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Abstract: A brain tumor (BT) is an abnormal development of brain cells that causes damage to the
nerves and blood vessels. An accurate and early diagnosis of BT is important to prevent future
complications. Precise segmentation of the BT provides a basis for surgical and planning treatment
to physicians. Manual detection utilizing MRI images is computationally difficult. Due to signif-
icant variation in their structure and location, viz., ambiguous boundaries and irregular shapes,
computerized tumor diagnosis is still a challenging task. The application of a convolutional neural
network (CNN) helps radiotherapists categorize the types of BT from magnetic resonance images
(MRI). This study designs an evolutional algorithm with a deep learning-driven brain tumor MRI
image classification (EADL-BTMIC) model. The presented EADL-BTMIC model aims to accurately
recognize and categorize MRI images to identify BT. The EADL-BTMIC model primarily applies
bilateral filtering (BF) based noise removal and skull stripping as a pre-processing stage. In addition,
the morphological segmentation process is carried out to determine the affected regions in the image.
Moreover, sooty tern optimization (STO) with the Xception model is exploited for feature extraction.
Furthermore, the attention-based long short-term memory (ALSTM) technique is exploited for the
classification of BT into distinct classes. To portray the increased performance of the EADL-BTMIC
model, a series of simulations were carried out on the benchmark dataset. The experimental outcomes
highlighted the enhancements of the EADL-BTMIC model over recent models.

Keywords: computer-aided diagnosis; deep learning; brain tumor; evolutionary algorithm; magnetic
resonance imaging

1. Introduction

Cancer is a serious health issue around the world. It is the second leading cause of
death, following cardiovascular diseases [1]. Among the various kinds of cancer, brain
tumors (BTs) are a life-threatening type due to their heterogeneous features, aggressive
nature, and small survival rate. BTs are classified into distinct types based on their texture,
location, and shape [2]. Based on the type of tumor, physicians can predict and diagnose
patient endurance and make decisions regarding the right treatment, which could range
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from surgery, succeeded by chemotherapy and then radiotherapy, to playing a waiting
game method that ignores invading processes. Therefore, tumor grading is a significant
factor in treatment monitoring and planning [3,4].

Magnetic Resonance Imaging (MRI) is a non-invasive, pain-free medical imaging
process that utilizes high-quality images of human body organs in 3D and 2D formats [5]. It
is extensively utilized because it is the most precise method for categorizing and identifying
cancer, owing to its high-resolution images of the brain tissues [6,7]. However, identifying
the cancer variety with MRI images is difficult and prone to error. In particular, the accuracy
is based on the experience of the radiologist, and it is significant to note that it is a time-
consuming process [8]. Additionally, accurate analysis aids the patient in initiating the right
treatment promptly and living a longer life [9]. This creates a high demand in the Artificial
Intelligence (AI) domain for developing and designing a novel and creative Computer
Assisted Diagnosis (CAD) process that focuses on easing the work pressure of the analysis
and categorization of tumors and functions as a useful tool for radiologists and doctors [10].

CAD methods are useful for neuro-oncologists in various aspects. CAD methods
pave the way in the classification and early detection of BTs [11]. Doctors, with the help
of CAD, can perform highly precise categorizations compared to those dependent on
visual comparisons. MRIs contain useful data about the position, shape, type, and size
of BTs and do not expose the patient to dangerous ionizing radiation. MRIs offer high
contrast of soft tissues compared to computerized tomography (CT) scans. Therefore,
joined with the CAD model, MRIs may help rapidly identify tumors’ size and location.
Developments in computers have designed strong tools which can help to attain more
precise diagnoses. These developments in deep learning-related systems have led to a
massive enhancement in medical image analysis and decision making. Particularly deep
neural network (DNN)-related technologies utilized by well-trained experts [12].

Due to the rapid advancement of deep learning (DL) methods and their capability to
classify medical images in a better way, CAD is a widely used methodology of diagnosis
among medical imaging experts. Expanding research in applying DL to the categorization
of multiple diseases within the limitations of existing technologies is presently a leading
focus of radiology research scholars. Of the multitude of deep machine learning (ML)
methods, CNNs are widely utilized for the medical image examination of distinct diseases
and, thus, extensively used by researchers.

