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Abstract: Malware development has significantly increased recently, posing a serious security risk
to both consumers and businesses. Malware developers continually find new ways to circumvent
security research’s ongoing efforts to guard against malware attacks. Malware Classification (MC)
entails labeling a class of malware to a specific sample, while malware detection merely entails finding
malware without identifying which kind of malware it is. There are two main reasons why the most
popular MC techniques have a low classification rate. First, Finding and developing accurate features
requires highly specialized domain expertise. Second, a data imbalance that makes it challenging
to classify and correctly identify malware. Furthermore, the proposed malware classification (MC)
method consists of the following five steps: (i) Dataset preparation: 2D malware images are created
from the malware binary files; (ii) Visualized Malware Pre-processing: the visual malware images
need to be scaled to fit the CNN model’s input size; (iii) Feature extraction: both hand-engineering
(Tamura) and deep learning (GoogLeNet) techniques are used to extract the features in this step;
(iv) Classification: to perform malware classification, we employed k-Nearest Neighbor (KNN),
Support Vector Machines (SVM), and Extreme Learning Machine (ELM). The proposed method is
tested on a standard Malimg unbalanced dataset. The accuracy rate of the proposed method was
extremely high, making it the most efficient option available. The proposed method’s accuracy
rate was outperformed both the Hand-crafted feature and Deep Feature techniques, at 95.42 and
96.84 percent.

Keywords: malware classification; deep learning; Tamura; GoogLeNet; KNN; SVM; ELM

1. Introduction

Security is the body of procedures, methods, techniques, and technologies that come
together to defend the availability, confidentiality, and integrity of information from intru-
sion. The information is protected by a variety of defense mechanisms, including firewalls,
antivirus software systems, and others. Nevertheless, many attackers continue to attempt
to log into any system by identifying a single vulnerability in the system that require
protection [1].

Software programs known as malware (malicious software) are intended to harm
or carry out any kind of undesired activity on a computer system, such as interfering
with computer operations, gathering confidential details, evading security controls, and
displaying undesirable ads. Massive amounts of malware are purposefully produced
every day. The market for malicious software has grown to be more expensive and is
dynamically expanding yearly. Based on how it operates, Figure 1 illustrates the various
classes of malware, including (adware, spyware, virus, trojan, worm, and backdoor, among
others) [2,3].
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Figure 1. Malware Classes [3].

The previous methods are unable to guard against the rise in malware attacks, which
led numerous researchers to suggest various ways for classifying malware. Figure 2 shows
a general taxonomy of malware classification (MC) across several domain types.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 21 
 

of malware, including (adware, spyware, virus, trojan, worm, and backdoor, among oth-

ers) [2,3]. 

 

Figure 1. Malware Classes [3]. 

The previous methods are unable to guard against the rise in malware attacks, which 

led numerous researchers to suggest various ways for classifying malware. Figure 2 

shows a general taxonomy of malware classification (MC) across several domain types. 

 

Figure 2. Malware Classification Taxonomy. 

As illustrated in Figure 3, most current MC approaches can be divided into two cat-

egories: hand-crafted and deep learning-crafted. 

 

Figure 3. Malware classification techniques across a variety of features kinds. 
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As illustrated in Figure 3, most current MC approaches can be divided into two
categories: hand-crafted and deep learning-crafted.
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Hand-crafted features are a common feature of conventional MC techniques. The
manual selection of the feature type is part of the feature extraction process. While the deep
learning methods can identify and classify malware automatically.

With the increase in malware, earlier works based on conventional techniques are
time-consuming and ineffective. The visualization technique is efficient in terms of com-
puting speed and time. The raw pixel data from photos cannot be handled by traditional
machine learning techniques; therefore, increased earning is not possible. Raw data must
be converted into feature vectors, which requires a high level of engineering and technical
expertise. The converted form of the input photos is trained by the classification model.
Deep learning approaches allow automatic learning by enabling representation learning to
employ unprocessed input data [4].

Convolutional Neural Networks (CNNs), which are employed in image classification,
are among the most well-known deep learning techniques. Because CNN offers a better
representation of the data, manual feature design can be ignored. The image data is
first transformed into a pixel array. The pixel array is then analyzed by a number of
convolutional layers, which ultimately produce an expected output. Largest and most
well-known datasets, including ImageNet, are used to train the CNN models. However,
the information learned from CNNs can be transferred to various learning tasks to improve
malware classification and detection. The main benefit of transfer learning would be that
it permits task training with a small dataset by employing a model that has already been
trained on a big dataset.

