and finally the ability to reduce
waste and thus minimize the impact on the environment [17].
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Rapid Prototyping (RP) and rapid production technologies have moved from the
first commercial stereolithography hardware (SLA) in the late 1980s to today’s desktop-
sized molten sediment modeling systems. The above types of systems, and several others,
mostly vary in the concept of additive production. Recently, several factors have led to an
exponential growth in the use of such systems; the most profitable in the consumer market
is inexpensive thermoplastic extrusion [18].

Material extrusion (MEX) is an AM technology that uses geometric models generated
directly in a CAD system to create three-dimensional components of the data obtained
directly. This process begins with the slicing of the three-dimensional model of the part in
the CAD system to obtain two-dimensional curves (XY direction), which determines where
in each layer of material should be added (Z direction) [19]. MEX produces 3D objects by
quickly and accurately melting filament of thermoplastic polymers while extruding them
through a nozzle and placing the melted material onto a high-precision geometry plate [1].

Generally, the MEX technique is especially favorable for the manufacture of small-
volume parts and for prolonging their operational periods through approaches such as the
repair or self-assembly of parts [20–23].

MEX is flexible to a high degree with the geometrical and technological parame-
ters that affect a part’s mechanical properties and qualities. Therefore, Wichniarek et al.
studied mechanical properties and behavior for defined groups of materials used for
the MEX-produced parts and a corresponding set of process parameters ensuring stable
manufacturing conditions [24].

Anitha et al. [25] evaluated the effect of process parameters on the modality character-
istics of prototypes produced using MEX. Lee et al. [26] analyzed a set of MEX parameters,
such as layer thickness, mesh angle, and air distance, and investigated their effect on the
elastic performance of an acrylonitrile butadiene styrene (ABS) prototype. According to
their results, the MEX parameters (raster angle, layer thickness, and air gap) notably affect
the elastic performance of the compliant ABS prototype. Crocolo et al. [27] studied the
impacts of melted sediment modeling production parameters on the tensile strength and
stiffness of components made of ABS M30 and examined this question both empirically
and analytically. The most important results of this research are the feasibility of predicting
the mechanical behavior of the MEX parts, once the dimensions, number of contours, and
raster angle have been stated.

The most widely used thermoplastic materials are polyethylene, polypropylene, ABS,
poly-lactic acid (PLA), high compression polystyrene resin (HiPS), polyethylene tereph-
thalate glycol (PETG), polyamide (PA), commonly known as nylon, and polyether ether
ketone (PEEK), among others [19,28]. The most common source materials for commercially
available MEX printers are ABS and PLA.

PLA is a bio-plastic composed of a repetitive lactic acid chain. It can be recycled
through applying conventional methods [29]. Additionally, PLA can be composed similarly
to all of the other organic materials. It was observed to be one of the most important
biopolymers [30] with its substantial application in the field of medicine, such as for
medical implants, bone fixation and reconstruction, (bone) tissue engineering, drug delivery
system, and suture material [31]. Åkerlund’s [1] research developed biocompatible and
bioresorbable polymer blends and composite filaments for MEX printing. Åkerlund used
two biodegradable polymers (PLA (transparent filament) and polycaprolactone (PCL)); he
used an Ultimaker S5 printer with a nozzle size of 0.4 mm (AA 0.4) for printing the cylinders
with 100% infill density for a compression test, with the dimensions of 6 × 6 × 12 mm3.
Afterward, compression tests were performed on dense cylinders by using a Shimadzu
AGS-X materials tester to investigate the mechanical characteristics of both materials. Six to
ten specimens for each type of material were used for the compression test and the stiffness
(Young’s modulus) and yield point were reported. Torres et al. [18] presented the effect
of major processing parameters on the properties of materials obtained from poly-lactic
acid components modeled by MEX tested in torsion. The findings showed that the result
improved with heat treatment, and the infill effect on ductility. The thickness of the layer
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and density of infill [32] have significant impacts on optimizing the strength of the part.
Recently, for environmental reasons, biodegradable polymers such as PLA have been used
instead of conventional polymers. PLA was used in biomedical applications, containers,
packages, auto parts, and so on. PLA is a crystalline polymer and its Young’s modulus
and tensile strength are 2 to 3 GPa and 50 to 70 MPa, respectively. PLA is very brittle, and
its low toughness limits the use of PLA. To improve this fragility, PLA is combined with
other flexible polymers. The biocompatibility of PLA was approved for food and medicine
applications because of its good mechanical properties and processing performance [21,33].
PLA is a thermoplastic aliphatic polyester polymer derived from renewable sources. It has
been considered as a potential environmentally friendly alternative to its oil counterparts.
It is used for food contact, packaging, and scaffolding applications and is among the most
widely used polymers, especially because of its ability to crystallize stress, heat crystallize,
impact-modified, fill, copolymerize and process in most excellent polymer processing.

