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Abstract: In the wake of the restrictions imposed on social interactions due to the COVID-19 pandemic, tra-
ditional classroom education was replaced by distance education in many universities. Under the changed
circumstances, students are required to learn more independently. The challenge for teachers has
been to duly ascertain students’ learning efficiency and engagement during online lectures. This
paper proposes an optimized lightweight convolutional neural network (CNN) model for engage-
ment recognition within a distance-learning setup through facial expressions. The ShuffleNet v2
architecture was selected, as this model can easily adapt to mobile platforms and deliver outstand-
ing performance compared to other lightweight models. The proposed model was trained, tested,
evaluated and compared with other CNN models. The results of our experiment showed that an
optimized model based on the ShuffleNet v2 architecture with a change of activation function and
the introduction of an attention mechanism provides the best performance concerning engagement
recognition. Further, our proposed model outperforms many existing works in engagement recog-
nition on the same database. Finally, this model is suitable for student engagement recognition
for distance learning on mobile platforms.

Keywords: CNN; ShuffleNet v2; engagement recognition; E-learning

1. Introduction

The pandemic that has gripped the world for more than two years has significantly
impacted the education sector. Online video-based teaching that was introduced during
the pandemic has become more and more common. The influence of online education
on learning efficiency has become an important question worth exploring, because many
real-life conditions restrict online teaching when compared with traditional face-to-face
education. Therefore, to understand the effects of online education on learning in detail,
detecting and obtaining learners’ engagement is quite essential for subsequent studies.
Since learner engagement has always been a key topic in the field of education, some studies
have indicated that learner engagement can be improved through appropriate instructional
interventions, good study design and instant feedback [1]. To measure the engagement
of learners, the human face is one of the starting points.

Facial expression are a very common, natural and universal way for humans to express
their emotions. Earlier face-recognition methods use a face dataset to recognize one or more
faces in a scene through static images. With improvements in camera performance and
cost reduction in this technology in recent years, face recognition is widely used in games,
mobile payments, video surveillance and many other areas. Consequently, a large amount
of video data is generated, and the demand for processing faces in the video format is
on the rise.

At the end of the last century and the beginning of this century, mainly traditional
algorithms and machine learning algorithms were used for facial recognition. Common
examples are Eigenfaces [2], Fisherfaces [3], Bayesian face [4], support vector machine
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(SVM) [5], Boosting [6] and Metaface [7]. However, facial recognition systems that are
based on these algorithms work well only when they operate in a relatively controlled
environment [8]. As more variables are introduced in the video streaming data, such
as resolution, motion blur and illumination, the technical challenges increase.

Around 2010, thanks to the rapid development of GPU performance and the fast growth
in the number of real-world datasets, researchers gradually began to use deep learning methods
for facial recognition. The most classic and popular example of this is the use of convolutional
neural networks (CNNs) [9]. Other instances are long short-term memory (LSTM) [10], recurrent
neural networks (RNNs) [11], 3D convolutions (C3Ds) [12] and so on. The results show that deep
learning algorithms have achieved better recognition accuracy and greatly surpassed methods
based on traditional machine learning [13]. Deep learning is a machine-learning technique used
to build and simulate the ways the human brain analyzes, learns and interprets data. Deep
learning uses a multi-layer network called a neural network, which is inspired by the human
brain. It iteratively analyzes the data layer-by-layer and continuously extracts features to obtain
the essential characteristics of the original data. When compared to traditional classification
methods, deep learning shows better results solving classification problems. The most-notable
applications of deep learning are computer vision and natural language processing [14,15].

In recent years, there have been many novel neural network structural models applied
in various fields of computer vision [16,17]. However, there are limited studies and applications
of engagement recognition based on videos in an e-learning environment. Sometimes, students
prefer distance education to be carried out on a mobile terminal or a device with limited
memory. Therefore, a real-time engagement-recognition model needs to consider speed and
delay in particular. Although a typical neural network structure such as VGGNet [18] can have
better performance of engagement recognition, it brings efficiency problems.

This study proposes a lightweight CNN model with acceptable accuracy to detect stu-
dent engagement in an online-education environment. This model is lightweight without
affecting its performance. To achieve this objective, we combine the attention mechanism
and other methods to improve the accuracy of this model. The research questions for this
study are as follows:

• RQ 1: Which CNN-based models are effective in recognizing student engagement
in an E-learning environment?

