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Abstract: A chip-level optical beam steerer is an inevitable choice for next-generation light detection
and ranging (LiDAR). The research on optical phased array (OPA) is the most intriguing. However, the
complexity of control and calibration speed limit the full potential as the number of channels increases.
In this paper, an improved stochastic parallel gradient-descent algorithm combined with the Nesterov
accelerated gradient method (NSPGD) is presented and applied in a 512-channel OPA. This algorithm
can reduce the phase calibration time of large-scale OPA and demonstrates a better convergence
performance than traditional SPGD. Compared with the traditional SPGD and hill-climbing (HC)
algorithm, optimized convergence performance of NSPGD is shown. The side mode suppression
ratio (SMSR) of over 10dB for 512-channel OPA is obtained with the NSPGD algorithm, and the
convergence speed is twice that of traditional SPGD. In addition, a temperature-controlled OPA is
also studied to stabilize the whole calibration system.

Keywords: optical phased array; LiDAR; phase calibration algorithm; SPGD; temperature controlled OPA

1. Introduction

Light detection and ranging (LiDAR) is a ranging technology to obtain 3D information
from the outside world, which can be applied in industrial robots, augmented reality (AR),
and advanced driver-assistance systems (ADAS). Optical phased array (OPA) is a fully solid
solution for LiDAR, which is compatible with complementary metal oxide semiconductor
(CMOS) technology and has become a research hotspot in recent years [1–10]. Ghent
university reported the first 16-channel OPA based on silicon on insulator (SOI) in 2009 [1],
with a field of view (FOV) of 14.1◦ × 2.3◦ and a beam width of 2.7◦ × 2.5◦. Intel reported
a 128-channel OPA with an 80◦ FOV in the phased-array axis and a 0.14◦ beam width
in 2016 [2]. The University of Southern California demonstrated a 1024-channel OPA
in 2018 [3], with a 0.03◦ beam width and a 45◦ FOV. Our previous works also reported
some research results of OPA [11–14]. As we know, a large array with more channels that
decreases beam width can improve the resolution of OPA. However, large arrays, especially
those with thermal-optical modulators, can be influenced by the heat accumulation in
addition to the process non-uniformity, which easily introduced phase error. In order
to calibrate the phase error, many algorithms are proposed, such as the hill climbing
(HC) algorithm [4], genetic algorithm (GA) [15] and stochastic parallel gradient descent
(SPGD) [16]. However, the HC algorithm is difficult to calibrate for a large-scale OPA
because it scans channel electrical signals one-by-one. Therefore, the time efficiency is too
low. GA can be used to calibrate large-scale OPA, but its convergence time is too long to be
accepted. Xidian University calibrated a 64-channel OPA with SPGD. They collected light
intensity with a high-speed photodetector (PD), which is a difficult-to-calibrate beam in
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when used on a large range because PD has to move while the scanning angle of OPA is
changing. In addition, traditional SPGD easily falls into local extreme and the convergence
speed is slow [17]. In this paper, an improved SPGD combined with Nesterov accelerated
gradient (NAG)-NSPGD is proposed. A 512-channel OPA is optimized and calibrated
successfully with a traditional InGaAs charge-coupled device (CCD) camera system. In
addition, due to the application of a thermo-optic phase shifter, thermal accumulation is
difficult to ignore; therefore, we introduce a temperature control structure to maintain stable
thermal conditions. Based on our method, we can obtain the optimized OPA emission
point, whose side mode suppression ratio (SMSR) is more than 10 dB, and the convergence
speed is twice that of traditional SPGD.

2. OPA Characteristics and System Construction

In this work, a 512-channel OPA was used. By adjusting the wavelength and phase
delay of the laser source, the beam could be controlled vertically and horizontally. The
structure of our 512-channel OPA is like the 128-channel OPA described in reference [7]. The
128-channel OPA includes four parts: input coupler, optical beam splitter, thermos-optic
phase shifter and optical antenna. The grating antenna is constructed on a wide silicon slab.
The grating period is 470nm, the duty cycle is 50%, and the regular 70 nm shallow etching.
A large two-dimensional FOV of 104◦ × 17.6◦ can be obtained. We also extend it to a
512-channel OPA, and it is tested by our phase calibration algorithm. More comprehensive
experimental results of the 512-channel OPA will be reported in the future.