Designing and optimizing plastic parts remains a very complex engineering chal-
lenge. Designing a new product that is more secure, for example, involves validating its
mechanical behavior by numerically simulating FEM before it is built. These simulations
require accurate knowledge of the mechanical properties of the material. These properties
are affected by the manufacturing process as well as the mechanical effort that affects the
design in the operational state.

In the case of MEX-produced parts, dimensional tolerances seem to have impacts such
as affecting the layer height, which affects the topology component of its specific position
in the printing press. Additionally, the height of the layer and the rate of deposition
are affected by the required product quality. Similarly, manufacturing characteristics
are affected by the target cost, for example, by minimizing printer size and decreasing
production support.

The accurate simulation of components produced with MEX means knowing in ad-
vance how the material behaves based on the manufacturing specifications and the final
product requirements. In addition, to complete the validation process after obtaining the
experimental information, it is necessary to know the best way to process the experimental
information in FEM software so that the simulation results can be completely in accordance
with the experimental behavior of those materials. Domingo-Spin et al. [34] proposed a
model for simulating MEX components that links finite element analysis (FEA) simulation
to physical experiments. They determined that choosing the appropriate direction to man-
ufacture a part is important; moreover, the nozzle diameter, slice height, and the diameter
of the extruded filaments can seriously affect the anisotropy of MEX-produced parts.

To assess the possible impact of compressive loading on the ES of the MEX-produced
cellular PLA specimens with two different ILDs of 1.6 mm and 2.4 mm, Pepelnjak et al. [35]
carried out research on cycling loading and analyzed the impact of such a loading on the
part’s mechanical properties. To this aim, in the published research, each sample was
subjected to 10 cycles of distinct compressive loading to a definite amount of displacement
ranging from 0.2 to 0.5 mm (Figure 1).

The results of Pepelnjak et al. [35] demonstrated an enhancement of the ES of the
sample with the ILD of 1.6 mm for 7.5% after the initial 10 cycles by compressive cycling
loading with a starting nominal displacement of 0.2 mm, resulting in observing the most
significant variation after the second loading cycle. Furthermore, a rise of 8.4% in the ES of
the sample was revealed by comparing the impact with the mentioned samples with the
2.4 mm ILD. Regarding cycling loading from a starting displacement of 0.4 mm, in which
the increase in the ES of the sample was 10.2% and 9.8% for an ILD of 1.6 mm and 2.4 mm,
respectively, ES changes were shown to be more pronounced. Finally, the ES of the sample
for 11% had its most significant increase after 20 loading cycles from an initial nominal
movement of 0.4 mm at 1.6 mm ILD. This study aims to validate the experimental results
of altering the elastic stiffness of the polymer structure by using numerical simulations.
These validation results open new capabilities for the optimization of polymer lightweight
parts. This way of using a deliberately deformed polymer structure is a new model not yet
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observed in the scientific literature; it is expected to be of help in engineering structures in
lightweight materials. In the present numerical simulation, a model with 2.4 mm ILD is
researched.
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Figure 1. Schematic diagram of the universal testing machine (UTM) (left) and the located sample
between the compression plates (right) [35].