• RQ 2: Which methods can optimize a CNN-based engagement-recognition model
to adapt it to mobile devices?

• RQ 3: How does the optimized model perform compared with other selected models
in recognizing student engagement in an E-learning environment?

The overall structure of this paper is as follows. In Section 2, the basic concepts and
different models of CNN are introduced. The related work in applying deep learning
algorithms in engagement recognition is listed in Section 3. Our improved model and
the performance evaluation experiment design are described in Section 4. In Section 5,
performance comparisons of four CNN-based models are presented, and the accuracy
of the proposed model is also compared with the existing models using the same dataset.
Section 6 analyzes and discusses our findings. Finally, Section 7 concludes our study and
proposes some future work in this area.

2. Background

Convolutional neural networks (CNNs) are a class of artificial neural networks. Their
artificial neurons can react to the surrounding units in the coverage area. They are usually
used to process data with a grid pattern, such as images [19]. CNNs are similar to artifi-
cial neural networks, as they are composed of neurons with learnable weights and bias
constants. Furthermore, CNNs are a feedforward artificial neural network [20], which
allows the encoding of specific properties into the network structure and the introducing of
weight-sharing mechanisms, making the feedforward function more efficient by reducing
a large number of parameters. In addition, the down-sampling operation in CNNs can
effectively increase the receptive field of the network, which helps to ensure the transla-
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tion invariance of the image so that the network can have stronger feature extraction and
characterization capabilities [17,21,22].

2.1. Activation Function

An activation function is meant to transfer the activated information to the next layer when
activating a certain part of the neurons in the neural network [23]. As the distribution of data
is mostly nonlinear and the calculation of the general neural network is linear, the activation
function introduces nonlinearity into the neural network and strengthens the network’s learning
ability. Thus, the biggest feature of the activation function is nonlinearity. The activation function
also has the characteristics of differentiability and monotonicity.

Several commonly used activation functions are Sigmoid, Tanh, ReLU, PReLU and Leaky
ReLU. As an activation function, Sigmoid has the advantages of smoothness and easy deriva-
tion. Tanh results from downward translation and scaling of Sigmoid. When compared with
Sigmoid and Tanh, the ReLU function abandons complex calculations and improves the cal-
culation speed. The problem of vanishing gradient is also solved. Its convergence speed
is faster than Sigmoid and Tanh. Further, by increasing the nonlinear mapping between
the neural network layers, over-fitting can be effectively avoided [24]. However, ReLU
forces the output of the part x < 0 to be set to 0; that is, it masks the feature, which may
cause the model to fail to learn effective features. In this case, if the learning rate is set too
large, it may cause most of the neurons in the network to be in ’dead’ status. The Leaky
ReLU function is used to solve this “death” problem.

2.2. Typical and Lightweight CNN Architecture

The most practical way to obtain a high-quality model is to increase the depth (number
of layers) or width (number of layers or neurons) of the model [13,25–27].
Nowadays, the design of the model is mainly divided into four types. The first design
type involves building a deeper network such as ResNet [25]; the second design type
involves building a wider network such as Inception [26]; the third design type combines
the characteristics of the first two design types to make a deeper and wider network with
better performance [28]; and the fourth type is a lightweight model designed for mobile
devices, such as MobileNet and ShuffleNet [27,29]. In distance learning, the end devices
used to receive online video lectures are not limited to personal computers. Mobile devices
are also widely used by students. Therefore, we would like to choose a lightweight CNN
model in our study.

ShuffleNet

ShuffleNet v1 [27] is a lightweight convolutional neural network for mobile devices
that was proposed by face++ at the end of 2017. The innovation of the network lies
in the use of pointwise group convolution and channel shuffle to ensure the accuracy
of the network while greatly reducing the required computing resources. Existing advanced
basic architectures such as Inception and ResNet are less efficient in small network models
because a large number of 1 × 1 × 1 convolutions consume a lot of computing resources.
ShuffletNet proposes pointwise group convolution to help reduce computational com-
plexity. However, the use of pointwise group convolution will create a large amount
of calculations, so on this basis, the model proposes channel shuffle to help information
flow. In Figure 1, GConv stands for group convolution: (a) Two connected group con-
volutional layers with the same number of groups. Each output channel is only related
to the input channels in the group. (b) When GConv2 gets data from different groups
after GConv1, the input and output channels are completely related; (c) Using the channel
rearrangement mechanism to achieve (b).