This study designs an evolutional algorithm with a deep learning-driven brain tumor
MRI image classification (EADL-BTMIC) model. The presented EADL-BTMIC model
applies bilateral filtering (BF) based noise removal and skull stripping as a pre-processing
stage. Additionally, the morphological segmentation process is carried out to determine
the affected regions in the image. In addition, sooty tern optimization (STO) with the
Xception model is exploited for feature extraction purposes. Finally, the attention-based
long short-term memory (ALSTM) technique is exploited for classifying BT into distinct
classes. A detailed experimental analysis is carried out to examine the performance of the
EADL-BTMIC model. In short, this paper’s contribution is summarized as follows:

• An intelligent EADL-BTMIC model comprising pre-processing, morphological seg-
mentation, Xception-based feature extraction, STO parameter tuning, and ALSTM
classification using MRI images is presented. To the best of our knowledge, the
EADL-BTMIC model has never been presented in the literature.

• A novel STO algorithm with the Xception model is applied for the hyperparameter
tuning process, which helps in boosting the overall BT classification performance.

2. Related Works

The authors in [13] developed a BT classification method based on the hybrid brain
tumor classification (HBTC) model. The presented model reduces the intrinsic difficulties
and enhances the classification performance. Additionally, many ML models such as
multilayer perception (MLP), J48, meta bagging (MB), and random tree (RT) are used for
the classification of cyst, glioma, menin, and meta tumors. The authors in [14] presented
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a multi-level attention model to classify BT. The presented multi-level attention network
(MANet) comprises spatial and cross-channel attention that concentrates on tumor region
prioritization and manages cross-channel temporal dependency existing in the semantic
feature sequence attained from the Xception backbone. Nayak et al. [15] presented a CNN-
based dense EfficientNet using min–max normalization for recognizing 3260 T1-weighted
contrast-enhanced brain MRI images into four categories (glioma, meningioma, pituitary,
and no tumor). The developed network is a version of EfficientNet with dense and drop-
out layers appended. In addition, data augmentation with min–max normalization is
integrated to increase the contrast of tumor cells.

Abd El Kader et al. [16] developed a differential deep convolutional neural network
(differential deep-CNN) architecture to categorize a variety of BTs, involving normal and
abnormal MR. A further differential feature map from the original CNN feature map can
be derived by utilizing a differential operator in the deep-CNN model. The derivation
procedure results in increasing the performance of the presented technique based on the
result of the evaluation parameter. Masood et al. [17] introduced a custom Mask Region-
based CNN (Mask RCNN) with a densenet-41 backbone structural design viz., trained
through transfer learning (TL) for accurate segmentation and classifying of brain cancers.

In [18], the authors proposed a Fully Automated Heterogeneous Segmentation using
SVM (FAHS-SVM) for brain cancer segmentation dependent upon DL technologies. The
study presents the cerebral venous system separation into MRI images by adding a novel,
fully automated technique dependent upon morphological, relaxometry, and structural
details. The segmentation function can discriminate with a higher level of uniformity
among anatomy and the neighboring brain tissues. ELM is a kind of learning model
that comprises more than one hidden node layer. Mohsen et al. [19] combined a deep
neural network with the discrete wavelet transform (DWT). The useful feature extracting
mechanism and principal components analysis (PCA) and performance assessment were
very effective on the performance measure.

Gab Allah et al. [20] explored the efficiency of a new method to classify brain cancer
MRI using VGG19 feature extracting combined with one of three kinds of the classifier. A
progressive, growing generative adversarial network (PGGAN) augmentation module was
utilized for producing a ‘realistic’ MRI of BT and assisted in resolving the shortcomings of
the image required for DL. In Bodapati et al. [21], a 2-channel DNN structure is presented
for tumor classifier viz. further generalizable. At first, local feature representation is
extracted from the convolutional block of Xception and InceptionResNetV2 networks and
is vectorized by the presented pooling-based models. An attention model is presented,
which focuses more on the tumor region and less on the non-tumor region, ultimately
assisting in distinguishing the kind of tumor from the images. Rehman et al. [16] introduce
CNNs (VGGNet, AlexNet, and GoogLeNet) for categorizing BTs, namely pituitary, glioma,
and meningioma. Then, the study examines the transfer learning technique that freezes
and fine-tunes using MRI slices of BT data.