The results from the numerical simulation of the polymer structure produced by
additive manufacturing closely match the experimental results. Therefore, it is possible to
alter the elastic stiffness by loading–unloading. Figure 2 summarizes the research.
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Figure 2. A summary of the research in the experimental part [35] and the validation of the experi-
mental results using numerical simulations.

2. Materials and Methods

In the numerical simulation with ABAQUS software, several user subroutines have
been suggested to meet specific requirements. These subroutines are programmed in
FORTRAN and used in the ABAQUS software [36,37]. The User subroutine to redefine
field variables at a material point (USDFLD) was used in this research.
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The USDFLD subroutine can be used to define the behavior of materials, and the
output of the required results can be used by utility routines GETVRM. The state variables
(SDVs) and field variables (FVs) could be obtained at each integration point of the finite
element by this subroutine. Equivalent plastic strain (PEEQ) was chosen as a field variable.
The dependence between Young’s modulus of FFF-printed PLA material and the PEEQ
should be defined. The values of Young’s modulus correspond to different amounts of the
field variable. The elastic stiffness of the PLA model changed after the compression loading
and unloading. The properties of the material are altered by the dependence defined. The
flow chart is shown in Figure 3.
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Many biodegradable polymers are available to produce a large diversity of plastic
products, each with properties relevant to the application. A wide range of mechanical
properties is possible among biodegradable polymers. Some metallurgical alloys and
polymers present softening behavior instantly after reaching the yield point. In a 3D elasto-
plastic formulation implementing minor strains [38,39], the strain tensor is provided by an
elastic and a plastic tensor:

ε = εe + εp (1)

For disparate engineering materials, a yield criterion indicating the stress level at
which plastic flow begins must be postulated. A relationship between stress and strain
is obliged to be developed for post-yield behavior, i.e., when the deformation comprises
both elastic and plastic components. The yield surface separates the plastic region from
the elastic region. To describe the stress–strain relation after plastic deformation, a plastic
constitutive tensor needs to be established.

The yield function can be demonstrated by

F
(
σij, k

)
= 0 (2)

where the yield surface, F
(
σij, k

)
, depends on the magnitude of the load applied and of

a hardening parameter k [40]. For simplicity, the yield function in Equation (2) can be
rephrased in terms of the three main stresses,

F = (σ1, σ2, σ3, k) = 0 (3)
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By differentiating Equation (2) and considering a plasticity flow law,

dF =
∂F
∂σ1

dσ1 +
∂F
∂σ2

dσ2 +
∂F
∂σ3

dσ3 +
∂F
∂k

dk = 0 (4)

Introducing parameter A, where A = − 1
dλ

∂F
∂k dk (A is defined as a hardening parameter

and dλ is the plastic strain multiplier), Equation (4) can be rewritten to a form,

∂F
∂σ1

dσ1 +
∂F
∂σ2

dσ2 +
∂F
∂σ3

dσ3 − Adλ = 0 (5)

Decomposing the strain increment into the sum of infinitesimal elastic and plastic
strain increments dεe and dεp, respectively dε = dεe + dεp, the strain increments can then
be derived as Equation (6).

d{ε} = [D]−1d{σ}+
{

∂F
∂σij

}
dλ (6)

where [D] is the elastic constitutive matrix that linearly relates the six components of the
stress ({σ}) with the six components of strain ({ε}) [41]. The entire elastoplastic incremental
stress–strain relation can be derived to be

d{σ} = [D]epd{ε} (7)

where [D]ep is the elastoplastic constitutive stiffness matrix provided by

[D]ep = [D]− [D]{a}{a}T[D]

A + {a}T[D]{a}
(8)

where {a} is equal to { ∂F
∂σ1

, ∂F
∂σ2

, ∂F
∂σ3

}.

2.1. Equivalent Strain Approach

The equivalent plastic strain equation can be defined in a manner consistent with
the definition of the Von Mises equation [39,42]. The equivalent plastic strain (εp

0) can be
obtained by the following equation:

ε
p
0 =

√
2

3

[(
ε

p
x − ε

p
y

)2
+
(

ε
p
y − ε

p
z

)2
+
(

ε
p
z − ε

p
x

)2
+ 6
(

ε
p
xy

)2
+ 6
(

ε
p
xz

)2
+ 6
(

ε
p
yz

)2
] 1

2
(9)

where are ε
p
x, ε

p
y, ε

p
z , ε

p
xy, ε

p
xz, and ε

p
yz the plastic strain tensor components [43].

