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Abstract: With the increasing complexity of simulation studies, and thus increasing complexity
of simulation experiments, there is a high demand for better support for them to be conducted.
Recently, model-driven approaches have been explored for facilitating the specification, execution,
and reproducibility of simulation experiments. However, a more general approach that is suited
for a variety of modeling and simulation areas, experiment types, and tools, which also allows
for further automation, is still missing. Therefore, we present a novel model-driven engineering
(MDE) framework for simulation studies that extends the state-of-the-art of conducting simulation
experiments in the following ways: (a) Providing a structured representation of the various ingre-
dients of simulation experiments in the form of meta models and collecting them in a repository
improves knowledge sharing across application domains and simulation approaches. (b) Specifying
simulation experiments in the quasi-standardized form of the meta models (e.g., via a GUI) and,
subsequently, performing the automatic generation of experiment specifications in a language of
choice increases both the productivity and quality of complex simulation experiments. (c) Automatic
code transformation between specification languages via the meta models enables the reusability
of simulation experiments. (d) Integrating the framework using a command-line interface allows
for further automation of subprocesses within a simulation study. We demonstrate the advantages
and practicality of our approach using real simulation studies from three different fields of sim-
ulation (stochastic discrete-event simulation of a cell signaling pathway, virtual prototyping of a
neurostimulator, and finite element analysis of electric fields) and various experiment types (global
sensitivity analysis, time course analysis, and convergence testing). The proposed framework can
be the starting point for further automation of simulation experiments and, therefore, can assist in
conducting simulation studies in a more systematic and effective manner. For example, based on
this MDE framework, approaches for automatically selecting and parametrizing experimentation
methods, or for planning follow-up activities depending on the context of the simulation study, could
be developed.

Keywords: simulation; modeling; model-driven engineering; reproducibility; reusability; design of
experiments; simulation experiments; experiment specification; discrete event simulation; virtual
prototyping; finite element analysis

1. Introduction

Modeling and simulation have become a key tool in many sciences and engineering
disciplines [1]. A simulation study is usually characterized by iterative model refinements,
intertwined with problem analysis, conceptual modeling, and various experimentation
activities, as illustrated in modeling and simulation life cycles [2–4] (see Figure 1). Due to
their complexity, there is a high demand for approaches that allow simulation studies to be
conducted in a more effective and systematic manner. Especially, support for conducting
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simulation experiments is of increasing interest, as they drive important activities, such as
the calibration, validation, and analysis of models, and are essential for the reproducibility
of simulation results.

With new computational power, the new availability of data, and the thereby strength-
ened role of simulation experiments in advancing science within the different application
domains, the requirements referring to simulation studies and experiments are becoming
more rigorous. In particular, there are increasing requirements regarding the correct usage
of sensitivity and uncertainty analysis [5], but also for calibration and validation to build
realistic models [6], as well as increasing demand for open, replicable, and transparent
methodologies [7]. In light of these new requirements, modelers that wish to create repro-
ducible simulation experiments in an efficient and effective manner face new challenges.
Especially, modelers working on interdisciplinary projects, where a variety of diverse
simulation approaches and methods need to be brought together, would benefit from an
easy-to-use tool that supports them in specifying, executing, and managing simulation
experiments. However, also engineers working on modeling and simulation software
have to account for these new challenges and would gain from a more structured and
systematic approach for dealing with the increasing variety and complexity of the available
specification languages (e.g., “Simulation Experiment Specification via a Scala Layer” [8]
and “Simulation Experiment Description Markup Language” [9]), reporting guidelines
(e.g., for finite element analysis studies in biomechanics [10]), frameworks (e.g., the Sim-
ulation Automation Framework for Experiments [11]), types of analyses and methods
(e.g., experiment designs [12]), and the myriad of applications, which require (partly)
domain-specific solutions.
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model

Simulation 

experiment

Problem 

statement

Simulation 

model

redefine / 

solve

calibrate / 

validate / 

analyze

implement / 
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Figure 1. Simplified life cycle of a modeling and simulation study with its main artifacts and activities.

Model-driven-engineering (MDE)-based approaches can provide additional support
in the specification, execution, and management of simulation experiments and resolve
issues of interoperability, reproducibility, reusability, etc. In an MDE approach, meta mod-
els require certain experiment inputs, guide users through the experiment specification,
and finally, generate executable code [13]. Current MDE approaches for simulation experi-
ments realize and demonstrate this for the generation of experiment designs for parameter
scans [13] and hypothesis testing [14]. However, they concentrate on specific fields of
simulation, support only a specific experiment type, or are tightly coupled with specific
tools. As a consequence, their applicability and, thus, their impact on the way simulation
experiments are conducted are limited. Furthermore, some typical benefits of MDE [15],
such as improved knowledge sharing and further automation, are not yet available or not
fully exploited for simulation experiments. Thus, a more general approach is desirable that
can support simulation experiments more broadly, and thus, assist in conducting entire
simulation studies more effectively and systematically.
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In this paper, we present a novel MDE framework that enhances the state-of-the-art of
conducting simulation experiments in the following ways:

• Improved knowledge sharing across domains: Experiment Meta models make knowledge
about the structure and ingredients of simulation experiments explicit. By building
various kinds of meta models and storing them in repositories, we allow modelers and
developers to share knowledge about simulation experiments between the different
communities, e.g., finite element analysis (FEA) or virtual prototyping. These usually
develop their simulation methodology and tooling independently, although the way
simulation experiments are specified and conducted rarely differ and, thus, could be
supported by the same pipeline.

• Increasing productivity and quality for complex experiments: For novice modelers, MDE
clearly facilitates the specification of simulation experiments via targeted graphical
user interfaces (GUIs) and code generation. We provide additional support via an
experiment validator and allow for the support of complex simulation experiments via
meta model composition. Due to the focus on complex experiments, also experienced
modelers can benefit.

• Reusability: The meta models give meaning to the ingredients of simulation exper-
iments. Together with an easy-to-use, tool-independent format and a variety of
backend bindings, we support the flexible and automatic reuse of simulation experi-
ments. This is of interest when the performance of different simulation tools needs
to be compared or model alternatives implemented using different modeling and
simulation approaches shall be evaluated.

• Automation: Further automation of simulation experiments can be achieved if the
knowledge about the various simulation experiments (given by meta models) is put
into relation with context knowledge about the simulation study (e.g., given by concep-
tual models [16], provenance [17], or documentation [18]), as in these cases, simulation
experiment specifications may be automatically generated and executed [19]. As our
approach provides a means for integration with various other frameworks, it presents
a valuable basis for further automation of simulation experiments.

We demonstrate the above features and benefits of the approach using five exper-
iments from three actual simulation studies. The studies are part of the Collaborative
Research Centre (CRC) 1270 ELAINE (https://www.elaine.uni-rostock.de/en/, accessed
on 26 July 2022), which aims to develop novel electrically active implants for bone and
cartilage regeneration, as well as for deep brain stimulation. As the research project is of an
interdisciplinary nature, in each of the three studies, a different modeling and simulation
approach and application domain are in focus (i.e., stochastic discrete-event simulation
(DES) of a cell signaling pathway, virtual prototyping of a neurostimulator, and FEA of
electric fields).

The paper is organized as follows. In Section 2, we provide an overview of the
related work. In Section 3, we present the design of our novel model-driven approach
for conducting simulation experiments. Details of the open-source implementation are
given in Section 4. In Section 5, we demonstrate the benefits of our approach using three
real simulation studies. Finally, we end the paper with conclusions and future work in
Section 6.

2. Related Work

Model-driven approaches for modeling and simulation so far have mostly focused
on the generation of (executable) simulation models [20–23], simulation on distributed
architectures [24], or multi-formalism modeling [25].

