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Abstract: Displacements induced by mineral dissolution and subsurface volume contraction affect
overlying soils. In this study, we examine the consequences of mass loss or volume contraction at
shallow depths using a discrete element method. The goal of the study is to identify particle-scale
and global effects as a function of the relative depth of a dissolving inclusion, initial soil density, and
granular interlocking. There are successive arch formation and collapse events, and a porosity front
propagates upwards as grains slide down to refill the space. Grains around and within the refilled
cavity are loosely packed and have small contact forces that are sufficient to avert the buckling of
granular arches that form around the dissolving zone. Denser packings and interlocking combine to
exacerbate rotational frustration and lead to more pronounced force chains along granular arches,
looser fill, and reduced surface settlement. In fact, surface settlement vanishes, and the sediment
hides the localized dissolution when deep inclusions z/D ≥ 5 dissolve within dense sediments.
While scaling relations limit the extrapolation of these numerical results to tunneling and mining
applications, macroscale trends observed in the field resemble results gathered in this study.

Keywords: subsurface volume contraction; mineral dissolution; granular arching; surface settlement;
internal grain displacement; discrete element method

1. Introduction

Mineral dissolution and precipitation are concurrent soil processes. The time scale
for chemical processes is typically quite long and the “inert assumption of soils” applies
to many engineering applications. Dissolution and precipitation, however, can also take
place in relatively short time scales in advective regimes and when systems are taken far
from equilibrium. They occur, for example, in dam foundations, volcanic ash, mine tailings,
fly ash, CO2 injection, infiltration-induced carbonate dissolution, and the dissociation of
segregated ice or methane hydrates [1–7].

Volume contraction in shallow sediments can take place during mining operations and
due to ground loss around underground construction [8–11]. Similarly, the localized disso-
lution of carbonates may trigger ground subsidence, cave-ins and regional softening [12,13].
Ensuing subsidence, collapse and sinkholes are a function of soil properties, volume loss
and geometry (size, depth). Displacements induced by underground volume contraction
negatively affect the overlying infrastructure and nearby underground structures. As
examples, piles experience lateral deflection, bending moments, settlement, and abnormal
load distribution [14–17]; lifelines are sheared and disrupted [18–21]; buildings develop
differential settlement and horizontal displacement [22–24]; and adjacent tunnels may
rotate and undergo asymmetric settlement [25,26].

Previous studies of mineral dissolution and subsurface volume contraction using the
discrete element method have primarily addressed pressure solution [27–29], randomly
distributed soluble grains [30] and volume loss around tunnels [31,32]. This study takes
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advantage of the discrete element method to obtain macroscale and particle-level informa-
tion following the dissolution of a granular inclusion at shallow depth. Variables include
sediment density and granular interlocking, and the inclusion depth.

2. Methodology

We use the two-dimensional discrete element code PFC-2D (ITASCA Consulting
Group, Inc.) to create the simulation environment (details in Table 1). The grain size
distribution is uniform and ranges between dmin = 0.8 mm and dmax = 1.2 mm; the uni-
form size distribution is selected to avoid computational instability caused by very small
particles generated in a normal distribution and to avoid preferential particle aligning
along boundaries in mono-sized particles. We select the linear grain contact model, the
available model in PFC2D for 2D disks [33], and apply an interparticle friction of 0.5, a
typical value used in the literature to produce a reasonable macro-scale friction angle of
granular soils [34]. We impose no friction between grains and walls, a common boundary
assumption adopted to simulate field conditions in a cell environment.

Table 1. Two-dimensional discrete element simulation environment.

Properties Values

Particles
(disks)

Diameter Uniform size distribution
(dmin = 0.8 mm, dmax = 1.2 mm)

Number of disks 10,567

Density of disks 2650 kg/m3

Linear contact model
Normal stiffness kn = 108 N/m

Shear stiffness ks = 108 N/m

Inter-particle friction 0.5

Local damping 0.7

Inclusion Diameter D = 10 mm

Boundary conditions

Initial cell size 100 mm × 100 mm

Free upper surface

Rigid, zero lateral strain

Particle-to-wall friction 0

Gravity 1 g

Grain angularity and interlocking, which imply rotational resistance, can be numeri-
cally implemented by imposing rolling resistance [35–38] or by introducing non-spherical
particles and granular clusters [39–41]. Hindered particle rotation (HR) is a computationally
efficient approach to account for grain angularity [42,43]. Numerical results are physically
inconsistent when all particles have hindered rotation; in this study, we hinder the rotation
of an HR-fraction of randomly located particles. Numerical simulations show that the
macroscale friction angle increases with interlocking: φ = 22◦ for HR = 0%, φ = 35◦ for
HR = 40%, and φ = 48◦ for HR = 80% [44].