2.2. Numerical Simulation

The 3D modeling and simulation were performed using ABAQUS finite element
code to develop a layered (PLA) model that is subjected to compressive loading. The
experimental sample was in an open-top cylinder form of D = 11.42 mm (diameter) and
H = 10 mm (height) built with MEX technology. The MEX process parameters used in the
sample production are defined in [35]. It was determined that it is not possible to print
a 100% infill sample with that technology (Figure 4). In order to decrease computational
costs and save time, the numerical model used in this study was one-twenty-fourth of the
entire open-top cylinder. Therefore, first, the cross-section of the sample was divided into
twelve equal and symmetrical parts, and the height was halved (Figure 5).
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The influence of model shape on numerical simulation results was examined. There-
fore, a simplified geometrical model (Figure 6) and a layered model, following the shape of
the printed sample and the cross-section of the real shape (Figure 7), were created.
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The mechanical properties of the PLA used in this simulation are provided in Table 1
and Figure 8 [1].

Table 1. Mechanical properties of the PLA applied in the numerical simulation.

Property Unit Value

Density (ρ) kg/m3 1240 [5]
Initial Young’s modulus (E) (altered with PEEQ

during the simulation) MPa 2800 [35]

Poisson’s ratio (υ) - 0.36
Yield strength (σy) MPa 59
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Therefore, to achieve the plastic properties of the PLA used in the numerical simulation,
the plastic properties of Åkerlund [1] were chosen as a reference. After analyzing the
results of numerical simulation, the stress and strain values of the plastic properties used
by Åkerlund [1] were shifted together to some different percentages in different steps. By
examining the results of numerical simulation after each step of making changes according
to Figure 8, the data of diagram 5 (simultaneous 22% decrease of the stress and strain
values) in this numerical simulation were used.

It was not possible to print the sample with one hundred percent infill using MEX tech-
nology; therefore, references for the material (PLA) data were sought for use in the numerical
simulation. The Z-direction fixed boundary condition (normal direction displacement = 0)
was applied at the middle cross-section, and the normal direction fixed boundary condition
(normal direction displacement = 0) was applied at both side cross-sections of the model in
the local coordinate system, as shown in Figure 7. The numerical model of the specimen is
composed of 308,734 C3D8R elements (linear 8 node hexahedra with reduced integration)
(Figure 9). The model consists of 26 parts, of which 25 are PLA layers (each separate
object) stacked on top of each other; the other part is the tool (Figure 5). The Poisson’s
ratio was 0.36 [44]. In this model, Young’s modulus changes with the equivalent plastic
strain, which was performed using the USDFLD subroutine. In this way, by changing the
equivalent plastic strain in the model, a new Young’s modulus was assigned to the material.
To validate with laboratory results, loading was applied in two conditions of three and
five cycles. For this purpose, the model was compressed by 0.1 mm; next, the applied load
was removed to return the model to its original state. This procedure was repeated in two
conditions of three and five cycles.
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3. Results and Discussion
3.1. Comparison of Numerical Simulation and Experimental Results

PLA-based cellular samples were fabricated using MEX 3D printing technology and
their mechanical properties investigated. During the experimental work, cyclic compressive
loading was applied to PLA samples, and the ES was altered through combined elastic
and plastic deformation. The outcome of the experimental work showed that, under cyclic
compressive loading, the sample alters its elastic stiffness. In the present study, the first
five cycles of the experimental procedure were simulated via ABAQUS finite element
code. To obtain the elastic stiffness results from numerical simulation, the true stress–strain
diagram was plotted with the force–displacement diagram data, and the elastic stiffness
was calculated from the slope of this diagram. The simulation results show that the elastic
stiffness of the model changes, which is consistent with the results obtained from previous
experimental research. Tables 2 and 3 summarize the results obtained from both studies
(experimental and numerical simulation). It can be seen that the results obtained from the
numerical simulation and experimental research are in good agreement, and the percentage
of discrepancies in results is reasonably low. This outcome can be considered a validation
of both parts of the research. Comparing the results of each cycle, it is clear that the first
cycle’s elastic response varied significantly from the subsequent ones. In both studies, there
is a significant increase in the elastic stiffness in the first cycle, but in the following cycles,
the amount of alteration decreases.