With regard to simulation experiments, MDE has been applied in the context of exper-
iment design and hypothesis testing. Teran-Somohano et al. [13] support the specification
and execution of simple simulation experiments based on factorial designs, e.g., parameter
sweeps. The approach by Dayıbaş et al. [26] is based on one’s own domain-specific lan-
guage for experiment design and semi-automatic transformations to multiple execution

https://www.elaine.uni-rostock.de/en/
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platforms. Yilmaz et al. [14] propose the generation of experiment designs from hypotheses
and outline an overarching goal–hypothesis–experiment framework.

Simulation experiments are also generated without explicit meta models or MDE
frameworks. These usually target specific problems within the modeling and simulation
life cycle. Lorig [27], for instance, generates efficient experiment designs for hypothesis
testing based on formally specified hypotheses. Peng et al. [28] support the successive
composition of models by generating simulation experiments for composed models. More
specifically, statistical model checking experiments of individual models are reused and
adapted for the composed model based on explicit experiment specifications and explicit be-
havioral properties. Similarly, properties of extended or refined models can be checked [29].
Cooper et al. [30] focus on supporting the comparison of electrophysiology models using
typical experiment types of that domain, i.e., time course analyses and steady-state analy-
sis. Concrete experiment specifications (protocols) conducted with previous models are
stored in an online database and can be repeated with new models. Ruscheinski et al. [18]
present a pipeline for generating a number of different experiment types including local
sensitivity analysis, optimization, and statistical model checking. This pipeline was ex-
panded by experiment schemas in Wilsdorf et al. [31] to support multiple simulation tools
and approaches.

In this paper, we further generalize the latter experiment generation approach using
the MDE paradigm. The main novelties are (a) the separation into two types of meta models
(domain meta models and experiment type meta models) and a corresponding composition
mechanism, (b) a meta model repository, (c) bi-directional transformations and execution
bindings for a variety of tools, and (d) a command-line interface (CLI) for easy integration
with other frameworks. As a result, our framework flexibly supports the conducting of
diverse, complex experiment types, and it enables the sharing and reusing of knowledge
even across different modeling domains and tools. Furthermore, our framework provides
the foundation for automatically generating and reusing simulation experiments during
the various phases of a simulation study, and thus for conducting entire simulation studies
in a more systematic and effective manner.

The development of meta models, as part of an MDE framework, is closely related
to the development of ontologies as both represent knowledge in a structured manner.
Ontologies for modeling and simulation have been developed to facilitate the data exchange,
interoperability, and annotation of simulation resources [32]. Most ontologies define the
components and concepts of simulation models instead of simulation experiments, e.g.,
the Discrete Event Simulation Component Ontology (DESC) [33] or the Discrete-event
Modeling Ontology (DeMO) [34]. However, some ontologies overlap with meta models for
simulation experiments, e.g., the ontology for capturing physics-based models by Cheong
and Butscher [35] and our meta model for FEA simulation studies (see Section 5) both
include the boundary condition and material properties.

3. Model-Driven Approach for Conducting Simulation Experiments

We developed a novel model-driven approach for conducting simulation experiments.
Its central features are the separation into two types of meta models (domain meta models
and experiment type meta models) and a corresponding composition mechanism, a meta
model repository, bi-directional transformations and execution bindings for a variety of
tools, and a CLI for easy integration with other frameworks. The approach as a whole can
improve knowledge sharing across domains and approaches, increase productivity and
quality for complex experiments, make simulation experiments reusable, and automatically
generate and execute simulation experiments in various settings.

3.1. Framework Overview

Our approach for supporting the conducting of simulation experiments is based on the
MDE principle. The central idea of MDE is combining meta models (i.e., a structured repre-
sentation of concepts) with a means for code generation [36]. Typically, MDE is realized in
an architecture with four levels of abstraction and translations between them [37]. Figure 2



Appl. Sci. 2022, 12, 7977 5 of 24

illustrates our four-level MDE approach for simulation experiments. Experiment meta
models of the various domains and approaches of modeling and simulation are represented
by the level M2. In addition to the definition of these so-called base experiments, meta
models for a variety of experiment types (e.g., sensitivity analysis (SA) or simulation-based
optimization) exist. These two types of meta models can be composed flexibly to create
meta models of complex simulation experiments. How meta models can be constructed
is defined at the level of the meta meta model (M3), for example one could use formalisms
such as UML class diagrams [38] or schema languages [39,40] to express the meta models.
However, experiment meta models are not only developed from scratch; therefore, we store
them in a repository from which parts can be reused by related areas of simulation or by
other experiment types. The newly developed meta models are again stored in the repos-
itory and thereby complement the knowledge collection about simulation experiments.
A composed meta model (consisting of a base experiment and the experiment type) can
be loaded via an interface (GUI or CLI). The loaded meta model dictates which inputs
have to be provided to specify a valid simulation experiment. An experiment validator
provides guidance for the modeler. If all inputs required by the meta model have been
collected, a concrete tool-independent experiment specification (model M1) is generated.
This general representation of the simulation experiment can now be easily reused, and
some tools might also be able to import this specification directly. To receive an executable
experiment instance (M0), the M1-specification is automatically transformed to the code
of a target backend and subsequently executed using the respective tool binding. In the
following, we will describe the distinct features of our framework further.
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Figure 2. Four-layered MDE architecture [37] for simulation experiments. The level of abstraction
decreases from left to right. The experiment meta models (consisting of the base experiment and
experiment type; see layer M2), developed based on a meta modeling formalism (layer M3), are at
the heart of the approach. Based on M2, a tool-independent, exchangeable experiment specification
can be generated (M1), which then forms the basis to derive an executable, tool-specific specification
(M0) based on tool-specific mapping information. The generated experiment specification can then
be automatically executed using a backend binding. Additional support components such as meta
model repositories, GUIs, and validators assist users in conducting simulation experiments effectively,
such that the remaining tasks concerning the user are entering or adapting information via the given
interface and visualizing and interpreting the experiment results. The experiment generation pipeline
may be used either as a stand-alone application or integrated with other support software, for
example a workflow via a CLI.

3.2. Meta Modeling Language

At the highest level of abstraction in our framework, the meta meta model is situated.
The meta meta model is essentially the language in which the meta models are specified.
Meta meta models are usually self-referential (i.e., they define themselves). As a result, no
further layers above M3 are required.

A meta modeling language needs to encompass a means for comfortably developing a
new meta model for a particular simulation domain and/or approach (base experiment) or
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a particular type of simulation experiment (experiment type). We identified the following
requirements:

• Hierarchical structuring via components and nested input properties;
• Unique names for components and input properties;
• Standard data types such as Boolean, string, integer, real, as well as arrays;
• Enumeration of admissible values and specification of default values;
• Maps to associate a key property with one or more other properties;
• Alternative specifications for input properties;
• Constraints to define simple-type restrictions or the cardinality of an input property

and, optionally, relations between multiple input properties.

UML [38] is widely used for meta modeling software systems. UML class diagrams
allow for a graphical notation that is intelligible to software developers, as well as domain
experts. The expressiveness of UML class diagrams can be complemented with the Object
Constraint Language (OCL) [41]. Another way of meta modeling is schema languages such
as XML Schema [39] or JSON Schema [40]. They describe the structure of text documents
and, therefore, directly ship with a data exchange format (XML or JSON) for the layer M1.
They also encompass built-in means for defining simple constraints. For the detailed syntax
and semantics of the constraint languages, we refer the reader to the OCL specification and
the XML/JSON Schema specifications.

We found that both UML and JSON Schema are appropriate ways of specifying the
experiment meta models. With the workings of our model-driven approach in mind,
we decided to use JSON Schema in the following. However, if conversions between
the different meta modeling languages exist, the actual choice of formalism becomes
less important.