In order to evaluate the performance of our calibration algorithm, a system is built,
as shown in Figure 1. The system consists of two parts: an electric circuit and an optical
circuit. The electric circuit is used to transmit signals, feed algorithms, and control the
phase difference between waveguides. The optical circuit is used to supply a laser source
for OPA chips. Grating is sensitive to the polarization of light, so a polarization controller
is installed in this system. The algorithm fitness function is the intensity of light emitted by
the OPA chip from a reflection screen.
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Figure 1. The phase calibration system of an OPA.

The calibration of phase difference between antennas mainly includes several steps.
Firstly, the algorithm software works and sends signals to drive the circuit through the
communication program. Then, the drive circuit converts the digital signals into analog
ones and sends analog signals to phase shifters. After changing the voltage of phase shifters,
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the light intensity of the beam far-field will change accordingly, and CCD receives the light
intensity integral information, which will be fed back to the control system. Then, the
algorithm process will be executed in specific logic, and the system will send the subsequent
group signals to control the phase shifters. This cycle continues until the stop condition
is met.

3. Calibrating Algorithm

SPGD is a popular adaptive wave-front control technique proposed by M. A. Vorontsov [18,19].
In the SPGD algorithm with N control channels, the fitness function is defined as

J = J(u1, u2, . . . , uN) (1)

where ui is the voltage of the ith channel.
Random perturbations δuj, whose average value is 0 and variance is equal, i.e.,

< δui >= 0 (2)

δuiδuj = σ2δij (3)

Applying them to every channel simultaneously and

J+ = J(u + δu) (4)

J− = J(u− δu) (5)

δJ =
J+ − J−

2
(6)

Applying them to
u(k+1)

j = uj + γδJ(k)δu(k)
j (7)

where k is the number of iterations, and γ represents learning rate, which is one of the
determining factors of uj. Renew the parameter u and calculate the next iteration until the
stop condition is satisfied.

However, traditional SPGD easily falls into the local optimum, and the convergence
speed is limited [17].

NAG is a method that can endow gradient descent (GD) momentum [20,21], and
improve GD’s convergence performance. The basic equation of NAG is described as

mk+1 = µ ·mk + γ · ∇θ J(θ − µ ·mk) (8)

θk+1 = θk −mk+1 (9)

where µ · mk is the momentum term, µ is the momentum factor, γ denotes the learning
rate, θ denotes the current status (if in the OPA system, it represents the voltage of the
channel),and ∇θ J is the partial derivative of the fitness function. mk is used to drive the
movement of system status and θ − µ ·mk will predict the approximation of the status in
the future.

Therefore, we combine NAG and SPGD to bring prediction into traditional SPGD. The
combined equation is described as

mk+1 = µ ·mk + γ · (δJ − µ ·mk) (10)

uj
k+1 = uj

k −mk+1 · δuk
j (11)

Fitness function in our system is defined as

J =
x

Ω

Idσ (12)
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where Ω is the region chosen to integrate light intensity and I represents the light intensity.
The flow chart of the NSPGD algorithm is shown in Figure 2; firstly, some parameters such
as γ, k, µ, and G are initialized, then δu will be generated, J+, J− and J+−J−

2 are evaluated
afterward. Momentum m will be calculated, and these values are applied to Equation (11)
and J(u(k+1)) will be compared to J(uk), if J(u(k+1)) > J(uk), Jmax = J(u(k+1)), otherwise
Jmax = J(uk). Then, compare k + 1 with G (maximum iterations set in initialization);
if k + 1 < G, k = k + 1 and start up the next iteration, otherwise output Jmax and end the
algorithm. The optimal solution, i.e., a voltage set, can be found after G iterations.
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We added the HC algorithm to the comparison to evaluate the performance of SPGD
and NSPGD. How HC works is shown in Figure 3.

Figure 3. Flow chart of HC algorithm.
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4. Experimental Results and Analysis

To test the performance of the improved SPGD mentioned in Section 3, NSPGD,
SPGD, and HC algorithms are used to verify their performance. The performance is shown
in Figure 4.
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As the convergence trend is shown in Figure 4, the NSPGD convergence rate is faster
than that of SPGD and HC, and NSPGD takes about 10 min to over 10 dB while SPGD
takes about 20 min. Furthermore, NSPGD converges to a better level (larger than 10 dB)
than SPGD because it avoids the local maxima. It can be found that the convergence curve
of NSPGD is more stable than SPGD, which can attribute to the momentum added to the
NSPGD. It has been proven that the momentum term can improve the performance of
SPGD. After running for 30 min, only SMSR of 6.3 dB is obtained with HC method. This
proves that NSPGD has good convergence performance.