3. The Proposed Model

In this study, a novel EADL-BTMIC model was established to recognize and categorize
the MRI images to identify BTs accurately. The EADL-BTMIC model primarily applies BF
and the skull stripping process as a pre-processing stage. Additionally, the morphological
segmentation process is carried out to determine the affected regions in the image. The
STO with the Xception model is exploited for feature extraction purposes. Furthermore,
the ALSTM model is exploited to classify BT into distinct classes. Figure 1 showcases the
overall working process of the EADL-BTMIC technique.
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3.1. Image Pre-Processing

At the introductory level, the EADL-BTMIC model primarily applies BF and the skull
stripping process as a pre-processing stage. The BF technique has the benefits of less noise,
being easy to design, automated censoring, and rotation symmetry. The input image might
have noises, including Gaussian, salt pepper noise, and so on. Noise removal applications
preserve the information in the input dataset in a similar manner. The BF technique is
applied for de-noising the input image. This can be attained by combining two Gaussian
filters, i.e., the intensity domain, the one that is operating, and the spatial domain, another
one that operates. For weight, the spatial and intensity distance are applied in the algorithm.
The output at p pixel position is defined by using Equation (1):

F(p) =
1
N ∑

zεS(p)
e
−‖q− p‖2

2ε2
e

−|F(q)− F(p)|2

2ε2
S

F(q) (1)
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From the above equation, the normalization constant can be represented as N, S(p)
represent a pixel spatial neighborhood F(p), and parameters εe εr are governing weight
from the domain of intensity and spatial start to fall off.

e
−‖q−p‖2

2ε2
e e

−|F(q)−F(p)|2

2ε2
e (2)

The BF has been applied in volumetric de-noising, texture elimination, tone mapping,
and other applications, such as de-noising the image. We can generate simple conditions for
down-sampling the procedures and achieve acceleration by expressing in the augmented
space; with the two simple non-linearity, the BF was performed as linear convolution.

3.2. Image Segmentation

Next to image pre-processing, the morphological segmentation process is carried out
to determine the affected regions in the image [22]. Pixel values greater than the specified
threshold are marked as white, whereas the remaining regions are mapped as black; it
allows different regions to be created around the disease. Next, an erosion process of
morphology is utilized for extracting white pixels. In this work, the wavelet transformation
technique was utilized to generate data, features, and operators into frequency components
that allow each component to be studied discretely. The wavelet transformation function
has been utilized for the effective segmentation of the brain MRI. Each wavelet is generated
from a simple wavelet function using the scaling and translation process. The wavelet
function is specified over a restricted time interval within the average value of null.

3.3. Feature Extraction

In this work, the STO with the Xception model is exploited for feature extraction
purposes. The DL technology is a familiar application developed from the ML approach
with increasing multilayer FFNN. In the application of constrained hardware properties,
multiple layers in traditional NN are constrained by learned parameters, and the relation-
ship between the layers needs maximal computational time. With the formation of an
advanced end system, it could be possible to train deep methodologies through multi-phase
NN. The DL technology is developed from CNNs using a higher rate of function in huge
applications such as speech examination, object prediction, image processing, and ML
techniques. Additionally, CNN is a multilayer NN [23]. Moreover, CNN benefits from FE
limiting the pre-processing step to a greater amount. Hence, it is not necessary to conduct a
study to identify the features of an image. The CNN is composed of classification, Input,
Relu, Pooling, Dropout, Convolution, and Fully Connected (FC) layers. In our study, the
DL-based Xception module is used to extract the features from the facial image.

The Xception model is similar to the inception module, where the inceptions are
substituted with depthwise separate Conv. layer. Especially, Xception architecture is
created based on the linear stack of a depthwise separate convolutional layer using a linear
residual attached. In this method, pointwise and depthwise layers have been employed. In
the depthwise layer, a spatial convolution layer manually occurs in the pointwise layer and
channel of the input dataset, where a 1 × 1 convolution map the outcomes of new channel
space in the applications of the depthwise convolution layer.

Here, the STO algorithm is utilized to fine-tune the hyperparameters involved in the
Xception model [24]. In this study, the STO algorithm is preferred over other optimization
algorithms for the following reasons. The STO algorithm is capable of exploration, exploita-
tion, and local optima avoidance. It can solve challenging constrained problems and is
very competitive compared with other optimization algorithms. The STO technique was
simulated by the attack performance of sooty tern birds. Usually, the sooty terns live from
the groups. It can utilize its intelligence for locating and attacking the target. The most
important features of sooty terns are migration and assault behaviors. The subsequent offer
insights as to sooty tern birds:
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• The sooty tern moved from the group in migration. To avoid a collision, the primary
places of sooty terns were distinct.