3.3. Composition of Modeling Domains and Experiment Types

The meta models describe the structure and ingredients of simulation experiment
specifications. We distinguish base meta models and experiment type meta models. Base
meta models describe simple experiments (i.e., runs with single-parameter configurations)
in a specific domain or modeling approach. Meta models for experiment types, on the other
hand, allow for supporting complex experiments where parameters are varied and specific
analyses are conducted on the outputs.

A base meta model for a fictive domain can be seen in Listing 1 (meta models for
experiment types can be created analogously). The meta model is defined using JSON
Schema and contains all the necessary information in one, hierarchically structured file.
It structures simulation experiments of the fictive domain into a model component, a
simulation component, and an observation component. Each component encloses vari-
ous other input properties, characterized by type, information, choices, default values,
and constraints. For example, the constraint exclusiveMinimum: 0 was added inside the
property replications. To express which inputs are required for specifying a valid simu-
lation experiment, the keyword required can be used. Furthermore, default values can
be expressed explicitly, e.g., for setting the stochastic simulation algorithm (SSA) as the
standard simulator type of the domain. Moreover, to express alternatives, the keyword
oneOf is used, as in the case of stopCondition, which can be given by (a) a specific stop
time or (b) an expression on the model output. To build a valid simulation experiment
that conforms to the meta model, exactly one of these alternatives needs to be applied.
However, to keep the example short, we do not specify these options further and omit the
details of the observation component.

For specifying a simulation experiment, at least a base meta model needs to be selected
and filled with concrete input values by a user. However, the base meta models can also
be flexibly composed with the various meta models for experiment types to create a meta
model for the current experimentation task at hand. Using the composition mechanism,
complex simulation experiments (such as statistical model checking, parameter estimation,
steady state analysis, etc.) can be supported for any modeling approach or domain. This is
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possible due to the orthogonality of the base experiment specification and the experiment
type specification. Note that in this paper, we focus on the main experiment types and
their methods and do not discuss further analyses (i.e., post-processing or plotting of the
results). However, this could be added as another component in the meta models. The
language SED-ML [9], for instance, allows the specification of various plot types including
axis labels, etc.

Listing 1. A base meta model of a fictive modeling domain defined in JSON Schema.

1 {
2 "$id"  =  "BaseExpExample",
3 "properties ":   {
4 "model":   {
5 "properties ":   {
6 "modelPath ":   {"type":   "string"}
7 },
8 "required ":   ["modelPath"]
9 },

10 "simulation ":   {
11 "properties ":   {
12 "simulator ":   {
13 "type":   "string",
14 "enum":   ["SSA",  "Hybrid"],
15 "default ":   "SSA"
16 },
17 "replications ":   {
18 "type":   "integer",
19 "exclusiveMinimum ":   0
20 },
21 "stopCondition ":   {
22 "properties ":   {
23 "oneOf":   [
24 "stopTime ":   {
25 ...
26 },
27 "required ":   ["simulator",  "replications",  "stopCondition"]
28 },
29 "observation ":   {
30 ...

3.4. Meta Model Repository

The meta models are developed based on external knowledge from domain experts
and potential users and are stored in a meta model repository. This gives users (modelers)
access to a variety of meta models that they can flexibly compose, as discussed earlier.
The meta models may be developed by users on-demand to fit their use cases; however,
we currently recommend that meta models be built by developers, i.e., persons with
software engineering experience. For developers, the existing meta models contained
in the repository can be the starting point for developing new ones. Often, depending
on the needs of the new domain or approach, not everything has to be developed from
scratch, but meta model components can be exchanged, added, or modified. Here, the
reuse of knowledge about simulation experiments is not limited by specific domains
and approaches. For example, research in the context of DES [8,42] and computational
biology [43] has identified a few common constituents of basic simulation experiment
specifications: model configuration, simulation initialization, and observation. With respect
to experiment types, meta models can be extended to include more elaborate methods, e.g.,
new sampling strategies or distance measures.

3.5. Interfaces

Our pipeline can be used in two ways. The first option is a dynamic GUI, which
we provide with our framework. Depending on the selected base meta model and the
experiment meta model, a tailored GUI is generated to support modelers in specifying their
simulation experiments. Figure 3 shows a screenshot of a GUI generated from the meta
model example shown in Listing 1 and a meta model for SA. In the GUI, the meta model
components are displayed as individual tabs (“Model”, “Simulation”, “Observation”),
input properties are displayed as rows, and alternative definitions are selected via drop-
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down menus, where, depending on the selection, other input properties become available
as in the case of “Stop Condition”. The selection of the domain or approach and the
experiment type takes place in the tab “Meta Model”. Thereby, an additional tab for the
experiment type “Sensitivity Analysis” was created (Figure 3). The tab “Backends” is used
to select the code generation target.

Figure 3. Screenshot of the experiment generation GUI. For a given meta model, and depending on
the provided inputs, new input fields are generated. Validation errors are reported at the top right if
the inputs do not conform to the meta model. In this example, a double value was entered for the
number of replications, but an integer value was expected. Furthermore, the model path has not
been specified yet. The generated experiment specifications (tool-independent and tool-specific) are
displayed at the top left.

As the second option, we provide a CLI. It allows flexible integration of our model-
driven framework with other software. Via the CLI, the meta models can be selected and
composed, the experiment inputs can be passed and validated, the GUI can be opened,
the target backend can be chosen, and the experiment code can be generated or parsed.
Consequently, one could integrate our framework with a procedure that automatically
extracts certain experiment inputs from the model documentation (parameter tables or
conceptual model) [17,18] or automatically generates simulation experiments from inside a
workflow system (see Section 5). If not all input fields dictated by the meta model can be
filled automatically, the simulation experiment can be completed manually through the
user interface.

3.6. Experiment Validation

Before inputs are passed on to the next layer (M1) to produce a concrete tool-independent
experiment specification, the entered values have to be validated. The validator checks
conformance with the chosen meta models, and thus, both structural checks and type
checks are carried out. After each validation cycle, the validator gives immediate feedback
to the user (see Figure 3) or the application, depending on which interface is used for the
interaction. This step-by-step guidance supports inexperienced users, but also experienced
users can benefit, as they do not have to concern themselves with the intricate details of
simulation experiment specifications and, instead, can concentrate on important tasks such
as output analysis and result interpretation.
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Listing 2 shows a created JSON document at the layer M2. The document was vali-
dated according to the meta model example described above. The validation was unsuc-
cessful due to the missing property modelPath and due to using the wrong data type for
the input property replications.

Listing 2. Simulation experiment filled according to the JSON meta model defined in Listing 1.
Validation errors in the specification are marked red.

1 {
2 "model":   {
3 "modelPath":
4 },
5 "simulation ":   {
6 "simulator ":   "SSA",
7 "replications": 100.5 ,
8 "stopTime ":   3000
9 },

10 ...
11 }

3.7. Transformations and Bindings

The experiment meta models provide a general vocabulary that all modeling and
simulation tools can refer to and communicate with. Meta models are therefore one way
for improving the interoperability of modeling and simulation software. To go from an
abstract experiment specification in a tool-independent format to executable code, the meta
models have to be mapped to the syntax of actual modeling and simulation tools. During
this transformation step, also differences in the terminology need to be resolved, e.g., the
concept of the SSA has numerous implementations and is therefore known under different
names such as the NextReactionMethod() or GibsonBruck() method.

Often, one wants to generate code for a single tool and, thus, in a single language.
However, it is not uncommon to run the simulations in one tool, collect the results, and
then, run the analysis in another. Our transformation mechanism supports the combination
of tools for simulation and analysis and, thus, allows generating a combination of two
scripts in two different languages. Moreover, for certain experiment types, such as SA, the
toolchain can be divided further (see Section 5.2).

