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Abstract: We present a series of Sm3+/Tb3+ co-doped CaMoO4 phosphors synthesized by an efficient
method of microwave-assisted heating. The prepared CaMoO4 samples were characterized by X-ray
diffraction, photoluminescence, and Commission Internationale de l’Elcairage (CIE) chromaticity
diagram. The X-ray diffraction results confirmed that all synthesized CaMoO4 samples are crystal-
lized in a pure tetragonal phase. The photoluminescence spectra significantly show both red- and
green emissions in the synthesized Sm3+/Tb3+ co-doped CaMoO4 phosphors. It is obvious that the
variations in the intensity ratio of red/green emissions depend on the molar ratio of Sm3+/Tb3+

co-doping and dominate the CIE color coordinates on the chromaticity diagram. The investigations
showed the functionality of the material system as advanced color-tunable phosphors for white-LEDs
as evidenced by the controllability of the light-emitting region of Sm3+/Tb3+ co-doped CaMoO4

phosphors through the adjustment of the molar ratio of Sm3+/Tb3+ ions.

Keywords: CaMoO4; microwave-assisted synthesis; X-ray diffraction; photoluminescence

PACS: 61.46.-w; 78.55.-m; 81.20.-n

1. Introduction

Recently, molybdate compounds given by the general formula XMoO4 with X = Ca, Ba,
Pb, Li, Zn, or Sr have shown great applications as host material for solid state optical lasers,
optical fibers, magnetic materials, light-emitting diodes (LEDs), etc. [1–5]. Among metal
molybdate compounds, calcium molybdate (CaMoO4) material belonging to the tetragonal
structure with the space group I41/a has attracted significant attention as an excellent
phosphor host because of its attractive structural properties, showing good chemical and
heat stabilities which can be developed as highly applicable luminescent materials [6,7]. In
the CaMoO4 lattices, the [MoO4] polyhedral is formed by four oxygen ions coordinated to a
Mo ion, whereas the [CaO8] polyhedral is formed through the coordination of eight oxygen
ions to one Ca ion. It is generally known that the (MoO4)2− complex allows the charge
transfer (CT) from oxygen to the metal, which would facilitate the intense absorption bands
in the near-ultraviolet (UV) region to emit a broad blue-green luminescence emission peak
in the wavelength range of 350–650 nm at room temperature [8,9].

By further incorporating a small concentration of rare-earth ions (RE3+ = Tb3+, Sm3+,
and Eu3+) into the CaMoO4 phosphors, the trivalent rare-earth ions can substitute for the
Ca cation, resulting in a structural distortion of the [MoO4] and [CaO8] cluster chains. The
structural distortion gave rise to the intermediate defect energy levels in the band gap,
which can favor prominent PL emissions.

The RE3+-doped CaMoO4 phosphors absorb the UV range photons and then transfer
the photon energy to the higher energy levels of RE3+, and the intra configurational f→f
transitions of RE3+ can give rise to a significant dopant dependent green (Tb3+), orange-red
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(Sm3+) and red (Eu3+) emission [8,9]. Based on energy transfer mechanism, co-doped
phosphors have been extensively studied because of their enhanced luminescent properties.
It can be expected that the RE3+ (Sm3+/Tb3+) co-doped CaMoO4 phosphors should have
the advantage of tunable multicolor emissions, which can be exploited and developed as
an advanced phosphor applied in white-LEDs [10,11].

Several methods, such as a microwave-assisted heating method [9], precipitation [10,11],
hydrothermal process [12,13], ionic liquid-assisted process [14], and sol-gel [15] have been
developed to synthesize the CaMoO4 phosphors. Among the different techniques, the
microwave-assisted synthesis is the most viable method because it is a relatively fast
and easy to operate process. The inherent character of the method also makes it fairly
energy efficient, leading to low fabrication costs so that high yield for large scale industrial
production may be realized. Moreover, the polar solvent-free system is eco-friendly so
that environmental pollution may be avoided. In addition, compared to the numerous
research focusing on Tb3+ ion as a sensitizer for enhancing the emission intensity of Eu3+