• In the groups, a sooty tern with a minimal fitness level nevertheless traveled a similar
distance to the fittest amongst them.

• The sooty terns with minimal fitness are updated in their initial places on the basis of
the fittest sooty terns.

The sooty tern must meet three requirements for the migration: SA was utilized for
computing a novel searching agent place for avoiding collisions with their neighborhood
searching agents (for instance, sooty terns).

→
Cst = sA ·

→
P(z) (3)

In which
→
Cst signifies the place of sooty terns which do not collide with other terns.

→
P st implies the existing place of sooty terns. z refers to the existing iteration, and sA
indicates the migration of sooty terns from the solution space. Next, the collision evasion,
the searching agent converges from the path of the finest neighbor.

→
Mst = CB ·

→
P st(z)

(→
Pbst(z)−

→
P st(z)

)
(4)

whereas
→
MSt signifies the special place of searching agents (that is, sooty tern).

→
Pbst(z)

illustrates the optimum place for searching agents, and CB represents the arbitrary variable
and is calculated as:

CB = 0.5Rand (5)

In which Rand denotes some arbitrary number from the range of zero and one. Up-
grading equivalent to the optimum searching agent. Finally, the sooty terns can revise their
place in relation to the optimum searching agents.

→
Dst =

→
Cst +

→
Mst (6)

In which
→
Dst denotes the variance amongst the searching agents and an optimum

fittest searching agents. The sooty tern alters its speed and attack angle under the migration.
It can obtain altitude by flapping its wings. It produced spherical performance from the air
but attacks prey that was described under

x′ = Radius sin (i) (7)

y′ = Radius cos (i) (8)

z′ = Radiusi (9)

r = uekv (10)

In which, Radius stands for the radius of all the spiral turns, i denotes the value from
the range of [0 ≤ k ≤ 2τc], and the u and v define the constant value.

3.4. Image Classification

In the final stage, the ALSTM model is exploited for the classification of BT into distinct
classes. The RNN is a class of NNs where the output of feed-forward traditional ANN is
provided as novel input to neurons dependent upon novel input value. The resultant value
at some neurons (z + 1) is dependent upon their input at moment z. This improves the
dynamism of the network method. Considering there is a connection between two input
values, this method was determined as a memory network method [4,7,25,26]. In RNN,
input data were considered connected to everyone. The LSTM is also the most famous
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RNN network method, whereas the structure was established to vanish gradient problems.
At this point, wz implies the input value at time z, and 0z signifies the resultant value at
time z. Figure 2 depicts the framework of the LSTM technique.
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The structure of the LSTM network node contains 3 fundamental gates, namely the
forget gate fz, input gate iz, and output gate 0z. However, the input, as well as output
gates, signify the data entered and data exit the node at time z correspondingly. The
forgetting gate chooses the data to be forgotten related to the preceding status data (hz−1)
and existing input (xz). These 3 gates choose that upgrade the present memory cell cz and
present latency hz value. During the LSTM node, the connections amongst the gates were
computed mathematically utilizing the following formula:

iz = σ(wi. [hz−1, xz] + bi) (11)

fz = σ
(

w f . [hz−1, xz] + b f

)
(12)

oz = σ(wo. [hz−1, xz] + bo) (13)

c′z = tanh(wc. [hz−1, xz] + bc) (14)

cz = fz ∗ cz−1 + iz ∗ c′z (15)

hz = 0z ∗ tanh(Cz) (16)

In the LSTM network structure procedures, the representation vectors take as an input
in the primary data to the final data. Consider H ∈ Rd×N represent a matrix consisting of
a hidden vector [h1, . . . , hN ] that the LSTM produced, where the size of the hidden layer
is represented as d and the length of the given data is denoted by N. Moreover, eN ∈ RN

represents a vector of ls and va embedding vector. The attention model produces an
attention a weighted hidden representation r and weight vector α.

M = tanh
([

Wh H
Wvva ⊗ eN

])
(17)

α = so f tmax
(

wT M
)

(18)

r = HαT (19)

In the equation, the projection parameters are characterized by M ∈ R(d+da)×N ,
α ∈ RN , r ∈ Rd. Wh ∈ Rd×d, Wv ∈ Rda×da and w ∈ Rd+da . r signifies a weighted
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representation of data with a given aspect, and a vector consisting of attention weight is
indicated as α. The attention model enables the model to capture the essential part of data
while considering different aspects.