Both thermo-optic (TO) and electro-optic (EO) phase shifters are applied in OPA
widely [22–30]. Low loss can be obtained in TO shifters, while high power consumption
and poor bandwidth follow. EO shifters hold high modulation up to GHz and low power
consumption but induce extra loss because of the free carrier absorption effect. In order to
ensure low loss, we use TO shifters in our OPA, which means watt level power concentrated
in one mm2 scale chip. Heat accumulation severely affects the chip’s performance because
Si is sensitive to temperature [31,32]. Many researchers tend to find ways to reduce the
power consumption and thermal crosstalk to alleviate the adverse effect of heat brought by
TO shifters [22,24,28]. One of the reasons for the performance degradation of OPA caused
by TO shifters is that heat accumulation breaks the thermal equilibrium and makes the
temperature around the waveguide unstable. So, some work attempts to conduct the heat
to Si substrate [31–33], but they need an unconventional silicon process to grow material
with high thermal conductivity.

Therefore, we designed a temperature-controlled packaging module shown in Figure 5.
The OPA chip is bonded to the printed circuit board (PCB), and we cut a slot in the PCB to
ensure good thermal contact. A thermistor is set between the thermoelectric cooler (TEC) to
get the average temperature of the chip and TEC. The TEC is controlled by a proportional
integral differential (PID) algorithm.
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In order to test a 512-OPA with temperature-controlled packaging, 25 ◦C is set as
the target temperature of the thermistor. The PID algorithm controls TEC to maintain
a stable thermal environment. The influence of temperature control packaging on the
convergence of the algorithm is verified by experiments. We applied NSPGD to the
test. The convergence curve with temperature-controlled packaging meant that the target
temperature of thermistor was set at 25 ◦C and the TEC worked to reach this goal. No
temperature control means that the TEC is disabled and the heat accumulation is hard
to dissipate. The results are shown in Figure 6, and was found that temperature control
helps the algorithm converge better because it maintains a relatively stable environment for
silicon waveguides and ensures it can only be impacted by TO shifters as much as possible.
However, if temperature control is absent, there is a dynamic heat offset between the heat
from TO shifters and heat accumulation, which may mess the algorithm up and hinder
the convergence.
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Temperature control helps obtain better calibration and saves calibration time. Re-
peated calibration will be implemented if the temperature control is absent because the
room temperature and heat accumulation will change with time. Without temperature con-
trol and repeated calibration, up to 20% more (depending on room temperature variation)
gray value degradation will be observed.

A set of voltages calibrated days ago are applied to the same OPA with our temperature-
controlled packaging. The same main lobe beam will repeat.

Figure 7 shows the far-field 512-channel OPA calibrated by the NSPGD algorithm. The
512-channel OPA is successfully calibrated by NSPGD, and the SMSR is 10.4 dB. Compared
with the initial beam, the side lobe is suppressed and the main lobe is optimized.
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Figure 7. The 512-channel OPA (a) far-field without calibration, (b) far-field with NSPGD calibration,
and (c) SMSR of far-field after calibration.

Finally, we calibrated the beam at different angles, and the results are shown in Figure 8.
According to the change of selected Ω in our PC program, as described in Equation (12),
the calibrated beams of different angles were obtained. ∆ϕ means the phase difference
between adjacent emitters. Grating lobes will emerge with the scanning angle increasing
because the distance between adjacent emitters is larger than λ/2. The beam in the red
rectangle is the main lobe, and the side lobe locates in the white one.
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5. Conclusions

An NSPGD algorithm and temperature-controlled packaging were proposed to im-
prove calibration. A 512-channel OPA was tested to compare the convergence performance
among NSPGD, SPGD, and HC. It was proven that the convergence performance of NSPGD
is better than the others. An SMSR of over 10 dB for 512-channel OPA was observed with
the calibration of NSPGD, and the convergence speed is twice that of traditional SPGD.
The temperature-controlled packaging can help the algorithm converge better and avoid re-
peated calibration. The NSPGD and the temperature-controlled packaging can be extended
to similar systems.
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