ion [16,17], there are only few results on the co-doping of the Tb3+ ion and Sm3+ ion.
Based on the few available experimental results, the ability to tune the intensity ratio of
the red/green emissions of the Sm3+/Tb3+ co-doped CaMoO4 had been demonstrated.
Nevertheless, more exploratory experimental works are warranted in this area so that a
better controllability of the tuning process may be attained and a better understanding of the
process can be realized. Therefore, in this paper, we present the Sm3+-doped, Tb3+-doped,
and Sm3+/Tb3+ co-doped CaMoO4 phosphors prepared by microwave-assisted heating
method. The structural characteristic, luminescence property, and optical performance
of the synthesized CaMoO4 phosphors were investigated by X-ray diffraction (XRD),
photoluminescence (PL), and Commission Internationale de l’Elcairage (CIE) chromaticity
diagram, respectively. The variations in the measured data with the controlled molar ratio
of Sm3+/Tb3+ co-doped CaMoO4 phosphors were analyzed and discussed.

2. Materials and Methods

In this work, the Na2MoO4 and Ca(NO3)2 were used as the precursors for synthesizing
Ca-MoO4 phosphors via microwave-assisted heating [9,18]. The weighted Na2MoO4 and
Ca(NO3)2 were separately dissolved in distilled water, and then mixed together. The
mixture was vigorously stirred at room temperature for 30 min to obtain a well-dissolved
solution. The solution was then heated to 95 ◦C for 60 min in a microwave oven with
a controlled power of 500 W. After the heating process, the mixture was slowly cooled
to room temperature. The cooled solution was then placed in a centrifuge to extract the
CaMoO4 phosphors. The extracted CaMoO4 phosphors were washed with distilled water
to purify and finally dried in a furnace at 60 ◦C for 4 h. The aforementioned process
was repeated for preparation of a series of Sm3+/Tb3+ co-doped CaMoO4 phosphors by
carefully controlling the molar ratio of Sm3+ and Tb3+ ions.

The crystalline characterization of the prepared CaMoO4 phosphors was carried out
by the XRD (Shimadzu XRD-6000) with a CuKα line of 1.5405 Å. The PL measurements
were conducted using the 377 nm excitation. The luminescence was collected using a
spectrometer (Zolix omni-500) with a 1200 grooves/mm grating and detected using a
photomultiplier (PMT). The PL signals obtained from the PMT were analyzed using lock-in
technique and recorded on a computer. Janis Research Model CCS-150 and LakeShore
Model 321 temperature controller were used to measure the 12 and 300 K PL spectra. The
CIE coordinates were calculated by using the PL data based on the CIE 1931 standard
colorimetric system.

3. Results

Figure 1a presents the XRD pattern of the undoped-CaMoO4 and CaMoO4 co-doped
with different molar ratios of Sm3+/Tb3+. Compared to the crystallographic JCPDS card
No. 290351 [9,18], the significant diffraction peaks at 2θ = 18.6◦, 28.7◦, 31.2◦, 34.3◦, 47.0◦,
and 58.0◦ correspond to the (101), (112), (004), (200), (204), and (312) peak of CaMoO4,
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respectively. For the undoped-CaMoO4, no impurity peak of other phases is observed,
indicating that the undoped-CaMoO4 samples crystallized in a rather pristine tetragonal
structure [9,18]. Additionally, it is noted that for the present measured XRD, after the
doping of Sm3+, Tb3+, and the co-doping of Sm3+/Tb3+ ions, no significant variations
in all the major diffraction peaks were observed. Nevertheless, a careful analysis of the
most significant peak of (112), as shown in Figure 1b, has indicated that the introduction
of RE3+ cation has induced a downshift of the (112) peak to lower angle. This observa-
tion is in line with that of Ref. [17], viz., increasing shift with increasing concentration.
Tranquilin et al. claimed that the variations in the (112) peak are due to the structural distor-
tions leading to polarization in the [CaO8] clusters, which are induced from the difference
between electronic densities of the Ca2+ in relation to the incorporated RE3+cation. The
schematic structure diagram of the Sm3+/Tb3+ co-doped CaMoO4 is also depicted in the
Figure 1b [17]. The results indicate that CaMoO4 phosphors with different molar ratios of
Sm3+/Tb3+-co-doping have successfully synthesized by microwave-assisted heating [18].
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Figure 1. (a) The XRD patterns and (b) enlarged view of (112) peak of undoped-CaMoO4 and
Sm3+/Tb3+ co-doped CaMoO4 with different molar ratios of Sm3+/Tb3+ ions.