Most of the current MC methods generally have numerous serious problems: (1) Find-
ing accurate and convenient features for malware classification, (2) the creation of the
features requires extensive feature engineering or highly specialized domain expertise, and
(3) a poor rate of classification accuracy, and (4) an unbalance in the data that makes it
difficult to classify and accurately identify malware. Therefore, the proposed malware clas-
sification method consists of the following five steps: (i) dataset preparation: 2D malware
images are created from the malware binary files, (ii) visualized malware pre-processing:
the visual malware images need to be scaled to fit the CNN model’s input size, (iii) feature
extraction: both hand-engineering (Tamura) and deep learning (GoogLeNet) techniques
are used to extract the features in this step, and (iv) classification: to perform malware
classification, we employed KNN, SVM, and ELM.

The following are the contributions of the proposed method:

1. Using the Tamara and deep methods, feature vectors are extracted in order to propose
an effective malware classification method.

2. It is proposed to use a malware visualization technique that produces grayscale
graphics by converting binary files into 8-bit vectors.

3. Classify malware with a visual component that employs a pre-trained CNN model
that can identify visual malware samples without the need for features engineering.

4. Using optimized CNN models to operate correctly on 9339 photos of 25 different
malware families comprising eight distinct malware kinds.

5. Seeking to establish a CNN model that can correctly classify malware using unbal-
anced dataset (e.g., Malimg dataset).

The rest of this article is structured as follows. Section 2 discusses the relevant works.
Section 3 provides a description of the various features. Section 4 describes the proposed
techniques. Section 5 discusses findings and analyses. Finally, conclusions can be taken
from Section 6.

2. Related Works

Based on various analysis methods, numerous malware classification (MC) and iden-
tification methods have been developed. These works fall into two categories: Methods
based on hand-crafted features and methods based on deep learning features. A thorough
analysis of several malware classification techniques is provided in this section.
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Nataraj et al. [4] proposed an MC method based on GIST features from the visualiza-
tion grayscale images. The proposed algorithm experimented on Malimg dataset. In the
classification scenario, the K-nearest neighbor is the classifier that is applied. Barath et al. [5]
proposed an MC method based on global features using the principal component analysis
(PCA). In the classification scenario, the nearest neighbor is the classifier that is applied.
Kosmidis and Kalloniatis [6] proposed an MC method based on the GIST feature ex-
traction technique. In the classification scenario, random forest is the classifier applied.
Naeem et al. [7] proposed an MC method based on the D-SIFT and GIST feature extraction
methods. In the classification scenario, Nearest Neighbor (KNN) and Support Vector Ma-
chine (SVM) are the two classifiers applied. Makandar et al. [8] proposed an MC method
based on Gabor Wavelet, GIST, and Discrete wavelet Transform. The proposed algorithm
experimented on Malimg dataset. In the classification scenario, SVM is the classifier applied.
Verma et al. [9] proposed an MC method based on a combination of the first-order and
grey-level co-occurrence matrix (GLCM)-based second-order statistical texture features.
The proposed algorithm experimented on Malimg dataset. In the classification scenario,
ELM is the classifier applied.

Deep learning approaches are currently being applied to malware classification issues
to get beyond the challenging feature engineering effort or the need for domain expertise.
CNN consider one of the popular methods of DL. CNN architectures have been used
in several research studies on the classification of malware. Some authors created their
unique CNN models without using any pre-trained models. Sun and Qian [10] proposed
an MC method based on recurrent neural network (RNN) and CNN models. The proposed
algorithm experimented on the Malimg dataset. In the classification scenario, CNN is the
classifier applied. Gilbert et al. [11] proposed an MC method based on CNN with three
convolutional layers with one fully connected layer. The proposed algorithm experimented
on the Malimg dataset. Agarap et al. [12] proposed an MC method based on the DenseNet
model. The proposed algorithm experimented on the Malimg dataset. In the classification
scenario, SVM is the classifier applied. Çayır et al. [13] proposed an MC method based
on SIMPLE capsule networks (CapsNet). Additionally, CapsNet does not require transfer
learning, thus, starting from scratch with training the model is simple. The Malimg
dataset was used for testing the proposed approach. Ensemble is the classifier used in the
classification scenario. Gibert et al. [14] proposed an MC method based on 2D CNN. The
Malimg dataset was used for testing the proposed approach. David and Netanyahu [15]
proposed an MC method based on DBNs and denoising autoencoders. In the classification
scenario, SVM is the classifier applied.