Another important feature of the transformations is their bidirectionality. This means
that we can (backward) parse a concrete experiment specification of a specific language
and represent it in the canonical format. From there, forward transformations can generate
the same experiment for a different tool, or the experiment may be reused and adapted for
a different purpose.

Although it seems arduous to implement a transformation, it is far more efficient than
connecting all pairs of tools individually. Moreover, once agreed upon in the community, the
structure and vocabulary of a meta model are persistent and will rarely change, but rather
be extended with new content, which will lead to some extensions in the transformations.
It might also be beneficial to maintain transformations to distinct versions of the same
M&S tool or to legacy systems for keeping older simulation experiments reproducible and,
for example, for testing the tool itself. In addition, the experiment meta models provide
guidelines for implementing new tools and, therefore, promote a more structured approach
for developing modeling and simulation software.

In addition to the code transformations, we maintain so-called bindings to the various
tools for which the code is generated. The bindings allow us to automatically start the
generated experiments in the chosen backend. The backend and the implemented features
within the backend then may allow the modeler further interventions, such as pausing
simulation runs or interactively zooming into parameter ranges (e.g., using visual analytics).
Note that a suitable backend could also be chosen automatically for a given task since the
transformations make explicit which experimentation methods are implemented where.
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4. Implementation

Our model-driven framework for conducting simulation experiments is realized in
Java 8. This proof-of-concept implementation, thus far, comprises meta models for three sim-
ulation domains and different experiment types, the validation component, transformations
and bindings to several backends, as well as the GUI and the CLI. The source code is publicly
available in a Git repository (https://git.informatik.uni-rostock.de/mosi/exp-generation,
accessed on 26 July 2022).

At the heart of the implementation are the simulation experiment meta models, which
are implemented using JSON Schema, Draft-07 [40]. We selected JSON Schema as a basis
to formulate our schemas, since over the past few years, JSON has probably become the
most popular format for exchanging data on the web, and therefore, a variety of capable
parsers and validators exist.

When launching the application, our dynamic GUI, implemented using JavaFX, is
opened by default. After the user selects one of the included schemas, the GUI generates
the necessary input tabs and fields (as shown in Figure 3). When pressing the “Generate
Experiment” button, all collected user inputs are stored in the multipurpose data inter-
change format JSON [44] and presented to the user. The JSON files are validated against the
JSON schemas using an open-source JSON Schema validator for Java, based on the org.json
API [45]. Thereafter, the experiment specification for the selected backend is generated.

For the mapping between the general schema inputs in JSON and the syntax of actual
modeling and simulation tools, we used the template engine FreeMarker [46]. FreeMarker
has a built-in template language in which the mappings can be specified. For each backend
and schema input property, a mini template is implemented. A master template joins all
the template snippets together. The template engine takes this master template and fills the
template variables with the data from the JSON file.

As an alternative to the GUI, we also provide a CLI, which allows for even more
flexibility when working with our framework. For instance, one can transform an existing
experiment specification for a target backend by running the command-line tool with the
option -t <originalFile> <targetBackend>.

The backends and formats currently supported by our framework are SESSL/ML-
Rules with R, SystemC-AMS with Python, the Python libraries EMStimTools and Uncer-
tainpy, and SED-ML (see the Evaluation Section, where their application is described).

The time required for the experiment generation and transformation took less than a
second on a standard laptop for the experiments shown in the evaluation. Thus, the execu-
tion time can be regarded as negligible in comparison to the time needed for experiment
planning and input collection (which still have to be performed by the user and can only
partly be automated). In fact, the overall time to create a simulation experiment may be
decreased as the user is not bothered with the syntactical intricacies of the experiment types
in the various specification languages and tools.

5. Evaluation

Applying MDE for simulation experiments has positive effects on the building and
sharing of knowledge, the productivity and quality of code, the reusability, as well as
the automatic generation of simulation experiments. This will ultimately lead to entire
simulation studies being conducted in a more effective and systematic manner.

We demonstrate the benefits using three real simulation studies from the interdisci-
plinary research project ELAINE on electrically active implants. These comprise the DES
study of a cell signaling pathway by Haack et al. [47,48], the virtual prototyping study of a
neurostimulator by Heller et al. [49], and the FEA study of electric fields in a stimulation
chamber by Zimmermann et al. [50]. We believe that well-designed and realistic case
studies are the best way to convince modelers to adopt MDE for simulation experiments in
their daily practice and to integrate this approach with other toolchains.

In the following, we first develop meta models to capture the characteristics of the
three modeling and simulation approaches together with our domain modeling experts

https://git.informatik.uni-rostock.de/mosi/exp-generation
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(stochastic DES, virtual prototyping, and FEA) and discuss how knowledge about sim-
ulation experiments can be exchanged within, but also between the different modeling
and simulation communities. Next, we demonstrate that based on the base meta models
composed with a shared meta model for the experiment type “global sensitivity analysis”,
three complex simulation experiments can be specified in a straightforward manner to solve
actual problems in the different application domains (analysis of a cell signaling pathway,
the battery of a neurostimulator, and the electric field in a stimulation chamber). Then,
we show how our JSON-based format can act as a standard exchange format to facilitate
the automatic reuse of simulation experiments, e.g., for the cross-validation of two related
cell signaling models. Finally, we show how our approach can be used to automatically
generate simulation experiments by extracting information from a workflow.

Note that all the experiments we describe are only snapshots of the three studies
in the form of single simulation experiments. During the simulation studies, of course,
further analysis steps with the same or other experiment types (e.g., simulation-based
optimization or statistical model checking) are involved, until the initial research questions
can be answered. For these further steps, our approach can be applied analogously.

5.1. Improved Knowledge Sharing across Domains

The three simulation studies were conducted in the context of electrically active im-
plants. However, they focused on different aspects involved in the development of such
implants and, therefore, required different modeling and simulation approaches. Conse-
quently, they required different meta models for the conducting of their basic experiments.
In this section, we introduce meta models for these approaches, i.e., the base experiments
for stochastic DES, virtual prototyping of heterogeneous systems, and FEA in electromag-
netics. This demonstrates the versatility of our approach and—most importantly—its value
for improving knowledge sharing within and across the diverse domains and approaches
of modeling and simulation.

5.1.1. Meta Model for Stochastic Discrete-Event Simulation

Stochastic DES is applied for modeling systems where the variables change at discrete
time points, and the time of the next event is determined stochastically [51,52]. In cell
biology, e.g., modeling and simulating stochastic effects is of significant interest, especially
for processes that involve low copy numbers [53]. Stochastic DESs are also increasingly
applied in demography [54] or epidemiology [55] as an alternative to the traditional
discrete-time step simulation approach.

For the paper, we use tables to represent the meta models in a compact and readable
way. The implementation as JSON Schema documents can be viewed in our source code.
Table 1 shows the developed DES meta model, which comprises three essential components,
i.e., model configuration, simulation initialization, and observation (represented by sections
in the table). In the meta model, each component of a simulation experiment requires
specific inputs (table rows). For instance, typical ingredients for a stochastic simulation are
now made explicit, such as the number of replications, the random seed, and the number
of parallel threads (see the simulation component). Each input is characterized by a unique
name, a description, a data type, a set of choices, a default value, and information about
whether this input is required or optional (table columns). Properties of type Map (e.g.,
configuration) assemble related inputs as key–value pairs. The assembled sub-properties
are indicated by “•”. Other properties (e.g., model, stopCondition, or observationTime)
are of type Alternative and provide different ways of specifying a property. The different
options are indicated by “→”. For instance, the simulation model can be provided by either
a folder and file name (local files) or a reference to an online resource.
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Table 1. Base meta model for conducting experiments using stochastic discrete-event simulation. To
create a valid simulation experiment, various information about the model, the simulation, and the
observed quantities has to be provided. Each row describes an input property of the meta model.
Sub-properties are denoted by “•”. Alternative meta model parts are indicated by “→”.