The efficient architecture of ShuffleNet is built based on these two technologies. When
compared with other advanced models, for a given computational complexity budget,
ShuffleNet allows the use of more feature-mapping channels, which helps to encode



Appl. Sci. 2022, 12, 8007 4 of 17

smaller network information. Figure 2a,b shows the basic unit of ShuffleNet v1, which is
improved based on a residual unit.

Figure 1. Channel shuffle [27].

Figure 2. ShuffleNet units [30].

Ma, Zhang, Zheng and Sun [30] presented a state-of-the-art architecture of deep
convolutional neural networks and named it ShuffleNet v2. The whole study was per-
formed on two universal platforms: a single GPU and a mobile ARM. In their controlled
experiments, they put forward two basic principles and four guidelines to guide network
architecture design. Then, they compared and analyzed the runtime performance with
MobileNet v2 [31], ShuffleNet v1 and other neural networks. It was found that ShuffleNet
v2 is about 3.5% more accurate than the other two networks and achieved the best trade-off
between speed and accuracy. The four guidelines proposed by ShuffleNet v2 for network
structure optimization are the following:



Appl. Sci. 2022, 12, 8007 5 of 17

1. When the input feature matrix of the convolutional layer and the output feature matrix
channel are equal, the memory access cost is the smallest.

2. When the GConv groups increase (while keeping FLOPs unchanged), the MAC will
also increase.

3. The higher the fragmentation of the network design, the slower the speed, which
means more branches; hence, the speed is slower.

4. Element-wise, the impact of operations (such as ReLU, etc.) cannot be affected.

Figure 2 shows the basic units of ShuffleNet v1 and ShuffleNet v2; (a) and (b) are
two different block structures of ShuffleNet v1. The difference between the two versions
is that v2 reduces the feature-map size, which is similar to that in ResNet. The functions
of the two blocks of a stage are similar. Similarly, (c) and (d) are two different block
structures of ShuffleNet v2.

3. Related Work

Grafsgaard et al. [32] used a computer expression-recognition toolbox to recognize
facial expressions to establish a predictive model based on the micro-expressions of the ob-
served person, such as raised outer brow, tightened lips and so on. Sharma et al. [33]
presented a system to detect the engagement level of students based on images. They
applied the Viola–Jones algorithm first to detect the student’s face. Then, the eye region
was fed into a CNN as a binary classifier to predict the student’s attention state in either
“distracted” or “focused” categories based on the movement of the head and eyes. After
this, they created another CNN model that recognizes the dominant emotion expressed by
the student’s face at each moment. Finally, they used a questionnaire to collect the influence
of different expressions on engagement and assigned different weights to judge the influ-
ence of facial expressions on engagement. Thus, the proposed system predicts student
engagement by calculating an engagement index using the confidence level of dominant
emotion and emotion weights.

The authors in the above papers usually used the weight of the facial expressions cor-
responding to the degree of engagement to predict the engagement. Nevertheless, Nezami
et al. [18] created their own engagement dataset. They quantified and characterized engage-
ment using facial expressions extracted from images. They first used a CNN during basic
facial expression recognition. Then, they applied the generated model, similar to the VGG-B
architecture, to initialize the engagement-recognition model. During the recognition stage,
they designed two dimensions to measure: behavioral and emotional. In the dimension
of emotion, they defined three emotions to describe engagement, Satisfied to describe
students’ enthusiasm for learning, and Confused and Bored to describe the negative states
of students. This engagement model generated based on the above conditions achieved
considerable improvement.

It can be seen that the engagement recognition task is similar to the facial expres-
sion recognition task. Therefore, engagement recognition can be divided into static en-
gagement recognition and dynamic engagement recognition. Static engagement recogni-
tion recognizes a person’s engagement through a single picture, while dynamic engage-
ment recognition recognizes a person’s engagement through a video/picture sequence.
Unlike the above articles, Whitehill et al. [34] annotated a 10-s video dataset into four levels
of engagement and applied a linear support vector machine as well as the Gabor features
to recognize student engagement. Moncaresi et al. [35] used facial features and heart
rate features to detect engagement. They used self-reported data collected from students
during and after the task to annotate their video dataset into two categories: engagement
and disengagement. The machine-learning tool WEKA was used to classify the categories
of engagement. Gupta et al. [36] proposed and introduced DAiSEE, a multi-label video
classification dataset. This dataset uses MOOCs as the e-learning environment. This article
mainly started from the usage of the video dataset, and the authors also applied some
classic network structures of CNN to analyze the practicality of the dataset. In 2022, Ja-
gadesh and Baranidharan [37] introduced their own real-time online learning videos dataset.
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Each video from this dataset consists of 50 frames, and a total of 100 videos were used
in their experiment. Further, they proposed a hybrid model based on both CNN and RNN
models to improve performance.