The 12 and 300 K PL spectra of the undoped-CaMoO4 phosphors measured under
377 nm excitation are shown in Figure 2. Both spectra show a broad-band emission
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covering the visible electromagnetic spectrum in the wavelength region ranging from 425 to
600 nm. It is known that the profile of broad-band emission is due to multi-level and
multi-phonon processes, where several paths involving the participation of multiple energy
states exist within the band gap. For CaMoO4 materials, the charge–transfer transitions
in the intermediate levels of the band gap resulting in the broad PL spectra have been
attributed to the structural and electronic distortion in the tetrahedral (MoO4)2− complex
ions [6,7].
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Figure 2. 12 and 300 K PL spectra of undoped-CaMoO4 phosphors.

Figure 3a,b shows the 12 and 300 K PL spectra of 0.05 mol Sm3+- and 0.05 mol Tb3+-
doped CaMoO4 phosphors, respectively. The luminescence mechanisms of the RE3+-doped
samples are presented to provide some insight to the observed emission lines. Under
UV excitation, the excited electrons in (MoO4)2− group would transfer directly from the
(MoO4)2− complex to the high-level excited states of Sm3+ and Tb3+ via the energy transfer
process. The electrons absorb energy and are promoted from the ground state 6H5/2 of
Sm3+ (7F6 of Tb3+) to the higher level excited states, and subsequently relax to the lower
4G5/2 of Sm3+ (5D4 of Tb3+) level via a non-radiative process. Finally, the electrons in the
populated level would undergo transition by radiative process from 4G5/2 to 6Hj (j = 5/2,
7/2, 9/2) for Sm3+ and from 5D4 to 7Fj (j = 6, 5, 4, 3) for Tb3+.

Figure 3a shows the 12 K PL of 0.05 mol Sm3+-doped CaMoO4 phosphors, the
significant peaks at about 563, 607, and 646 nm are attributed to the 4G5/2 → 6H5/2,
4G5/2 → 6H7/2, and 4G5/2 → 6H9/2 transitions, respectively [9,18,19]. It is known that the
two transitions (4G5/2 → 6H5/2, 7/2) contain both electric and magnetic dipole transitions,
and the 4G5/2 → 6H9/2 transition belongs to the electronic dipole transition. Moreover, the
most intense emission peak at 646 nm in the red region is sensitive to the variation of the
local structure environment of the Sm3+ ions.

On the other hands, the marked PL peaks of 0.05 mol Tb3+-doped CaMoO4 phos-
phors at 489, 544, 588, and 621 nm shown in Figure 3b correspond to the transitions from
5D4 → 7F6, 5D4 → 7F5, 5D4 → 7F4, and 5D4 → 7F3 of Tb3+ ions, respectively [18]. Two
significant peaks from the 5D4 → 7F6 transition (blue emission) and 5D4 → 7F5 transition
(green emission) are related to the electric dipole transition and magnetic dipole transition,
respectively [20,21]. Kaur et al. further indicate that the 5D4 → 7F6 transition depends
on the local environment and on the symmetry of crystal field, whereas the 5D4 → 7F5
transition is independent of the crystal field strength [21]. Moreover, the current PL mea-
surements of the RE3+-doped CaMoO4 phosphors showed a complete quenching of the
broad band emission from (MoO4)2− complex ions, as observed in undoped-CaMoO4
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phosphors, indicating that the absorbed energy of the host has efficiently transferred to the
activators [22].
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Figure 3. PL spectra of CaMoO4 phosphors doped (a) 0.05 mol Sm3+ ions and (b) 0.05 mol Tb3+ ions.

The controllability of the PL emission lines in the visible range on the dopant con-
centrations have been carried out. The 12 and 300 K PL experimental measurements
of Sm3+/Tb3+ co-doped CaMoO4 phosphors with controlled molar ratio of (a) 0.05:0,
(b) 0.025:0.025, (c) 0.01:0.04, (d) 0.005/0.045, and (e) 0:0.05 were performed and the spectra
plotted in Figure 4.