Name Description Type Choices Default Required

M
od

el

modelFile Specify the simulation model Alternative – – yes
→folder Folder of the simulation model String – – yes

fileName Name of the simulation model String – – yes
→reference Reference to the simulation model String – – yes
configuration Configure the model parameters Map – – no
•parameterName Input parameter name (key) String – – no
•parameterValue Input parameter value Real – – no

Si
m

ul
at

io
n

simulator Choose simulation algorithm String SSA, hybrid, . . . SSA yes
replications Number of simulation replications Integer, >0 – 1 yes
randomSeed Initialize random number generation Long, >0 – – no
parallelThreads Number of parallel threads Integer, >0 – 1 no
stopCondition Type of stop condition Alternative – – yes
→stopTime Stop at specific point of time Real, >0 – – yes
→stopExpression Stop based on simulation state String – – yes

O
bs

er
va

ti
on

observables Specify the observables Map – – yes
•observationExpression Expression on model entities (key) String – – yes
•observationAlias Alias for observation expression String – – no

observationTime Choose option for observation Alternative – – yes
→observationTimes Observe at specific points of time Array<Real>, >0 – – yes
→observationRange Observe time range and interval Array<Real>, length = 3 – – yes
outputFormat Choose reporting format String CSV, . . . – no

The above meta model generalizes the structure and ingredients of the simulation
experiments at the level of the modeling and simulation approach (i.e., DES). It can therefore
be used for supporting the specification and execution of basic simulation experiments in
various modeling domains, such as cell biology or digital circuits.

5.1.2. Meta Model for Virtual Prototyping of Heterogeneous Systems

Virtual prototyping allows for the design and development of products via modeling
and simulation where building real prototypes is infeasible, e.g., due to ethical concerns
or time restrictions, as in the case of neurostimulators for deep brain stimulation [49].
The fundamental paradigm for modeling and simulation of digital circuits is DES. This
means that the knowledge about the ingredients of simulation experiments captured in
the DES meta model can be applied here as well. However, some virtual prototypes
include components outside of the digital domain (e.g., to model the voltage levels of a
battery) and, thus, require continuous-time representation. For these models, using the
DES meta model for the simulation experiments does not suffice. However, using our
framework, we can, with relatively low effort, define a new experiment meta model for
virtual prototyping of heterogeneous systems (with mixed digital and analog signals) based
on the existing DES experiment meta model. The model configuration component and the
observation component can be reused from the shared meta model repository as they are.
Only the simulation initialization component needs to be adapted for the new simulation
approach (see Table 2). The main difference is that, now, a fixed time step and time step
unit are included, at which the discrete-time and continuous-time models are synchronized.
Furthermore, the modified meta model does not include the type of solver or scheduler
explicitly, as this is usually assigned automatically to specific semantics defined in the
language standard (e.g., SystemC-AMS [56]). Thus, the solver or scheduler is part of the
simulation model and not changed in the experiments.



Appl. Sci. 2022, 12, 7977 13 of 24

Table 2. Modified meta model component for virtual prototyping of heterogeneous systems. In
contrast to simulations that are only based on discrete events, here also, a time step has to be
configured for the numerical integration. The rows describe the different input properties of the meta
model. Sub-properties are denoted by “•”. Alternative meta model parts are indicated by “→”.

Name Description Type Choices Default Required

Si
m

ul
at

io
n

replications Number of simulation replications Integer, >0 – 1 yes
randomSeed Initialize random number generation Long, >0 – – no
parallelThreads Number of parallel threads Integer, >0 – 1 no
stopCondition Type of stop condition Alternative – – yes
→stopTime Stop at specific point of time Real, >0 – – yes
→stopExpression Stop based on simulation state String – – yes
timeStep Time step of the simulator Map – – yes
•timeStepSize Size of time step Real – – yes
•timeStepUnit Unit of time step String s, ns, . . . – yes

5.1.3. Meta Model for Finite Element Analysis in Electromagnetics

FEA is a general method that is capable of treating complex geometries and accurately
computing, e.g., the properties and effects of electric fields in deep brain stimulation. A
partial differential equation describing electric fields in the frequency domain is solved
(physical model). Thus, time–harmonic fields are described and only the quasi-static be-
havior of the system under investigation is considered. The 3D geometry of the system is
modeled explicitly, and corresponding boundary conditions and material properties are
directly linked to the different domains of the geometric model. As FEA is a completely dif-
ferent modeling and simulation approach, no parts from the previously defined base meta
models can be reused, and a new one is developed. Due to the separation of the geometric
model and physical model, the experiment meta model for FEA (see the Supplementary
Material, Table S1) has two new components: geometric model and physical model. These
are complemented by a simulation component that comprises information about the type
of solver and the accuracy of the solution (given by the coarseness of the mesh). For the
observation component, derived quantities can be specified, as well as coordinates at which
to evaluate these quantities.

Note that this first draft of the FEA experiment meta model was developed with
the background of electromagnetics in mind. Future efforts should aim to support FEA
more generally. In particular, the various inputs and constraints depending on the type
of physics need to be identified. In addition, multiphysics applications where mechanics,
electromagnetics, and thermodynamics are coupled are of potential interest. In each
discipline, PDEs comprising material properties together with geometrical constraints are
the basis of the modeling approach [57]. Hence, the current meta model can provide a basis
for further discussions and adjustments.
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Table 3. Meta model for the experiment type “global sensitivity analysis” (including information
about default values (Def.) and the required status (Req.)). To create a valid sensitivity analysis exper-
iment, various information about the model factors has to be provided, as well as information about
the sampling procedure (experiment design) and instructions for calculating the sensitivity indices.
The rows describe the different input properties. Sub-properties are denoted by “•”. Alternative
meta model parts are indicated by “→”.

Name Description Type Choices Def. Req.

Ex
pe

ri
m

en
tD

es
ig

n

factors Information about the model factors Map – – yes
•factorName Name of the factor (key) String – – yes
•factorMinimumValue Lower bound on the factor value Real – – yes
•factorMaximumValue Upper bound on the factor value Real – – yes
•factorDistribution Assumed distribution of the factor String Uniform, Normal, . . . Uniform yes
•factorDistributionParameters Parameterize the distribution Map – – no
•distributionParameterName Parameter of the distribution (key) String – – no
•distributionParameterValue Initialize the distribution parameter Real – – no

samplingStrategy Choose the sampling strategy String MC, QMC, OLHC, PC,
. . . MC yes

sampleSize Number of samples Integer – – no

In
de

x indexType Choose type of sensitivity index String Sobol, . . . – yes
bootstrapCI Calculate confidence interval with bootstrapping Boolean – false no

5.2. Increasing Productivity and Quality for Complex Experiments

Besides sharing information about the base experiments, our approach is designed to
share meta models for diverse, complex experiment types. Table 3, for instance, shows a
meta model for global SA, which could be added to any of the above-described base meta
models. It comprises various important ingredients for the specification of global SAs, such
as factor ranges and factor distributions, as well as a choice of different sampling strate-
gies: Monte Carlo (MC) and quasi-Monte Carlo (QMC) [58], orthogonal Latin hypercube
(OLHC) [59], and polynomial chaos expansion (PC) [60]. For the first three strategies, the
samples are used directly to calculate the indices. With a PC, on the other hand, first, a
surrogate model is constructed based on which indices are computed. As the index type,
e.g., Sobol indices [61,62] can be used, which are variance-based measures. The first-order
Sobol index of factor xi describes the individual contribution of this factor to the overall
variance in the output V(y):

Si =
Vxi [Ex∼i (y|xi)]

V(y)
.