4. Performance Validation

In this study, the performance validation of the EADL-BTMIC model is carried out
using the Figshare dataset [24]. The details related to the dataset are shown in Table 1. A
few sample images are illustrated in Figure 3. The dataset holds 3064 T1-weighted contrast-
enhanced images with 3 kinds of BT. The dataset includes 708 images in the Meningioma
class, 930 images in the Pituitary class, and 1426 images in the Glioma class. In this study,
the experimental validation occurs in two distinct ways by splitting the dataset into two
aspects based on the size of the training and testing data: 80% of training with 20% of
testing data and 70% of training with 30% of testing data. The proposed model is simulated
using Python 3.6.5 tool. The parameter settings are given as follows: learning rate: 0.01,
dropout: 0.5, batch size: 5, epoch count: 50, and activation: ReLU.

Table 1. Dataset details.

Classes No. of Images

Meningioma (MEN) 708
Pituitary (PET) 930
Glioma (GLI) 1426

Total 3064
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Figure 4 demonstrates the confusion matrices formed by the EADL-BTMIC model
on test data. With 80% of TR data, the EADL-BTMIC model identified 553, 7144, and
1121 samples into MEN, PIT, and GLI classes, respectively. In addition, with 20% of TS
data, the EADL-BTMIC methodology identified 127, 189, and 288 samples into MEN,
PIT, and GLI classes, correspondingly. Additionally, with 70% of TR data, the EADL-
BTMIC system identified 493, 644, and 977 samples into MEN, PIT, and GLI classes,
correspondingly. Finally, with 30% of TS data, the EADL-BTMIC technique identified 210,
268, and 429 samples into MEN, PIT, and GLI classes, respectively.
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Table 2 and Figure 5 depict the overall classifier results of the EADL-BTMIC model on
80% of training (TR) data and 20% of testing (TS) data. The experimental values exposed
that the EADL-BTMIC technique exhibited effectual outcomes. For instance, with 80% of
TR data, the EADL-BTMIC model obtained increased accuy, precn, recal , specy, and Fscore of
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98.29%, 97.37%, 97.04%, 98.64%, and 97.20%, respectively. At the same time, with 20% of
TS data, the EADL-BTMIC methodology reached enhanced accuy, precn, recal , specy, and
Fscore of 99.02%, 98.22%, 98.54%, 99.27%, and 98.37%, correspondingly.

Table 2. Result analysis of EADL-BTMIC technique with various measures on 80% of TR and 20% of
TS data.

Labels Accuracy Precision Recall Specificity F-Score

Training Phase (80%)
Meningioma 98.25 97.19 95.34 99.14 96.26
Pituitary 98.29 97.28 97.01 98.83 97.14
Glioma 98.33 97.65 98.77 97.95 98.20
Average 98.29 97.37 97.04 98.64 97.20
Testing Phase (20%)
Meningioma 99.02 96.21 99.22 98.97 97.69
Pituitary 99.02 99.47 97.42 99.76 98.44
Glioma 99.02 98.97 98.97 99.07 98.97
Average 99.02 98.22 98.54 99.27 98.37
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Table 3 and Figure 6 display the overall classifier results of the EADL-BTMIC technique
on 70% of TR data and 30% of TS data. The experimental values revealed that the EADL-
BTMIC technique illustrated effectual outcomes.
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Table 3. Result analysis of EADL-BTMIC technique with various measures on 70% of TR and 30% of
TS data.

Labels Accuracy Precision Recall Specificity F-Score

Training Phase (70%)
Meningioma 99.21 97.43 99.20 99.21 98.31
Pituitary 99.16 98.92 98.32 99.53 98.62
Glioma 98.83 98.99 98.49 99.13 98.74
Average 99.07 98.45 98.67 99.29 98.55
Testing Phase (30%)
Meningioma 99.02 96.33 99.53 98.87 97.90
Pituitary 99.13 99.63 97.45 99.84 98.53
Glioma 99.02 99.08 98.85 99.18 98.96
Average 99.06 98.34 98.61 99.30 98.46
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For sample, with 70% of TR data, the EADL-BTMIC technique attained enhanced
accuy, precn, recal , specy, and Fscore of 99.07%, 98.45%, 98.67%, 99.29%, and 98.55%, corre-
spondingly. Simultaneously, with 30% of TS data, the EADL-BTMIC approach reached
increased accuy, precn, recal , specy, and Fscore of 99.06%, 98.34%, 98.61%, 99.30%, and
98.46%, correspondingly.