The identification of the spectral features, as observed in Figure 4, can be performed
by a careful comparison with the observed features in Figure 3. As have been described
earlier, the PL peaks at 563, 607, and 646 nm are due to the transitions of Sm3+ ions
(marked as F), and the PL peaks at 489 and 544 nm are due to the transitions of Tb3+ ions
(marked as ※). Clearly, the measured data of the co-doped sample as depicted by Figure 4
displayed features that can be correlated to the transitions of either Sm3+ ions or Tb3+

ions. Specifically, the PL spectra of (b)~(d) in Figure 4, which belong to the synthesized
Sm3+/Tb3+ co-doped CaMoO4 phosphors, have demonstrated the ability of the mixed
samples to emit both red- and green-luminescence. Our PL measurement results for the
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Sm3+/Tb3+ co-doped CaMoO4 phosphors also showed tunability of the intensity of the
visible emission peaks through varying the molar ratio of the doped Sm3+/Tb3+ ions. As
indicated by the PL spectra of Figure 4, a decrease in the concentration of Sm3+ ions to
0.01 mol, while increasing that of Tb3+ ions to 0.04 mol, led to a significant enhancement
of the emission intensity of 489 and 544 nm lines originated from Tb3+ ions, over that of
the Sm3+-related features. Likewise, the Sm3+-related features can also be made prominent
by increasing its concentration. Spectra (d) in Figure 4 showed that by decreasing the
concentration of Sm3+ ions to 0.005 mol and increasing that of Tb3+ ions to 0.045 mol, the
emission intensity of Tb3+ -related features at 489 and 544 nm dominate over that of Sm3+-
related features at 563, 607, and 646 nm. The ability to tune the peak intensity of 646 nm
(red-emission) and 544 nm (green-emission), viz., the controllability of the color emission of
CaMoO4 phosphors through the adjustment of the molar ratio of the two rare-earth ions of
Sm3+ and Tb3+ [23,24] show immense potential for the co-doped material as color-tunable
phosphors for white-LEDs.
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Figure 5 shows the CIE coordinate of CaMoO4 phosphors doped with different mo-
lar ratio of Sm3+/Tb3+ ions, which are calculated from its PL spectra at 12 and 300 K,
respectively [24,25].

The calculated CIE chromaticity coordinates of the synthesized samples using the
distribution of the PL emissions are presented as Figure 5. The CIE coordinates for sam-
ple a (0.05 mol Sm3+-doped CaMoO4) is (0.5963, 0.4057) at 12 K and is (0.5906, 0.4087)
at 300 K which are agreed to the red phosphor. On the other hand, the calculated CIE
coordinates of sample e (0.05 mol Tb3+-doped Ca-MoO4) is (0.2956, 0.6181) at 12 K and
is (0.2957, 0.6162) at 300 K which are that of green phosphor. The variations in the CIE
coordinates for emission colors of Sm3+/Tb3+ co-doped CaMoO4 phosphors at 12 K are cal-
culated to be: Sm3+/Tb3+ = 0.025/0.025, (x, y) = (0.5391, 0.4351); Sm3+/Tb3+ = 0.010/0.040,
(x, y) = (0.5085, 0.4627); and Sm3+/Tb3+ = 0.005/0.045, (x, y) = (0.4205, 0.5289). For the
300 K measurements, CIE coordinates are Sm3+/Tb3+ = 0.025/0.025, (x, y) = (0.5518,
0.4279); Sm3+/Tb3+ = 0.010/0.040, (x, y) = (0.5166, 0.4560); and Sm3+/Tb3+ = 0.005/0.045,
(x, y) = (0.4577, 0.5088). The adjustability of the chromaticity coordinates through the tuning
of the molar ratio of Sm3+/Tb3+ ions under UV radiation, thus showing a great potential
for their use in display and white-LEDs applications.
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Figure 5. CIE coordinate of CaMoO4 doped with different molar ratio of Sm3+/Tb3+ ions calculated
based on theirs 12 and 300 K PL spectra.

4. Conclusions

In summary, we successfully synthesized a series of Sm3+/Tb3+ co-doped CaMoO4
phosphors using an efficient microwave-assisted heating method. The XRD patterns evi-
dence the crystallinity of the synthesized CaMoO4 phosphors exhibiting a good tetragonal
phase. The PL spectra of the synthesized Sm3+/Tb3+ co-doped CaMoO4 show merits of
multicolor emissions in the visible region, and the intensity ratio of the red/green emission
obviously depends on the molar ratio of Sm3+/Tb3+-co-doping. The variations in CIE
coordinates of Sm3+/Tb3+ co-doped CaMoO4 phosphors display the potential capability of
the tunable emission for application in white-LEDs.
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