To enhance the classification procedure, some researchers may decide to integrate
multiple training models. Nisa et al. [16] proposed a malware classification (MC) method
based on combining two models of deep CNN (DCNN), AlexNet, and Inception-v3, with
SFTA (scale feature texture analyzer). In the classification scenario, machine learning classi-
fiers were used. Vasan et al. [17] proposed an MC method based on combining two models
of deep CNN, VGG16, and ResNet50 models. In the classification scenario, Softmax and
Multiclass SVMs are the two classifiers applied. The dimensionality of the features was then
reduced using a PCA (principal component analysis) approach. El-Shafai et al. [18] pro-
posed an MC method based on pretrained fine-tuned CNN models (AlexNet, DenseNet-201,
DarkNet-53, ResNet-50, Inception- V3, VGG16, MobileNet-V2, and Places365-GoogleNet,).
The proposed algorithm experimented on Malimg dataset. Vasan et al. [19] proposed an
MC method based on combining two models of deep CNN, GoogleNet, and ResNet models.
Bennasar et al. [20] proposed an MC method based on combining three models of deep
CNN, AlexNet, VGG, GoogleNet, and ResNet. Jeyaprakash et al. [2] proposed an MC
method based on DenseNet model. The proposed algorithm experimented on Malimg
dataset. In the classification scenario, a fully connected softmax layer is applied.

In other cases, the CNN could be used to extract features when machine learning
methods are being used to classify malware. Roseline et al. [21] proposed an MC method
based on deploying a sequential multilayered Random Forest ensemble technique. Fol-
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lowing that, four distinct machine learning (ML) approaches were used: Random forests
(RF), Xgboost, Extra trees classifier (ETC), and Logistic regression (LR). Ouahab et al. [22]
proposed an MC method based similarities among the malware images. In the classification
scenario, k-Nearest Neighbor (KNN) is the classifier that have been applied. Agarap and
Pepito [12] proposed an MC method based on CNN features. CNN-SVM, GRU-SVM, and
MLP-SVM models are used to classify each malware family. Awan et al. [23] proposed an
MC method based on spatial attention and convolutional neural network (SACNN) and
deep learning frameworks (VGG19 model). The proposed algorithm experimented on the
Malimg dataset. In the classification scenario, a fully connected softmax layer was applied.
Sudhakar and Kumar [24] proposed an MC method based on an updated ResNet50 model.
The proposed algorithm experimented on the Malimg dataset. In the classification scenario,
a fully connected softmax layer was applied. Xiao et al. [25] proposed an MC method
based on structural entropy and deep CNNs. The proposed algorithm experimented on
the Malimg dataset. In the classification scenario, SVM is the classifier applied. Most
previously mentioned MC techniques have a low classification rate attributable to the
following factors. First, it takes a highly specialized level of domain knowledge to find and
produce accurate features. Second, makes it challenging to classify and correctly identify
malware. Therefore, the proposed malware classification method will be employed to
address the aforementioned issues.

3. Multiple Features

Color, texture, and shape are examples of features that can be extracted. The main
function of feature extraction is to collect the visible info of an image and save it as feature
vectors. There are different kinds of feature design strategies: conventional methods
typically depend on hand-crafted features and deep learning techniques (DL). Hand-crafted
features are done manually by a human. While DL automatically extracts the features.

3.1. Tamura Feature

One of the most prevalent merits of different image types’ analysis is texture. Texture
has properties like regularity and scale, and it can be characterized by different orientations,
coarseness, contrast, and other factors [18]. Texture plays a big role in human eyesight.
Even though everyone can identify texture, defining it might be difficult. As a result, image
texture-based classification [4] has recently been utilized to classify malware.

Tamura is one of the most popular texture features. Tamura and colleagues devised
texture features that correlate to human visual perception [18]. They evaluated psycho-
logical assessments for human volunteers to six textural features (coarseness, contrast,
directionality, line-likeness, regularity, and roughness). The first three achieved excellent
results and included coarseness, contrast, and directionality.