As one of the few open datasets consisting of videos, different engagement-recognition
models were proposed by using the DAiSEE dataset, such as different long short-term
memory (LSTM) models [38] and neural Turing machine [39]. Liao et al. [40] presented
a deep facial spatiotemporal network (DFSTN) for engagement detection. This model
contains the following two modules: a pre-trained SE-ResNet-50 (SENet) for extracting
facial spatial features and an LSTM network with global attention (GALN) to generate
a hidden attention state. Further, different hybrid neural network architectures created
by combining different networks have also been proposed, such as a deep engagement
recognition network (DERN) [41], a residual network (ResNet), a temporal convolutional
network (TCN) (ResNet+TCN) [42] and so on.

As for video and image recognition and classification, there are many typical neu-
ral network models. For example, inception_v4 [28] and ResNet [25] proposed in re-
cent years have greatly improved the accuracy of classification and recognition mod-
els. However, lightweight models can better solve the efficiency problem for mobile
or embedded devices. A study by Boulanger et al. [43] found that a lightweight CNN
model, SqueezeNet, which has 50x fewer paraments, does not reach the same accuracy
and effectiveness as traditional CNN models for detection of engagement for online
learners. The Google DeepMind team [44] introduced an attention mechanism into a
recurrent neural network model for image classification. The attention mechanism was
borrowed from human attention by quickly scanning the global image to obtain the tar-
get area to focus on and then devoting more resources to this area to obtain more de-
tailed information. The model selects the next position that should be noticed at each
step based on the past information and the requirements of a given situation rather
than processing the whole image at one time, thus improving performance and saving
a lot of time and hardware resources. To improve the expressive ability of the network,
Hu et al. [45] focused on the channel relationship, and they introduced a new architectural
unit SE block. The SE block can model the interdependence relationship between channels
of convolutional features to improve the network’s representation ability. To achieve this
goal, they proposed a mechanism that allows the network to perform feature recalibration.
Through this mechanism, the network can learn to use global information to selectively
emphasize features with large amounts of information and suppress the less-useful features.
In this way, these SE modules are stacked together to build an SENet architecture with
good generalization ability on challenging datasets. Shen et al. [46] proposed a novel
lightweight assessment system for learning engagement recognition that introduced SE
modules. However, the performance testing of the experiment from their paper was only
based on static images.

Based on all the above papers, CNN has achieved breakthrough results in com-
puter vision, which makes it very suitable for solving the task of engagement recognition.
Obviously, there are few open-source engagement-recognition datasets for engagement
recognition tasks, so there has not been much research in this area. The research and appli-
cation of the practicality of the model are even rarer. Therefore, this paper aims to develop
a high-efficiency model using a lightweight CNN to recognize engagement, to propose some
optimization measures and to compare performance with existing state-of-the-art models.

4. Method
4.1. Proposed Model Architecture

As an extremely efficient CNN architecture, ShuffleNet v2 can be applied explicitly
to mobile devices with limited computing power [30]. The calculation amount is signif-
icantly reduced with similar accuracy when compared with existing advanced models.
Among different lightweight CNN models, ShuffleNet v2 has also verified its better perfor-
mance on many direct metrics, such as speed, latency and memory access cost, rather than
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only approximate factors such float-point operations (FLOPs) [30]. Therefore, we consid-
ered optimizing a ShuffleNet-based model to improve its accuracy without affecting other
performance parameters as much as possible. From the perspective of model practicability,
this paper chooses a ShuffleNet v2 0.5x structure to minimize computational complexity.
The computational complexity of ShuffleNet v2 with different sizes is shown in Table 1.

Table 1. Computational complexity of ShuffleNet v2 with different sizes [30].

Network Size Computational Complexity(FLOPs)

ShuffleNet v2 0.5x 41 M

ShuffleNet v2 1.0x 146 M

ShuffleNet v2 1.5x 299 M

ShuffleNet v2 2.0x 591 M

According to the activation function mentioned in the background section, the Leaky
ReLU function does not only avoid the problem of gradient disappearance, but it also solves
the problem of neuron “death” phenomenon, which can effectively improve the accuracy
of the model [47]. Therefore, this study conducts a pre-experiment to compare different
activation functions trained on the selected dataset. Based on the pre-experimental results,
the function with the best accuracy is selected as the activation function of the engagement-
recognition model.