Figure 7 offers the accuracy and loss graph analysis of the EADL-BTMIC approach
on a distinct set of TR/TS datasets. The outcomes demonstrated that the accuracy value is
enhanced, and the loss value tends to reduce with a higher epoch count. It is also observed
that the training loss is minimal, and validation accuracy is superior on distinct sets of
TR/TS datasets.
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A brief precision-recall examination of the EADL-BTMIC model on the test dataset is
portrayed in Figure 8. By observing the figure, it is noticed that the EADL-BTMIC model
has accomplished maximum precision-recall performance under all classes.
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A detailed ROC investigation of the EADL-BTMIC model on the test dataset is por-
trayed in Figure 9. The results indicated that the EADL-BTMIC model exhibited its ability
to categorize three different classes, such as meningioma, pituitary, and glioma, on the
test dataset.
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Table 4 provides a comprehensive comparison study of the EADL-BTMIC model
with other models [15,17]. Figure 10 demonstrates a brief accuy and specy assessment of
the EADL-BTMIC approach with existing models. The figure indicates that the AlexNet-
FC7 method has shown lower performance with minimal accuy and specy of 91.21% and
90.36%, respectively. Followed by the Alexnet-FC6, VGG19-CNN, VGG19-GRU, and
VGG19-Bi-GRU models, which accomplished moderately closer values of accuy and specy.
However, the EADL-BTMIC model has gained maximum accuy and specy of 99.06% and
99.30%, respectively.

Table 4. Comparative analysis of EADL-BTMIC approach with recent algorithms.

Methods Accuracy Precision Recall Specificity

AlexNet-FC6 95.44 94.96 97.53 95.30
AlexNet-FC7 91.21 90.48 95.48 90.36
VGG19-CNN 95.06 94.68 94.54 95.48
VGG19-GRU 96.61 94.12 94.69 94.91

VGG19-Bi-GRU 94.14 95.77 96.10 95.14
EADL-BTMIC 99.06 98.34 98.61 99.30
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Figure 11 illustrates a detailed precn and recal analysis of the EADL-BTMIC system
with recent methods. The figure shows that the AlexNet-FC7 algorithm has shown lower
performance with minimal precn and recal of 90.48% and 95.48%, correspondingly. Af-
terward, the Alexnet-FC6, VGG19-CNN, VGG19-GRU, and VGG19-Bi-GRU techniques
accomplished moderately closer values of precn and recal . Finally, the EADL-BTMIC
technique gained maximal precn and recal of 98.34% and 98.61%, correspondingly.
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The above-mentioned results and discussion ensured that the EADL-BTMIC model
resulted in enhanced classification outcomes over other methods.

5. Conclusions

In this study, a new EADL-BTMIC model has been developed to accurately recognize
and categorize MRI images for the identification of BT. The EADL-BTMIC model primarily
applied BF and the skull stripping process as a pre-processing stage. Additionally, the
morphological segmentation process is carried out to determine the affected regions in
the image, followed by the STO with Xception model, exploited for feature extraction
purposes. Furthermore, the ALSTM model is exploited to classify BTs into distinct classes.
To portray the improved performance of the EADL-BTMIC model, a series of simulations
were carried out on a benchmark dataset. The experimental outcomes highlighted the
enhancements of the EADL-BTMIC model over recent models. In the future, deep instance
segmentation models will be applied to improve the BT classification performance of the
presented model.

Author Contributions: Conceptualization, M.A.H. and S.B.H.H.; methodology, H.A.M.; software,
M.O.; validation, S.S.A., R.M. and A.Y.; formal analysis, F.A.; investigation, R.M.; resources, F.A.;
data curation, M.O.; writing—original draft preparation, H.A.M. and S.S.A.; writing—review and
editing, R.M. and S.B.H.H.; visualization, M.A.H.; supervision, S.S.A.; project administration, M.A.H.;
funding acquisition, H.A.M. and S.S.A. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at King
Khalid University for funding this work through the Large Groups Project under grant number
(25/43). Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2022R114), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The
authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for
supporting this work by Grant Code: (22UQU4210118DSR29).