An image will have textures at various scales; coarseness seeks to find the biggest
size from which a texture occurs, even when a tiny micro-texture is present. In terms
of computation, one calculates averages at each point across neighborhoods with linear
sizes that are powers of two. At the point (x, y), the mean over the neighborhood of size
2k × 2k equals:

Ak(x, y) = ∑x+2k−1−1
i=x−2k−1 ∑y+2k−1−1

j=y−2k−1
f (i, j)
22k (1)

where, 2k × 2k size is the average of neighborhood.

Ek,h (x, y) =
∣∣∣Ak

(
x + 2k−1, y

)
− Ak

(
x− 2k−1, y

)∣∣∣ (2)

The difference between these two means that they belong to non-overlapping neigh-
borhoods is calculated using Equation (2).

Contrast is a metric that determines how the distribution of gray levels fluctuates in an
image and how skewed it is toward black or white. The standard deviation of grey levels is



Appl. Sci. 2022, 12, 7877 6 of 22

first calculated. The kurtosis α4 is then used in the second step. As a result, the contrast
measure is defined as:

Contrast = σ/(α4) (3)

α4 = µ4/σ4 (4)

when the variance is α2 and the fourth moment around the mean is µ4. The closest value,
according per Tamura, is n = 1

4 .
Directionality is a texture characteristic that affects the entire image. The presented fea-

ture does not attempt to distinguish between various orientations or patterns but rather the
overall degree of directionality. A scale of 0 to 1 was employed to determine the degree of
directionality. As a result, two patterns with the same degree of directionality but different
orientations are deemed the same. Equation (5) was used to calculate the directionality.

Directionality = 1− rnpeaks ∑
npeaks
p=1 ∑a∈wp

(
a− ap

)2H directionality (a) (5)

where r signifies a normalizing factor associated to quantizing levels of the angle a, an
indicates quantization direction angle, np represents the number of peaks, ap indicates the
location of the peaks, wp indicates the range of the angles assigned to the Pth peak, and the
histogram of quantization direction value known as HDirectionality is created by calculating
the number of edge pixels that have associated directional angles.

3.2. GoogleNet Deep Feature

Due to its multilayered design, Deep Learning can learn the features of both labeled
and unlabeled input. However, the model must be trained on a substantial amount of
data each time, which consumes time and computer power. To get around this learning
challenge, we can employ pre-trained deep learning designs to gather features for the
classification model. This inspires us to create pre-trained network-based deep learning for
identifying and classifying different types of malware.

There are Numerous Pre-trained CNN models such as DenseNet-201, GoogleNet,
InceptionV3, Xception, Res-net-18, ResNet-50, AlexNet, VGG16 and VGG19 [26,27]. These
Pre-trained CNN models have been widely applied to a variety of image multiclass classi-
fication, including the classification of malware families by numerous investigators [28].
Among the already-built customized CNNs, GoogleNet [29] has been selected as the best.

GoogleNet is a well-known convolutional neural network (CNN) constructed using
the Inception architecture. There are 22 layers in the GoogleNet design (27 layers, including
pooling layers). A 224× 224 image with RGB color channels is fed into the GoogLeNet as an
input layer. The purpose of the Inception modules is to provide the network with a range of
convolutional filter sizes in each block. The main layout of GoogleNet is depicted in Figure 4.
Rectified Linear Units (ReLU) serve as the activation functions for each convolution in
this structure. Compared to earlier state-of-the-art architectures like AlexNet and ZF-Net,
Google’s architecture is quite distinctive. They used a 22-layer deep CNN as part of their
design. However, because the module relied on a number of tiny convolutions, they had
to cut the number of parameters from 60 million (AlexNet) to 4 million. The network was
created with practicality and computational efficiency in mind, allowing inference to be
executed on individual devices, even ones with constrained computational capabilities,
particularly those with small memory footprints.



Appl. Sci. 2022, 12, 7877 7 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 21 
 

 

Figure 4. GoogLeNet design [29]. 

4. The Proposed Method 

Figure 5 depicts the fundamental steps of the proposed malware classification 

method. There are five steps in total: (1) Dataset preparation, (2) Visualized Malware Pre-

processing, (3) Feature extraction, and (4) Classification. These steps’ specifics are as fol-

lows: 

  

Figure 5. Proposed method flowchart. 