Table 2. Results of the ES of the sample in experiments and model in the numerical simulation,
induced by cyclic compressive loading.

Number of Cycles 1 2 3 4 5

Elastic stiffness in the experiment
[35] (MPa) 2800 2970 2998 3005 3015

Elastic stiffness in the numerical
simulation (MPa) 2732.8 2936.8 3005.0 3036.5 3057.5

Table 3. Summary of the ES percentage changes in the experiments and numerical simulation,
induced by cyclic compressive loading.

Cycles Comparison 2→ 1 3→ 1 4→ 1 5→ 1

Percentage of elastic stiffness changes in experiment
compared to the first cycle (%) 6.1 7.1 7.3 7.7

Percentage of elastic stiffness changes in numerical
simulation compared to the first cycle (%) 7.5 10 11.1 11.9

Percentage difference between the experiment and
numerical simulation results (%) 1.4 2.9 3.8 4.2
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The results of the experiment and numerical simulation research in each cycle are
presented in Figure 10. As is evident, the numerical simulation results and experimental
results are significantly close.
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In addition to the above observations, the hysteresis loop shown in the force–displacement
diagram of the numerical simulation (Figure 11) is also fully consistent with the experimental
results. The hysteresis loop demonstrates the mechanism of cyclic hardening within the model.
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3.2. Model Shape Influence on Simulation Results

Based on the findings from Table 4, elastic stiffness changed in the simplified geomet-
rical model and the layered model, and its value increased. When comparing these results,
data from both models (geometrical simplified model and layer-by-layer model) show a
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difference between experimental and numerical simulation results of less than 5%. In the
present research, the layered model was chosen because it follows better the real shape of
the experimental MEX-produced sample and the real cross-section of the specimen.

Table 4. Summary of the ES of the geometrical simplified model changes and the layer model changes
in the numerical simulation, induced by cyclic compressive loading.

Number of Cycles 1 2 3 4 5

Elastic stiffness in the geometrical
simplified model (MPa) 2818.2 2943.9 2989.1 3018.2 3039.8

Elastic stiffness in the
layer-by-layer model (MPa) 2732.8 2936.8 3005.0 3036.5 3057.5

Elastic stiffness in the experiment
[35] (MPa) 2800 2970 2998 3005 3015

It is also seen from Figure 12 that the force–displacement diagrams have a slight
difference in the layered and geometrical simplified models. Based on Table 4 and Figure 12,
it can be concluded that the shape of the model (layered and geometrical simplified) does
not significantly affect the results.
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3.3. Simulation Results along a Specific Path

The exact position of the specific paths can be seen in Figure 13. In the research, the
results alongside the two paths during the numerical simulation were investigated. These
paths were chosen in the position that included all layers of the model.
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Figure 13. The paths examined in this simulation: (a) Path 1 and (b) Path 2.

Figure 14 shows the Mises stress alongside Paths 1 and 2 when each cycle is finished.
As can be seen, at the end of each cycle, the stress values increase from top to bottom of
the model alongside the paths on the primitive layers, and then start to decrease. The
maximum stress is almost at the middle layers of Paths 1 and 2.
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Figure 14. Mises stress (MPa)–distance diagram in specific paths at the end of each cycle. (a) Path 1
and (b) Path 2.

Figure 15 shows the amount of the elastic strain (maximum principle) at the end of
each cycle, alongside Paths 1 and 2. The results indicate that the behavior of the model is
approximately similar during both paths. As seen in Figure 15, alongside the paths, the
maximum elastic strain value obtained is about 0.011, and the elastic strain value alongside
the paths first increases and then starts to decrease.