The total-order sensitivity index, Ti, accounts for all the contributions to the output
variation due to factor xi (i.e., first-order index plus higher-order interactions):

Ti =
Ex∼i [Vxi (y|x∼i)]

V(y)
.

Having made explicit the ingredients of global SA as a meta model, we can easily
specify simulation experiments to calculate Sobol indices for various simulation models. We
show this for three different models by composing the respective base meta model with the
SA meta model. This has the potential to increase productivity during the simulation study
since guidance is provided via a specialized GUI or CLI and input validation. Moreover,
the complicated details of the code are abstracted away by the model-driven approach.
Thus, the modeler does not have to worry about how to combine the simulation tools and
analysis tools in a complex experiment. Figure 4 shows three different ways of performing
a Sobol analysis; they all can be generated using the same meta model.
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Figure 4. Schematic of the generated code for the three SA experiments for (A) the Wnt signaling
model, (B) the battery model, and (C) the electric fields model. The experiments take the user-given
base inputs and SA inputs and produce Sobol indices as outputs.

5.2.1. Sensitivity Analysis of a Wnt Signaling Model

To understand how electrically active implants affect the differentiation and prolifera-
tion of cells (and, thus, the composition and regeneration of tissue), the impact of external
electric fields on central cellular signaling pathways needs to be studied. The Wnt/β-catenin
signaling pathway is one of the central pathways that regulate the proliferation, as well
as differentiation of cells [63]. Deregulated forms of this pathway are involved in several
human cancers and developmental disorders [64]. Effects on membrane-related dynamics
are of particular interest for the development of electrically active implants. Lipid rafts,
specialized microdomains of the membrane, have been found to sense the electric field and
to direct the responses of cells [65]. Therefore, in the simulation study by Haack et al., a Wnt
simulation model [48] was extended to capture both raft- and non-raft-associated endocytic
processes of the Wnt/β-catenin receptor LRP6 in detail, including stochastic effects [47].

The model was written in ML-Rules [66] and simulated using stochastic DES (the
Wnt model, the SA experiment, and the analysis results are available at https://github.
com/SFB-ELAINE/Case-Study-Endocytosis, accessed on 26 July 2022). The experiment
meta model for DES is available in the repository of the framework and can therefore be
used to guide the modeler through the specification of the base experiment. Similarly, the
meta model for global sensitivity analysis is available to guide the modeler through the
definition of the global SA. In the global SA, the modeler is interested in the sensitivity of
the fraction of the cell membrane receptor LRP6 (observed quantity), with regard to the
model parameters kenonraft and keraft, which represent the internalization rates of bound
LRP6 receptor complexes and the parameter kLRAss. Furthermore, the modeler specifies
uniform distributions for these three factors, as well as minimum and maximum values
and enters the information via the generated GUI for this experiment type. As the sampling
strategy, an OLHC design with 1750 samples was selected.

Once all inputs for the SA have been collected, executable experiment code can be
generated, i.e., a combination of an R script with an SESSL/ML-Rules script, as illustrated
in Figure 4A. Without the experiment generation, the user would have had required
expertise in writing both SESSL/ML-Rules scripts and R scripts, as well as expertise in the

https://github.com/SFB-ELAINE/Case-Study-Endocytosis
https://github.com/SFB-ELAINE/Case-Study-Endocytosis
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types of sensitivity analyses and the respective libraries. Especially for novice modelers,
correctly setting up a sensitivity analysis involving two specification languages can be
challenging and error-prone, and therefore, quality and productivity can be improved by
the MDE approach.

Since we have implemented bindings to both SESSL/ML-Rules and R, the composed
experiment can also be executed automatically. Note that, for now, we do not support the
automatic analysis of simulation results and the generation of plots; however, this could be
included as a feature of this framework in the future. Figure 5A presents the results of the
experiment to be interpreted by the user. They show almost no impact of the parameter
keraft on the results. The variances of each of the other two parameters (kenonraft and kLRAss)
make up about half of the variance of the result.
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Figure 5. First- and total-order Sobol indices calculated for the three models. Whereas the Wnt model
(A) and the electric fields model (C) show linear behaviors, the difference between the first- and
total-order values of the battery model (B) indicates that the behavior of the model is governed by
the interaction of parameters.

5.2.2. Sensitivity Analysis of a Battery Model

Deep brain stimulation is a therapy option for a multitude of neurological disorders.
While it is widely implemented in the clinical routine, especially for Parkinson’s disease and
dystonia, the underlying mechanisms are not fully understood. Since most experiments
cannot be performed directly on humans due to ethical reasons, animal testings are neces-
sary. However, rodent-specific implants require a highly optimized level of miniaturization
and power consumption compared to human implants. Physical prototyping is not feasible
as the pursued runtime is more than a year. Therefore, virtual prototyping is used to
design neurostimulators for rodents. The model by Heller et al. [49] considers the interplay
between various heterogeneous system components (i.e., battery, boost converter, micro-
controller, and stimulation unit) and, thus, combines digital, as well as analog components.
Whereas previous studies focused on the optimization of voltage levels inside the system,
this study focuses on understanding the implications of different battery parameters on the
overall runtime of the implant. The described SA experiment and the analysis results are
available at https://github.com/SFB-ELAINE/Case-Study-Neurostimulator (accessed on
26 July 2022). Unfortunately, the battery model itself cannot be provided, as it is part of a
closed-source project.

As they vary over different battery types, the internal resistance Ri, the battery capacity
Q, and the polarization constant K are of special interest. To facilitate the analysis of these
parameters, the modeler uses the model-driven framework and selects the meta model for
global SA (Table 3) to enhance an already specified base experiment. Parameter ranges and
Gaussian distributions are requested for the three factors and entered by the user, and a
QMC sampling is selected with 1000 samples. A schematic of the generated code, based
on the Python package Uncertainpy [67] and SystemC-AMS [56], is shown in Figure 4B.
The generated experiment was started automatically; however, due to the complexity
of the model, even after 12 h, the analysis did not converge. Therefore, the experiment

https://github.com/SFB-ELAINE/Case-Study-Neurostimulator
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was terminated by the user to find a more efficient approach. With the assistance of the
model-driven framework, the sampling strategy could easily be substituted by PC as the
meta model for global SA provides a number of different sampling strategies to choose
from and automatically accounts for additional inputs or constraints associated with this
other method. Overall, the MDE framework allows the user to quickly try out and compare
different methods, e.g., also different sensitivity indices might be compared in the same way.

Using a PC, the described experiment was automatically repeated and the runtime
could be reduced to less than 3 h. The SA results, visualized by the user, are depicted
in Figure 5B and show that the model response is strongly determined by interactions
between the parameters. The internal resistance seems to have a particularly strong effect
on the overall battery runtime. Consequently, one should aim for measuring this parameter
in (real) experiments and pre-select batteries with lower internal resistance.

5.2.3. Sensitivity Analysis of an Electric Fields Model

The third simulation study aims to compute the electric field distribution in a specific
chamber [50]. Based on the computed field distributions, the biological response of the
stimulated biological sample can be linked to certain specifications of the electrical stimu-
lation setup. A global SA was used to evaluate the influence of the dielectric parameters
on the electric field strength at specific locations of the cells (the model, the described SA
experiment, and the analysis results are available at https://github.com/j-zimmermann/
EMStimTools/tree/master/examples/experimentSchemas (accessed on 26 July 2022)).