We create normally compacted granular assemblies (“clean sand”) with two markedly
different initial densities. The loose packing is formed by air pluviation, in which particles
are poured from a low height, gradually filling the container bottom-up under 1 g gravity.
We form the dense packing by loading granular packing with zero interparticle friction
and no gravity; then, we reinstate friction and gravity after unloading. Finally, we select
particles with hindered rotation at random before dissolution starts.

The dissolvable granular inclusion has a D = 10 mm diameter and is buried at various
depths z (Figure 1). The vertical walls impose zero-lateral deformation, and the upper
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sediment surface is stress-free. Altogether, we run 18 cases to explore loose (e = 0.242) and
dense (e = 0.184) initial packings, three burial depths (z/D = 2, 5, and 9), and three levels of
granular interlocking (HR = 0%, 40%, and 80%) to vary the macroscopic friction angle.
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Figure 1. Initial model showing inclusion depth z and size D. Dark-colored grains are soluble. (This
case corresponds to z/D = 5).

We simulate subsurface volume contraction by removing the granular inclusion. We
test two dissolution modes: quasi-static gradual grain contraction (each run requires several
weeks to keep the inertia number I < 10−5) and instantaneous removal of the grains (each
run requires only a day, but inertia arises in early particle flow). In both cases, the final
sediment conditions are very similar (Figure 2). All results reported next are obtained by
instantaneous removal.
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the red particles are soluble. (a) Initial force chains. (b) Intermediate state during dissolution or after
instantaneous removal. (c) Final force chains. Note: medium dense packing (e = 0.201), HR = 80%,
z/D = 8.5.

3. Results and Analyses

Grain flow. Grain flow is accompanied by successive arch formation and collapse
events. Grains slide and flow predominantly in the vertical direction to refill the cavity
and a counter-propagating porosity front emerges (Figure 3). The flow stream is nar-
rower in sediments with higher interlocking (Figure 3; full dataset in Figure S1 of the
Supplementary Data).
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Figure 3. Granular flow during cavity refill—displacement vectors. Vector magnitudes are equally
scaled for all cases. The black circles indicate the original location and size of the dissolving inclusions.
Note: hindered rotation HR = 40%.

Contact force arching and refilled cavity. Grains in the refilled cavity are loosely packed;
the small forces they carry provide transverse support to the granular arches that form
around the dissolving zone (see Figure 4 and the complete dataset in Figure S2 of the
Supplementary Data). In terms of contact forces, a “ghost zone” remains after dissolution
and it extends beyond the original inclusion size. The egg-shaped force arches extend
towards the free surface and define more prominent ghost zones in cases that involve deeper
dissolution, denser sediments and higher interlocking. Clearly, rotational frustration plays
an important role in particle rearrangement; thus, a higher coordination number in denser
packings and hindered rotation combine to exacerbate rotational frustration, marked force
chains and loose refill.
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Figure 4. Contact force chains after dissolution. Force chain thicknesses reflect the force magnitude
and are equally scaled for all cases. The white circles indicate the original location of dissolvable
inclusions. Notice large local porosity next to strong force chains. Case: hindered rotation HR = 40%.

Settlement. Figure 5 summarizes surface settlement profiles for all 18 cases. We fit a
Gaussian function to each dataset to extract the maximum surface settlement δmax and the
“characteristic width” W of the settlement trough. This analysis resembles large-scale field
observations of previous studies [12,45–47]:

δx = δmax exp
(
− x2

2Σ2

)
, (1)

where x is the horizontal distance from the centerline and Σ the standard deviation. Maxi-
mum surface settlement δmax decreases as the depth–size ratio z/D increases. Interlocking
and packing density (1) do not affect δmax for very shallow inclusions z/D ≤ 2, where
surface settlement is kinematically controlled, but (2) reduce the peak settlement δmax
when inclusions are deeper than z/D ≥ 5 and granular flow is equilibrium-controlled
(Figures 5 and 6a). In all cases, effective width Σ increases as z/D increases and interlock-
ing decreases.

Trough area vs. lost area. Simulation results allow us to compare the trough area Atr
against the area of contracting zone Acz. In most cases, the ratio is Atr/Acz < 1. In fact,
surface settlement vanishes, and Atr/Acz

1 
 

 0 for deep cavities z/D ≥ 5 dissolving in
dense sediments with high interlocking (Figure 6b). In the limit of incompressible grains,
difference Acz−Atr is equal to the gain in internal voids and porosity, as can be seen in the
numerical results (Figure 2, Figure 4 and Figure S2). Note that the trough area exceeds the
area of the dissolved inclusion Atr/Acz > 1 when dissolution takes place in loose sediments
with no rotational resistance; in this case, dissolution triggers the densification of the
overlying sediment (Figure 6b).
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Figure 5. Surface settlement after dissolution. The data—folded at the centerline—are fitted with a
Gaussian function. Note the ranges in y-axes are not the same for different z/D as indicated by the
green square frames.
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Figure 6. Surface settlement for subsurface cavity dissolution in dense and loose sediments.
(a) Normalized maximum settlement δmax to inclusion diameter D. (b) Trough area Atr normalized
by the area of contracting zone Acz.