Replacing the activation function with better accuracy is the first measure to optimize
the engagement-recognition model, and the second to consider the attention mechanism’s
application. It was mentioned in the related work that the attention mechanism has been
widely used in computer vision. Moreover, the attention mechanism can improve ac-
curacy with little cost in terms of calculation requirements. Our attention mechanism
module adopts the SE block mentioned in the Related Work Section. The SENet attention
mechanism has two main operations: squeeze and excitation. Squeeze refers to com-
pressing the spatial information of features through GAP, and compressing the original
c × h × w dimension information to c × 1 × 1. Excitation uses two fully connected
layers. The first reduces the dimension, and c × 1 × 1. The dimension is reduced
to c/r × 1 × 1 (with ReLU activation), and the second fc layer remaps the features back
to c × 1 × 1 (without ReLU activation); then, after sigmoid, the weight coefficients of each
channel are obtained. Then, we multiply the weight coefficient with the original feature
to get a new feature. Therefore, the network structure after the embedded attention module
based on the ShuffleNet v2 0.5x architecture is shown in Table 2.

Table 2. Engagement-recognition model structure.

Output Size ShuffleNet v2 + Attention Module Repeat

112 × 112 Conv 3 × 3, 24, stride 2 1

56 × 56 MaxPool 3 × 3, stride 2 1

28 × 28

Conv 1 × 1, 48
DWConv 3 × 3, 48

Conv 1 × 1, 48
Attention Module

Shuffle

4

14 × 14

Conv 1 × 1, 96
DWConv 3 × 3, 96

Conv 1 × 1, 96
Attention Module

Shuffle

8
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Table 2. Cont.

Output Size ShuffleNet v2 + Attention Module Repeat

7 × 7

Conv 1 × 1, 192
DWConv 3 × 3, 192

Conv 1 × 1, 192
Attention Module

Shuffle

1

7 × 7 Conv 1 × 1, 1024 1

1 × 1 GAP + fc + softmax 1

4.2. Experimental Setup

After our experimental code is implemented locally, our proposed model and the
comparison models are trained and tested on a GPU cloud server with the configuration
shown in Table 3. In our study, all model training and verification uses CUDA 11.0 and a
CuDNN 8.0 accelerated computing library in Python 3.6 and the PyTorch 1.9.0 environment.

Table 3. GPU cloud server configuration.

CPU Intel(R) Xeon(R) Gold 6142 CPU @ 2.60 GHz

GPU NVIDIA GeForce RTX 3080

Number of CPU cores 8

RAM 10 GB

Floating-point operations per second Half-precision 29.77 TFLOPS/Single-precision
29.77 TFLOPS

4.3. Engagement Recognition Dataset

Due to the impact of COVID-19, it has become impossible to collect data about stu-
dent engagement in the classroom or to imitate the different forms of online education
environments. It is challenging to create a unique dataset. There are fewer video datasets
in this specific environment for E-learning. In this case, DAiSEE [36] is the only open-source
dataset that can be used, as mentioned in the Related Works section. DAiSEE contains
9068 videos captured from 112 students. They are all Asian students, comprising 32 females
and 80 males aged between 18 and 30 years. The subjects were required to watch a 20 min
online educational video. There are six different data-collection locations, such as dorm
rooms, crowded lab spaces and libraries, which offer a good simulation of real-world
cases. The dataset contains the following four emotional states related to user engagement:
engagement, frustration, confusion and boredom. Further, there are the following four
labels under each engagement category: very low, low, high and very high. This paper
mainly focuses on the state of engagement. The video length, frame-rate and resolution are
10 s, 30 frames per second (fps) and 1920 × 1080 pixels.

4.4. Model Training

Before training the model, each video is down-sampled to obtain 3 × 224 × 224
(C × H × W) tensors. After that, three CNN pre-training models are downloaded.
The architectures are Inception-v3, ResNet50 and ShuffleNet v2 0.5x. These three models
and our optimized engagement-recognition model are trained on the ImageNet dataset.
The ImageNet dataset is a large visual database designed for use in visual object recog-
nition [13]. We use stochastic gradient descent (SGD) for these models for parameter
optimization. The learning rate and batch size for Inception v3 are 0.001 and 64, re-
spectively. For ResNet50, the learning rate and batch size are 0.01 and 64, respectively.
For Shufflenet v2 0.5x baseline and our optimized engagement-recognition model, the learn-
ing rate and batch size are 0.001 and 64, respectively. After pre-training is completed,
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the network parameters of these models must be fine-tuned and corrected with training
samples to improve system classification.