Following the structure of the meta model, the modeler enters all the required infor-
mation into the GUI (i.e., various material properties as factors and their value ranges) and
assumes uniform distributions. A PC was chosen as the sampling method, as it is an often
applied method in FEA, where simulation runs are computationally expensive. Figure 4C
shows the generated code, which combines the Python package EMStimTools [68] with Un-
certainpy [67]. Again, the structured approach of this framework allows the user to quickly
specify and execute the desired simulation experiment, even without prior knowledge of
the Uncertainpy package.

The first- and total-order Sobol indices are shown in Figure 5C. The results suggest
that a change in the permittivity of the medium does not influence the field strength. Hence,
the user concluded that the permittivity can be neglected in future uncertainty analyses for
this kind of problem and similar input parameters.

5.3. Reusability

The final Wnt model (introduced in Section 5.2.1) is the result of successively extending
simpler model versions. The original Wnt model by Lee et al. (2003) [69] was extended
by raft- and redox-dependent signaling events in a study by Haack et al. (2015) [48]. This
new model was then extended further by endocytic processes in Haack et al. (2020) [47].
To ensure that the basic model behavior was not changed due to the extensions, various
cross-validation experiments were required that compared the trajectories of the variables
of interest.

Therefore, the original simulation experiments of the study by Lee et al. shall be
reused and repeated with the extended model. However, the original experiments were
specified in SED-ML [9] and the corresponding model in SBML [70] (see BioModels [71]
entry at https://www.ebi.ac.uk/biomodels/BIOMD0000000658, accessed on 26 July 2022).
In contrast, the Wnt model by Haack et al. (2015/2020) was specified using the rule-
based modeling language ML-Rules [66], and the experiments were conducted using the
experiment specification language SESSL [8]. Thus, in order to reproduce results from the
study by Lee et al., the SED-ML experiment specification needs to be adapted for the new
model and translated to SESSL. This can be supported by the model-driven approach.

First, the meta model for DES directs the automatic parsing of the original specification
and provides meaning to the parts of the experiment specification. As the experiment
type is a time course analysis, a base meta model suffices to capture all the inputs. Once
transformed to the quasi-standardized JSON format, the experiment specification can be

https://github.com/j-zimmermann/EMStimTools/tree/master/examples/experimentSchemas
https://github.com/j-zimmermann/EMStimTools/tree/master/examples/experimentSchemas
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adapted to work with the model by Haack et al., e.g., the file name and the simulation
stop time (due to the use of different time scales) need to be changed. This can partly be
performed automatically by exploiting additional knowledge in the form of ontologies,
e.g., UniProt [72] provides a unique identifier for each protein and allows transforming
the variable names in the observation expressions from one model to another. Especially,
these ontology-based automatic transformations are valuable for the reuse of simulation
experiments as they prevent inconsistencies that can easily happen when translating an
experiment for a different model or a different specification language. As mentioned, the
variable names might have a different meaning in Model A compared to Model B, but also,
e.g., the units used for the rate constants might differ. Incorrect translations may lead to
distorted simulation results and, therefore, seemingly different model behavior, leading to
the wrong conclusion that the new model cannot be successfully cross-validated.

The automatically parsed and transformed experiment specification is then presented
to the user to ask for adaptions or additional information that could not be extracted
from the old specification. Listing 3 shows the finished experiment specification in the
JSON-based exchange format after being adapted for the model by Haack et al. From this,
the SESSL-specific experiment can be generated and executed automatically.

The result of the cross-validation is depicted in Figure 6. It compares the trajectories of
the key protein β-catenin, an indicator of the pathway’s activity, produced by the Lee et al.
and the Haack et al. model (with an adapted time scale) when stimulated with a transient
Wnt stimulus. Both β-catenin curves show the same peak at the same time. From this, the
user concludes that the extensions applied in the study by Haack et al. do not alter the
central dynamics of the pathway.
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Figure 6. Results of the cross-validation of the Lee et al. model [69] and the Haack et al. model [48]
(after applying a scaling factor of 0.28 to the β-catenin trajectory).
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Listing 3. Cross-validation experiment in the exchangeable JSON format, with the inputs (blue)
already adapted for the Haack et al. model.

1 {
2 "model":   {
3 "modelFile ":   {
4 "folder ":   "models",
5 "fileName ":   "M2_2.mlrj"
6 }
7 },
8 "simulation ":   {
9 "simulator ":   "SSA",

10 "replications ":   10,
11 "stopCondition ":   {
12 "stopTime ":   960
13 }
14 },
15 "observation ":   {
16 "observables ":   {
17 "observationExpression ":   ["Cell/Nuc/Bcat"]
18 },
19 "observationTime ":   {
20 "observationRange ":   {
21 "observationRangeStart ":   0,
22 "observationRangeEnd ":   960,
23 "observationRangeInterval ":   6
24 }
25 }
26 }
27 }

5.4. Automation

In the previous subsection, we already saw one case of automation, i.e., we demon-
strated that a well-designed MDE pipeline is the foundation for reusing simulation ex-
periments automatically [19] and allows integrating with ontologies. Now, we go one
step further and show that we can integrate this approach with other frameworks for
supporting simulation studies as a whole, e.g., an artifact-based workflow (an IDE for
simulation studies).

In an artifact-based workflow, the central products of simulation studies are identified
and made explicit as artifacts. These include the conceptual model, the simulation models,
and the simulation experiments. Each artifact is characterized by stages a modeler can
move through to achieve certain milestones and preconditions called guards [4]. Figure 7
shows the conceptual model artifact of an artifact-based workflow for FEA studies [73].
While moving through the stages of the conceptual model, the modeler specifies various
meta-information about the model, such as the modeling objective, requirements, and
input data, which are stored inside the artifact. This meta-information of the concep-
tual model artifact, as well as other artifacts, can be used in the automatic generation of
simulation experiments. For instance, in [73], an FEA simulation study of an electrical
stimulation chamber was conducted with assistance from the workflow. Once the user
reaches the stage Specifying simulation experiment, the MDE-based experiment generation
can be triggered. For instance, the information collected by the workflow could be used to
automatically generate a convergence test for the model. The convergence of numerical
methods is of high importance in order to retrieve meaningful results from a numerical
simulation [74]. In a convergence experiment, the mesh is incrementally refined until the
estimated discretization error lies below a given error threshold or until the maximum
number of iterations is reached. A meta model for convergence experiments, therefore,
requires the following inputs:

• The region of interest;
• An error metric allowing to estimate the discretization error for a given region;
• The maximum number of iterations or an error threshold to control the error;
• An initial meshing hypothesis, i.e., the minimum and maximum size of the finite

elements, to initialize the meshing algorithm.
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Specifying
objective

Validating
conceptual
model

Creating
requirement

Adding
conceptual
aspect

Creating
input data

Assembling 

conceptual 

model

Creating
simulation
model

Figure 7. The conceptual model artifact of the artifact-based workflow with all its stages, guards, and
milestones, adapted from [73]. Since the milestone of the Specifying objective stage has been achieved,
two other stages can be entered: the modeler can start with creating the simulation model, or the
conceptual model can be (further) assembled. In this example, the modeler enters the Assembling
conceptual model stage and adds a new behavioral requirement. As long as the conceptual model is
not fully assembled, it cannot be validated, and therefore, the guard of that stage is disabled.

By connecting our command-line tool to the workflow system, some of these inputs
required by the meta model can be filled automatically by extracting meta information from
the artifacts, e.g., the region of interest and the error metric were specified as requirements
in the conceptual model [4]. Other inputs are specific to convergence studies, e.g., the initial
minimum and maximum size of the elements, and thus, either need to be entered manually
by the user (e.g., by opening our GUI pre-filled with the extracted values) or are initialized
with default values (specified in the experiment meta model).