Institutional Review Board Statement: This article does not contain any studies with human partic-
ipants performed by any authors.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were
generated during the current study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tandel, G.S.; Biswas, M.; Kakde, O.G.; Tiwari, A.; Suri, H.S.; Turk, M.; Laird, J.R.; Asare, C.K.; Ankrah, A.A.; Khanna, N.N.; et al.

A review on a deep learning perspective in brain cancer classification. Cancers 2019, 11, 111. [CrossRef] [PubMed]
2. Swati, Z.N.K.; Zhao, Q.; Kabir, M.; Ali, F.; Ali, Z.; Ahmed, S.; Lu, J. Brain tumor classification for MR images using transfer

learning and fine-tuning. Comput. Med. Imaging Graph. 2019, 75, 34–46. [CrossRef] [PubMed]
3. Khan, H.A.; Jue, W.; Mushtaq, M.; Mushtaq, M.U. Brain tumor classification in MRI image using convolutional neural network.

Math. Biosci. Eng. 2020, 17, 6203–6216. [CrossRef] [PubMed]
4. Qureshi, S.A.; Raza, S.E.A.; Hussain, L.; Malibari, A.A.; Nour, M.K.; Rehman, A.U.; Al-Wesabi, F.N.; Hilal, A.M. Intelligent

ultra-light deep learning model for multi-class brain tumor detection. Appl. Sci. 2022, 12, 3715. [CrossRef]
5. Sarhan, A.M. Brain tumor classification in magnetic resonance images using deep learning and wavelet transform. J. Biomed. Sci.

Eng. 2020, 13, 102. [CrossRef]
6. Al Duhayyim, M.; Alshahrani, H.M.; Al-Wesabi, F.N.; Al-Hagery, M.A.; Hilal, A.M.; Zaman, A.S. Intelligent machine learning

based EEG signal classification model. Comput. Mater. Contin. 2022, 71, 1821–1835.
7. Poonia, R.C.; Gupta, M.K.; Abunadi, I.; Albraikan, A.A.; Al-Wesabi, F.N.; Hamza, M.A.B.T. Intelligent diagnostic prediction and

classification models for detection of kidney disease. Healthcare 2022, 10, 371. [CrossRef]
8. Areej, A.M.; Fahd NAl-Wesabi Marwa, O.; Mimouna, A.A.; Manar, A.H.; Abdelwahed, M.; Ishfaq, Y.; Abu Sarwar, Z. Arithmetic

optimization with retinanet model for motor imagery classification on brain computer interface. J. Healthc. Eng. 2022, 2022,
3987494.

9. Mustafa Hilal, A.; Issaoui, I.; Obayya, M.; Al-Wesabi, F.N.; Nemri, N.; Hamza, M.A.; Al Duhayyim, M.; Zamani, A.S. Modeling of
explainable artificial intelligence for biomedical mental disorder diagnosis. Comput. Mater. Contin. 2022, 71, 3853–3867. [CrossRef]

http://doi.org/10.3390/cancers11010111
http://www.ncbi.nlm.nih.gov/pubmed/30669406
http://doi.org/10.1016/j.compmedimag.2019.05.001
http://www.ncbi.nlm.nih.gov/pubmed/31150950
http://doi.org/10.3934/mbe.2020328
http://www.ncbi.nlm.nih.gov/pubmed/33120595
http://doi.org/10.3390/app12083715
http://doi.org/10.4236/jbise.2020.136010
http://doi.org/10.3390/healthcare10020371
http://doi.org/10.32604/cmc.2022.022663


Appl. Sci. 2022, 12, 7953 16 of 16

10. Nazir, M.; Shakil, S.; Khurshid, K. Role of deep learning in brain tumor detection and classification (2015 to 2020): A review.
Comput. Med. Imaging Graph. 2021, 91, 101940. [CrossRef]

11. Polat, Ö.; Güngen, C. Classification of brain tumors from MR images using deep transfer learning. J. Supercomput. 2021, 77,
7236–7252. [CrossRef]

12. Ramesh, S.; Sasikala, S.; Paramanandham, N. Segmentation and classification of brain tumors using modified median noise filter
and deep learning approaches. Multimed. Tools Appl. 2021, 80, 11789–11813. [CrossRef]