4.5. Model Evaluation

After model training is completed, to evaluate the performance, strengths and weak-
nesses of our proposed engagement-recognition model, metrics such as accuracy, F-measure
(F-score) and FLOPs are often used. The definitions and calculation formulas of some indi-
cators are listed hereafter.

4.5.1. Accuracy

Accuracy is defined as the number of correct predictions made by the model as a per-
centage of the total number of predictions.

Accuracy =
Number o f correct predictions
Total number o f predictions

(1)

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

4.5.2. F-Measure

F-measure is a common metric for measuring the accuracy of a method and is often
used to determine the accuracy of an algorithm. Precision and Recall are often mentioned
separately in recognition and detection-related algorithms, and the F-measure is a balanced
reflection of the accuracy of the algorithm by considering both of these values.

Precision and Recall are defined as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

In the above two formulas, some basic concepts of metric usage can be defined
as follows:

• True Positive (TP): Both the model-derived classification results and the actual classi-
fication results of the labels are engagement.

• False Positive (FP): The classification result obtained by the model is engagement, but
the actual classification result of the label is not.

• True Negative (TN): Neither the model-derived classification results nor the actual
classification results of the labels are engagement.

• False Negative (FN): The classification result obtained by the model is not engagement,
but the actual classification result of the label is engagement.

Generally, higher accuracy is better, but precision and recall sometimes conflict, and
the F-measure is more balanced, which also means that the F-measure is a better metric
of performance.

The F-measure is defined as follows:

Fβ = (1 + β)2 Precision × Recall
β2(Precision + Recall)

(5)

where β is a user-defined parameter, and when β = 1, the F-measure is called F1-measure.

4.5.3. FLOPs

Floating point operations (FLOPs), can be used to measure the complexity of an algo-
rithm or model; the formula is as follows.
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FLOPs =
(

2 × Ci × K2 − 1
)
× H × W × Co (6)

where Ci is the input channel, K is the kernel size, H × W is the output feature map size
and Co is the output channel.

4.5.4. Recognition Speed

Because multiple CNN models are used, the detection speed for each frame in the video
can also be used as a metric. The unit used for the detection speed parameter is milliseconds.

5. Results
5.1. Image Data Augmentation

In an effective deep learning model, the validation error must keep decreasing with
the training error, and data augmentation is a powerful technique to reduce overfitting [48].
Figure 3 shows an example of our experiment using image augmentation techniques
on an image. As clearly seen from this example, we randomly select a part of the image
at a time and stretch, squeeze, rotate, distort and adjust the lighting on the selected part.

Figure 3. Image data augmentation examples.

5.2. Batch Examples

During the experiment, 64 images at a time were randomly selected for training.
Figure 4 includes eight of those pictures. Each image in the example is implemented with
image augmentation, and the engagement level is marked above each image.

Figure 4. Batch examples.
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5.3. Activation Function

As a pre-experiment, we verify the influence of different activation functions on model
accuracy to choose the best activation function. According to the data presented in the
Table 4, the respective accuracies of Sigmoid, Tanh, ReLU and Leaky ReLU are 54.5%,
53.9%, 57.7% and 58.6%. Among these activation functions, Leaky ReLU obtains the highest
prediction, which is about 1% more accurate than the original activation function ReLU.
Thus, our optimized ShuffleNet model uses the Leaky ReLU function as the activation
function.

Table 4. Comparison of the accuracy of ShuffleNet v2 with different activation functions.

Dataset Sigmoid Tanh ReLU Leaky ReLU

DAiSEE 0.5445 0.5392 0.5773 0.5862

5.4. Accuracy

According to the data presented in Figure 5, the respective accuracies of Inception v3,
ResNet, ShuffleNet v2 and optimized ShuffleNet v2 models are 46.3%, 53.1%, 57.3% and
63.9%. Optimized ShuffleNet v2 has the best accuracy.

Figure 5. Classification accuracy of different models.

5.5. F-Measure

The precision of the model depends on the values of true positives and false positives,
which are obtained by running the model on the test set.