Figure 16 shows the equivalent plastic strain in Path 1, specified in Figure 13. As is
evident from Figure 16, the equivalent plastic strain values increase from top to bottom of
the model alongside Path 1. The equivalent plastic strain has its highest value in the last
layers and has the lowest value in the initial layers.
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Figure 17 shows the equivalent plastic strain in Path 2, specified in Figure 13. As seen in
Figure 17, the variation in the equivalent plastic strain values is smaller at Path 2 compared
with Path 1, but both paths have almost identical ways of behaving. The equivalent plastic
strain has its highest value in the last layers and has the lowest value in the initial layers.

Appl. Sci. 2022, 12, 8018 16 of 19 
 

 

Figure 17. Equivalent plastic strain diagram in Path 2 in (a) Cycle 1, (b) Cycle 2, (c) Cycle 3, (d) Cycle 

4, and (e) Cycle 5. 

Figure 18 shows the elastic strain obtained in each region of the model after five cy-

cles of cyclic compressive loading. As can be seen, the maximum elastic strain occurs be-

tween the infill lines layers. 

 

Figure 18. Elastic strain contour at the end of loading–unloading. 

  

Figure 17. Equivalent plastic strain diagram in Path 2 in (a) Cycle 1, (b) Cycle 2, (c) Cycle 3, (d) Cycle
4, and (e) Cycle 5.

Figure 18 shows the elastic strain obtained in each region of the model after five cycles
of cyclic compressive loading. As can be seen, the maximum elastic strain occurs between
the infill lines layers.
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Figure 18. Elastic strain contour at the end of loading–unloading.

4. Conclusions

In this study, a simulation of a PLA model under cyclic compressive loading–unloading
was performed, and the results were compared to the experimental results. At first, the
effect of shape on the results and whether the modeling method is important were examined.
In this regard, two simulations were performed; in the first one, the model was layered,
which follows better the contour of the MEX-produced sample and the cross-section of
the real shape; in the second one, the model was geometrically simplified. The results
show that the model’s shape is also effective in the results, and the results of the layered
models were different from the geometrically simplified ones. The elastic stiffness obtained
in the full solid model from Cycle 1 to Cycle 5 was 2818.2 MPa, 2943.9 MPa, 2989.1 MPa,
3018.2 MPa, and 3039.8 MPa, respectively, while in the layer model, these numbers were
2732.8 MPa, 2936.8 MPa, 3005 MPa, 3036.5 MPa, and 3057.5 MPa, respectively. Therefore, a
layer-by-layer model was used according to the experimental sample shape.

In contrast, by comparing the results of the layered model with the experimental
results, it was observed that the percentage differences of changing elastic stiffness in
experimental work and simulation during five cycles of loading–unloading were really
low. The percentages of difference in elastic stiffness between the experimental results
and numerical simulation results from cycle to cycle were 1.4, 2.9, 3.8, and 4.2 percent,
respectively. The numerical simulation outcomes show that the elastic stiffness significantly
increases during the first cycle, but in the following cycles, the amount of increase in
elastic stiffness decreases, which is in agreement with the experimental results. The force–
displacement diagrams are also in acceptable agreement with the experimental results.
It is evident that plastic deformations in the sample increase from cycle to cycle and
influences its elastic stiffness, which also increases. Plastic deformations developed in
narrow transitions between layers. This is why the geometrical model of the sample, used
in mechanical analysis, should also take into account the approximation of the real layer’s
cross-section shape.

Finally, some of the results that were not obtained in experimental work were achieved
in the numerical simulation, such as the Mises stress, elastic strain, and PEEQ diagrams
alongside the two paths. It was observed that the Mises stress has the lowest value in the
first layers (from the tool side), and the stress values increase from top to bottom of the
model alongside the paths on the primitive layers, and then it will start to decrease. The
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maximum amount of stress is almost at the middle layers of Path 1 and Path 2. In addition,
the full amount of the Mises stress was observed between the layers. The results of all
observations on the numerical simulation are for investigation in future works.
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