13. Nawaz, S.A.; Khan, D.M.; Qadri, S. Brain Tumor Classification Based on Hybrid Optimized Multi-features Analysis Using
Magnetic Resonance Imaging Dataset. Appl. Artif. Intell. 2022, 36, 2031824. [CrossRef]

14. Shaik, N.S.; Cherukuri, T.K. Multi-level attention network: Application to brain tumor classification. Signal Image Video Process.
2022, 16, 817–824. [CrossRef]

15. Abd El Kader, I.; Xu, G.; Shuai, Z.; Saminu, S.; Javaid, I.; Salim Ahmad, I. Differential deep convolutional neural network model
for brain tumor classification. Brain Sci. 2021, 11, 352. [CrossRef]

16. Masood, M.; Nazir, T.; Nawaz, M.; Mehmood, A.; Rashid, J.; Kwon, H.Y.; Mahmood, T.; Hussain, A. A novel deep learning
method for recognition and classification of brain tumors from MRI images. Diagnostics 2021, 11, 744. [CrossRef]

17. Jia, Z.; Chen, D. Brain Tumor Identification and Classification of MRI images using deep learning techniques. IEEE Access 2020.
[CrossRef]

18. Mohsen, H.; El-Dahshan, E.S.A.; El-Horbaty, E.S.M.; Salem, A.B.M. Classification using deep learning neural networks for brain
tumors. Future Comput. Inform. J. 2018, 3, 68–71. [CrossRef]

19. Gab Allah, A.M.; Sarhan, A.M.; Elshennawy, N.M. Classification of Brain MRI Tumor Images Based on Deep Learning PGGAN
Augmentation. Diagnostics 2021, 11, 2343. [CrossRef]

20. Bodapati, J.D.; Shaik, N.S.; Naralasetti, V.; Mundukur, N.B. Joint training of two-channel deep neural network for brain tumor
classification. Signal Image Video Process. 2021, 15, 753–760. [CrossRef]

21. Rehman, A.; Naz, S.; Razzak, M.I.; Akram, F.; Imran, M. A deep learning-based framework for automatic brain tumors
classification using transfer learning. Circuits Syst. Signal Process. 2020, 39, 757–775. [CrossRef]

22. Sharma, S.; Kumar, S. The Xception model: A potential feature extractor in breast cancer histology images classification.
ICT Express 2022, 8, 101–108. [CrossRef]

23. Singh, A.; Sharma, A.; Rajput, S.; Mondal, A.K.; Bose, A.; Ram, M. Parameter Extraction of Solar Module Using the Sooty Tern
Optimization Algorithm. Electronics 2022, 11, 564. [CrossRef]

24. Salur, M.U.; Aydin, I. A novel hybrid deep learning model for sentiment classification. IEEE Access 2020, 8, 58080–58093.
[CrossRef]

25. Mengash, H.A.; Mahmoud, H.A.H. Brain cancer tumor classification from motion-corrected mri images using convolutional
neural network. Comput. Mater. Contin. 2021, 68, 1551–1563.

26. Cheng, J. Brain Tumor Dataset. Figshare Dataset. Available online: https://figshare.com/articles/dataset/brain_tumor_dataset/
1512427/5 (accessed on 31 May 2022).

http://doi.org/10.1016/j.compmedimag.2021.101940
http://doi.org/10.1007/s11227-020-03572-9
http://doi.org/10.1007/s11042-020-10351-4
http://doi.org/10.1080/08839514.2022.2031824
http://doi.org/10.1007/s11760-021-02022-0
http://doi.org/10.3390/brainsci11030352
http://doi.org/10.3390/diagnostics11050744
http://doi.org/10.1109/ACCESS.2020.3016319
http://doi.org/10.1016/j.fcij.2017.12.001
http://doi.org/10.3390/diagnostics11122343
http://doi.org/10.1007/s11760-020-01793-2
http://doi.org/10.1007/s00034-019-01246-3
http://doi.org/10.1016/j.icte.2021.11.010
http://doi.org/10.3390/electronics11040564
http://doi.org/10.1109/ACCESS.2020.2982538
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427/5
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427/5

	Introduction 
	Related Works 
	The Proposed Model 
	Image Pre-Processing 
	Image Segmentation 
	Feature Extraction 
	Image Classification 

	Performance Validation 
	Conclusions 
	References