According to the data presented in Figure 6, the respective precisions of Inception
v3, ResNet, ShuffleNet v2 and optimized ShuffleNet v2 models are 0.620, 0.674, 0.683 and
0.783. ResNet’s precision is about 0.05 better than Inception v3’s precision. The precision
of Shufflenet v2 with the change of activation function and the introduction of the attention
mechanism is again about 0.1 higher than the original one.
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Figure 6. Classification precision of different models.

The recall of the model depends on the values of true positives and false negatives.
According to the data presented in Figure 7, the respective recalls of Inception v3, ResNet,
ShuffleNet v2 and optimized ShuffleNet v2 models are 0.534, 0.587, 0.623 and 0.692. The recall
value of Inception v3 and ResNet is lower than that of ShuffleNet v2.

Figure 7. Classification recall of different models.

The F1-score is calculated based on the previously obtained precision and recall values.
The F1-scores of Inception v3, ResNet, basic ShuffleNet v2 and optimized ShuffleNet v2 are
0.574, 0.627, 0.652 and 0.735, respectively, as shown in Figure 8. Optimized ShuffleNet v2
has the highest F1 score, while Inception v3 has the lowest F1-score.
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Figure 8. F1-score of different models.

5.6. FLOPs

As shown in Table 5, the FLOPs of Inception v3, ResNet, ShuffleNet v2 and optimized
ShuffleNet v2 models are 140.26 M, 142.03 M, 43.69 M and 44.14 M, respectively. Among
these models, the baseline ShuffleNet v2 has the lowest FLOPs, while ResNet has the highest
FLOPs. For optimized ShuffleNet v2, its FLOPs are slightly higher than that of the baseline
ShuffleNet v2 but significantly lower than that of Inception v3 and ResNet.

Table 5. FLOPs of different models.

Model Inception v3 ResNet ShuffleNet v2 0.5 Optimized
ShuffleNet v2

FLOPs 140.26 M 142.03 M 43.69 M 44.14 M

5.7. Speed

As shown in Table 6, the respective recognition speeds of Inception v3, ResNet, Shuf-
fleNet v2 and optimized ShuffleNet v2 models are 458 ms, 514 ms, 317 ms and 362 ms.
Among these models, baseline ShuffleNet v2 has the quickest recognition speed, while
ResNet has the slowest recognition speed. The recognition speed of optimized ShuffleNet
v2 is slightly less than that of the baseline ShuffleNet v2 but significantly more than Incep-
tion v3 and ResNet.

Table 6. Recognition speed of different models.

Model Inception v3 ResNet ShuffleNet v2
0.5

Optimized
ShuffleNet v2

speed 458 ms 514 ms 317 ms 362 ms

5.8. Comparison with Other Published Works

As we have described in our related work, there are several different models and
techniques that have been proposed by others to detect student engagement with the same
database that was used in our study. We took the reported accuracy from the follow-
ing methods for comparison: convolutional 3D (C3D) [36], long-term recurrent convolu-
tional network (LRCN) [36], DFSTN [40], C3D+TCN [42], DERN [41], neural Turing ma-
chine [39], ResNet+LSTM [42], ResNet+TCN [42] and (latent affective+behavioral+affect)
features+TCN [49]. The results are shown in Table 7.
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Table 7. Accuracy comparison with other published works.

Models or Methods Accuracy (%)

Convolutional 3D (C3D) [36] 48.1

Long-Term Recurrent Convolutional Network
(LRCN) [36] 57.9

DFSTN [40] 58.8

C3D+TCN [42] 59.9

DERN [41] 60.0

Neural Turing Machine [39] 61.3

ResNet+LSTM [42] 61.5

ResNet+TCN [42] 63.9

(Latent Affective+Behavioral+Affect)
features+TCN [49] 63.3

Our Optimized ShuffleNet v2 63.9

From the table, it can be inferred that our proposed model outperforms almost all
of the other recently published competitive methods using the DAiSEE database. Only
ResNet + TCN reaches the same accuracy as our model.

6. Discussion
6.1. Answering the Research Questions

RQ 1: Which CNN-based models are effective for recognizing student engagement in an E-
learning environment?

After our literature review, we decided to use four CNN models: Inception v3, ResNet,
basic ShuffleNet v2 (which is a lightweight CNN model designed for mobile platforms),
and an optimized ShuffleNet v2 model with an improved activation function and the in-
troduction of an attention mechanism. These models are all able to perform engagement
recognition according to our experiments, and ShuffleNet v2 was the main baseline model
we used. Inception v3 and ResNet models were used for additional comparison.