4. Discussion

Boundary effects. Some surface settlement profiles do not die out within the simulated
width. This is a clear indication that simulations are affected by boundary effects (worst
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conditions: deep inclusions in loose packings—Figure 5). An alternative view is to consider
these simulations as a representative REV that repeats itself with characteristic L-spacing.
Similarly, there is some interaction with the lower boundary, particularly in the case of
deep inclusions (z/D = 9—see Figures 3 and 4).

Shallow vs. deep dissolving inclusions. To explore the dissolution of deep inclusions sub-
jected to constant vertical stress, we conducted a complementary study. (Note: In both
cases, the lateral boundary imposes zero lateral deformation; however, inclusion size and
sediment density show minor differences) [48]. Deep inclusion is simulated by applying
constant vertical stress (e.g., 100 kPa for the case shown in Figure 7) using plate boundary
loading from the top and the bottom of the specimen. Both top and bottom boundaries
move in as the inclusion contracts.
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Figure 7. Shallow versus deep volume loss. (a) Displacement vectors and (b) contact forces after
dissolution. The deep inclusion is subjected to constant vertical stress of 100 kPa, and both the top
and bottom boundaries move in as the inclusion contracts. The circles show the original size of the
contracting zone. Note: HR = 40% in both cases.

The results displayed in Figure 7 highlight distinct differences in granular flow and
force arching. In particular, while the prevalent gravity-driven vertical flow occurs when
shallow inclusions dissolve, horizontal grain displacement prevails in dissolving deep
inclusions. Similarly, while gravity and the stress gradient underly the evolution of force
chains in shallow inclusions, concentric arches form when dissolution takes place under
constant vertical stress (i.e., when a local change in vertical stress is minor compared to the
stress level).

Post-dissolution sediment properties. Local volume contraction affects interparticle forces
and porosity in an area that is significantly larger than the initial size of the contracting
zone (Figure 4 and Figure S2). Based on published numerical and experimental results, we
anticipate a more contractive sediment response to subsequent normal and shear loading,
lower undrained strength, and lower shear wave velocity within the “ghost zones” [49–53].
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Field implications. Displacements induced by underground volume contraction affect
the overlying infrastructure and nearby underground structures. For example, piles ex-
perience lateral deflection, bending moments, settlement, and abnormal load distribu-
tion [14–16]; lifelines are sheared and disrupted [18–21,54]; buildings develop differential
settlements and horizontal displacement [22,23]; and adjacent tunnels may rotate and
undergo asymmetric settlement [25,26].

Scaling relations and similarities limit the extrapolation of the numerical results pre-
sented here to field conditions where the contracting cavity size is much larger than the
grain size, D >> d. Nevertheless, macroscale trends observed in the context of tunnels re-
semble the results gathered in this study: the settlement volume correlates with the ground
loss [55,56], the maximum surface settlement decreases as the soil stiffness increases [57],
and volume loss at greater depths causes less surface settlement but a wider settlement
trough [45,58].

5. Conclusions

Mineral dissolution and precipitation are concurrent soil processes and can take
place in relatively short time scales in advective regimes and when minerals are far from
equilibrium. To study the consequences of localized mineral dissolution at shallow depths,
that is, free surface conditions, we used a two-dimensional discrete element code.

Grains slide and flow to refill the space left behind by dissolution. There are successive
arch formation and collapse events, and a porosity front propagates upwards as grains flow
down during refilling. Grains are loosely packed around and within the refilled cavity; the
small forces they carry provide transverse support to the egg-shaped granular arches that
form around the shallow dissolving zone under gravity. In contrast, granular flow is primar-
ily horizontal in deep dissolving inclusions under constant far field vertical stress, and force
arches are concentric around the region that experience mass loss. Published numerical
and experimental results suggest that both the shallow and deep sediment will be more
contractive and exhibit a lower undrained strength and shear stiffness after dissolution.

Granular rearrangement following dissolution involves particle rotation and sliding.
Higher coordination numbers in denser packings and interlocking by hindered rotation
combine to exacerbate rotational frustration. Consequently, localized dissolution within
denser packings with higher interlocking results in more pronounced force chain arches,
looser fill, reduced peak settlement and trough areas, and narrower granular flow streams
and settlement troughs.

In most cases, the settlement trough area is smaller than the lost inclusion area. In fact,
the overlying sediment can hide the localized dissolution and surface settlement vanishes
when deep inclusions (z/D ≥ 5) dissolve within dense sediments. Dissolution-triggered
densification may take place but only in very loose sediments.

While scaling relations and similarity limit the extrapolation of these numerical results
to tunneling and mining applications, macroscale trends observed in the field resemble
results gathered in this study.
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