Figure 8 shows the results of the convergence experiment that was generated semi-
automatically for the model of the electrical stimulation chamber. It shows how the
observed variable (current at Electrode 1) converges with increasing degrees of freedom in
the finite element model and that the refinement could terminate after the fourth iteration.
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Figure 8. Convergence of the current with respect to the number of degrees of freedom (DOFs). Note
that for a large number of DOFs, numerical issues may arise due to the small size of individual elements.

6. Conclusions

In this paper, we presented an MDE framework for supporting the conducting of
simulation experiments. Central features of the approach are the composition of different
types of meta models, a meta model repository, bidirectional code transformations, a variety
of tool bindings, and a GUI, as well as a CLI.



Appl. Sci. 2022, 12, 7977 21 of 24

We demonstrated how the framework contributes to improving knowledge structuring
and sharing within, but also across the different simulation domains and approaches (i.e.,
stochastic DES of a cell signaling pathway, virtual prototyping of a neurostimulator, and
FEA of electric fields). There, the introduction of meta models for base experiments and
meta models for complex experiment types proved crucial. Their on-demand composition
guided the modeler in specifying complex experiments (SA) while catering to rather diverse
demands of the respective simulation studies and, thus, raises the productivity of the
modeler and the quality of complex experiments. Furthermore, we showed the framework’s
practicality for automatically reusing simulation experiments for the cross-validation of
related models and for automatically generating and executing simulation experiments,
e.g., for conducting convergence tests initiated by a workflow system. We showed that
the presented approach fulfills the typical expectations and advantages associated with
MDE and will be an asset for more effective and systematic simulation studies. The user
only needs to fill in the information required by the respective meta models, obviating the
need to manually write experiment code and acquire expertise in heterogeneous tools and
experiment specification languages. Thereby, the approach holds the promise to reduce
the effort of conducting simulation experiments and to increase the accessibility of various
types of simulation experiments.

For future work, we plan to extend support for the development of new meta models
of base experiments and meta models of complex experiment types, i.e., through the
composition and reuse of meta model parts with a clear notion of inheritance. What
should become part of a meta model needs to be debated in the various modeling and
simulation communities, possibly via standardization bodies such as SISO [75]. Regarding
the automation of simulation studies, we plan to build further support components on top
of the MDE pipeline, such as an automatic selection and parametrization of experiment
types and methods.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app12167977/s1, Table S1: Base meta model for conducting simulation experiments in finite
element analysis. A geometric model, a physical model, and a solver need to be provided and
configured. Optionally, observations and derived properties can be specified. The rows describe the
different input properties of the meta model. Sub-properties are denoted by “•”. Alternative meta
model parts are indicated by “→”.

Author Contributions: Conceptualization, P.W. and A.M.U.; data curation, P.W., J.H., K.B. and J.Z.;
funding acquisition, C.H., D.T., U.v.R. and A.M.U.; investigation, J.H., K.B. and J.Z.; methodology,
P.W. and T.W.; project administration, A.M.U.; software, P.W.; supervision, C.H., D.T., U.v.R. and
A.M.U.; validation, P.W.; visualization, J.H., K.B. and J.Z.; writing—original draft, P.W. and A.M.U.;
writing—review and editing, P.W., J.H., K.B., J.Z., T.W., C.H., U.v.R. and A.M.U. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by the DFG (German Research Foundation) research project UH
66/18 GrEASE and the DFG Collaborative Research Center 1270/1 - 299150580 ELAINE.

Data Availability Statement: The software is publicly available at https://git.informatik.uni-rostock.
de/mosi/exp-generation (accessed on 26 July 2022). Supporting materials related to the three case studies
can be found at https://github.com/SFB-ELAINE/Case-Study-Endocytosis (accessed on 26 July 2022),
https://github.com/SFB-ELAINE/Case-Study-Neurostimulator (accessed on 26 July 2022), and https:
//github.com/j-zimmermann/EMStimTools/tree/master/examples/experimentSchemas (accessed
on 26 July 2022).

Acknowledgments: The authors would like to thank Fiete Haack for his excellent support in con-
ducting the Wnt experiments.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://www.mdpi.com/article/10.3390/app12167977/s1
https://www.mdpi.com/article/10.3390/app12167977/s1
https://git.informatik.uni-rostock.de/mosi/exp-generation
https://git.informatik.uni-rostock.de/mosi/exp-generation
https://github.com/SFB-ELAINE/Case-Study-Endocytosis
https://github.com/SFB-ELAINE/Case-Study-Neurostimulator
https://github.com/j-zimmermann/EMStimTools/tree/master/examples/experimentSchemas
https://github.com/j-zimmermann/EMStimTools/tree/master/examples/experimentSchemas


Appl. Sci. 2022, 12, 7977 22 of 24

References
1. Winsberg, E. Science in the Age of Computer Simulation; University of Chicago Press: Chicago, IL, USA, 2010.
2. Balci, O. A life cycle for modeling and simulation. Simulation 2012, 88, 870–883. [CrossRef]
3. Sargent, R.G. Verification and validation of simulation models. J. Simul. 2013, 7, 12–24. [CrossRef]
4. Ruscheinski, A.; Warnke, T.; Uhrmacher, A.M. Artifact-Based Workflows for Supporting Simulation Studies. IEEE Trans. Knowl.

Data Eng. 2020, 32, 1064–1078. [CrossRef]
5. Saltelli, A.; Aleksankina, K.; Becker, W.; Fennell, P.; Ferretti, F.; Holst, N.; Li, S.; Wu, Q. Why so Many Published Sensitivity

Analyses Are False: A Systematic Review of Sensitivity Analysis Practices. Environ. Model. Softw. 2019, 114, 29–39. [CrossRef]
6. Hinsch, M.; Bijak, J.; Hilton, J. Towards More Realistic Models. In Towards Bayesian Model-Based Demography: Agency, Complexity

and Uncertainty in Migration Studies; Bijak, J., Ed.; Methodos Series; Springer International Publishing: Cham, Switzerland, 2022;
pp. 137–154. [CrossRef]

7. Prike, T. Open Science, Replicability, and Transparency in Modelling. In Towards Bayesian Model-Based Demography: Agency,
Complexity and Uncertainty in Migration Studies; Bijak, J., Ed.; Methodos Series; Springer International Publishing: Cham,
Switzerland, 2022; pp. 175–183. [CrossRef]

8. Ewald, R.; Uhrmacher, A.M. SESSL: A Domain-specific Language for Simulation Experiments. ACM Trans. Model. Comput. Simul.
2014, 24, 1–25. [CrossRef]

9. Waltemath, D.; Adams, R.; Bergmann, F.T.; Hucka, M.; Kolpakov, F.; Miller, A.K.; Moraru, I.I.; Nickerson, D.; Sahle, S.; Snoep, J.L.;
et al. Reproducible computational biology experiments with SED-ML—The simulation experiment description markup language.
BMC Syst. Biol. 2011, 5, 198. [CrossRef] [PubMed]

10. Erdemir, A.; Guess, T.M.; Halloran, J.; Tadepalli, S.C.; Morrison, T.M. Considerations for reporting finite element analysis studies
in biomechanics. J. Biomech. 2012, 45, 625–633. [CrossRef]

11. Perrone, L.F.; Main, C.S.; Ward, B.C. SAFE: Simulation automation framework for experiments. In Proceedings of the 2012 Winter
Simulation Conference (WSC), Berlin, Germany, 9–12 December 2012; pp. 1–12. [CrossRef]

12. Sanchez, S.M.; Sánchez, P.J.; Wan, H. Work smarter, not harder: a tutorial on designing and conducting simulation experiments.
In Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, 9–12 December 2018; pp. 237–251.
[CrossRef]

13. Teran-Somohano, A.; Smith, A.E.; Ledet, J.; Yilmaz, L.; Oğuztüzün, H. A model-driven engineering approach to simulation
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