RQ 2: Which methods optimize CNN-based engagement recognition to adapt it to mobile
devices?

We suggest the use of attention mechanism SE block as a possible optimization method,
with more details mentioned above. Further, introducing the activation function also
optimized the model. Finally, using Leaky ReLU rather than ReLU achieves better results.

RQ 3: How does the optimized model perform compared with other selected models in recog-
nizing student engagement in an E-learning environment?

We conducted an experiment to evaluate the recognition performance of these deep
learning models. After all of the models were implemented and the data were processed,
the models were trained on the training dataset. Then, the trained models were tested
on the test dataset. The models’ accuracy, precision, recall and final F1-scores were calcu-
lated. Optimized ShuffleNet v2 had the best performance among the deep learning models
that were selected for this study. Furthermore, the accuracy of engagement recognition
of our optimized ShufleNet v2 model was also superior compared to the other published
methods and models using the same dataset.

6.2. Contributions

The main contribution of our study is the proposition of a novel, optimized, lightweight
CNN model to recognize student engagement in an e-learning environment. Performance
comparison of our model to other models and methods shows that the ShuffleNet v2
architecture reduces the complexity of the network, and the accuracy and recognition speed
are better than those of currently existing architectures. The SE block applied to the Shuf-
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fleNet architecture in our model also improves its accuracy. At the same time, it has little
effect on the complexity and recognition speed of the model. In the proposed model, we
used the Leaky ReLU function instead of the original ReLU function, as the activation
function brings better accuracy, so replacing the activation function in our study optimized
the model. Therefore, the activation function when subject to different tasks does impact
the performance of the model. We believe our work points to the possibility of real-time
engagement detection in distance learning on mobile devices.

7. Conclusions and Future Work

This paper proposes an optimized CNN model based on the lightweight architec-
ture, ShuffleNet v2. We chose the ShuffleNet v2 0.5x structure to minimize computa-
tional complexity. We then introduced an attention mechanism for the model using
SE blocks and improved the activation function. To evaluate and compare the perfor-
mance, we selected three other CNN models: Inception v3, ResNet and ShuffleNet v2.
Together with our proposed model, the selected models were then trained for engagement
recognition. We used accuracy, F1-score, FLOPs and speed to measure the performance
of these models. Our optimized ShuffleNet v2 model had the best performance based
on the results of our experiment. Moreover, our model also achieved the highest accuracy
when compared with the other published models or methods using the same dataset.
As a lightweight framework, the optimized ShuffleNet v2 model is suitable for deployment
on mobile platforms in E-learning environments.

In this paper, although our optimized ShuffleNet model with an attention mecha-
nism reaches acceptable accuracy when compared with engagement-recognition models
designed and implemented in other studies, we prioritize practicality. We had good per-
formance concerning model complexity and recognition speed, but there is still room
for improvement in terms of accuracy. For one, we found that the scale of the video dataset
we used was still not large enough. Further, our model does not analyze timing-related
information. Concerning the first issue, there are very few research studies and datasets
in the area of engagement recognition. Even the DAiSEE dataset suffers from unbalanced
sample distribution. There are far fewer samples with a low engagement level than with
a high engagement level. This situation cannot be greatly improved with the current dataset.
However, testing our proposed model with a larger and more-balanced sample could be
a focus of future research work. Concerning the second issue, it must be noted that when
optimizing ShuffleNet, we considered that increasing the analysis of timing information
would inevitably affect the amount of calculation required for the model, which would
undercut our goal of being lightweight. The expansion of the size of the dataset and
the use of lightweight models that can analyze time-series information are other potential
areas for future studies. Current engagement-recognition models are limited to using only
CNNs. Future researchers can compare the performance other neural network structures
or lightweight models. In future experiments in this area, researchers can also consider
optimizing other variables, such as using a larger batch size, increasing the number of layers
in the neural network or using a higher sampling rate for image augmentation for possibly
better results. Applying our proposed model to detect engagement in real-life higher educa-
tion E-learning environments is another main direction for future research work. Given that
ShuffleNet v2 is a lightweight neural network, follow-up studies based on micro devices,
such as tablets and mobile phones containing GPU chips, can be considered to explore
the feasibility of building miniaturized engagement-detection devices.
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