  

Figure 4. GoogLeNet design [29].

4. The Proposed Method

Figure 5 depicts the fundamental steps of the proposed malware classification method.
There are five steps in total: (1) Dataset preparation, (2) Visualized Malware Pre-processing,
(3) Feature extraction, and (4) Classification. These steps’ specifics are as follows:
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Step 1: Dataset Preparing.
Malware binaries are used to construct eight-bit vectors. A grayscale image, as seen in

Figure 6, is created from the resultant 8-bit vectors. This procedure is known as visualization.
The ability to clearly distinguish between the various parts of a binary is the greatest
advantage of malware visualization. Visualization-based malware classification is both
substantially faster and more accurate than conventional analysis techniques. Figure 7
displays the bytes file, which represents the malware’s binary data in its raw hexadecimal
format provided by Microsoft. As evident from the figure, the first eight characters of each
line are used as a reference to identify the line number. The final line demonstrates how
certain hex content is inaccessible and is represented by “??”.
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Step 2: Visualized Malware Pre-processing.
The malware binary files are transformed into 2D malware images, as was mentioned

in the first phase, and these images’ sizes vary between the 25 families that have been put
to the test. The malware images must be resized as part of the pre-processing step for
malware information to make the malware images collected from the first step fit with
the input size of the used CNN model. The primary benefit of the resizing method is
shrinking the size of the input images, which is very helpful in hastening training and
lowering the computing burden on the utilized CNN model. Additionally, during the
re-dimensionalization procedure, the malware images’ primary textural characteristics
are maintained.

Step 3: Feature Extraction.
In the approaches used to classify malware, the feature extraction step is essential.

Both hand-engineering and deep learning techniques are used to extract the features in this
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case. As described in the next subsections, the objective is to extract valuable features from
different applications.

Step 3.1: Tamura Features Extraction.
The malware can be easily identified by its texture-based feature from visualized malware.
Tamura Texture features, including coarseness, contrast, and directionality, are ex-

tracted using hand-engineering techniques, as demonstrated in Algorithm 1. The obtained
Tamura feature vector has a dimension of 1 × 3.

Algorithm 1: Compute Tamura’s textures features.

Input: Malware that has been visualized.
Output: Texture features vector.

1 Load malware that can be seen.
2 Calculate the texture features to Tamura coarseness, contrast, and directionality according to

the Equations (5) and (6).
3 Three features vector are gained.

Step 3.2: GoogLeNet Features Extraction.
The deep features were extracted using the GoogLeNet pretrained CNN model, as

demonstrated in Algorithm 2. The features were extracted using the activations function
on the “pool5-drop 7 × 7 s1” global average pooling layer. The feature vectors’ dimensions
are 1 × 1024.

Algorithm 2: Compute GoogLeNet features.

Input: Malware that has been visualized.
Output: Deep features vector.

1 Load malware that can be seen.
2 The malware images must be resized into 224 × 224 to fit with the input size of the used

GoogLeNet CNN model.
3 Apply GoogLeNet CNN Model.
4 Using the activations function on the global average pooling layer “pool5-drop_7 × 7_s1”,

features were extracted.
5 1 × 1024 feature vectors are gained.

Step 4: Classification.
The remarkable features allow for the creation of an efficient classification model. The

primary function of the classification step is to categorize data into classes. Forecasting the
category of the supplied data sets is the first step in this procedure. The terms target, label,
and classes are frequently used to describe the classes. Numerous studies have rated KNN,
Random Forests, ELM, Neural Networks, and Support Vector Machines as having good
predicted accuracy results in terms of supervised learning and performances. As practical
approaches for malware classification, we used KNN, SVM, and ELM in this paper.

Step 4.1: K-Nearest Neighbor (KNN) Classifier.
Since it is typically a good first option when creating classifiers, the KNN classifier was

selected as the first classifier for this research. The easiest and most widely used supervised
classifier is the k-Nearest Neighbor (KNN) [30]. It entails categorizing a sample using the k
instances from the training set that are closest to it. The Euclidean distance between each
feature vector in the training samples and the test sample is determined. Following that,
the KNN class labels—where k is an integer—are used to identify the unknown class label.
Multiple feature vectors are split into training and testing data sets to create a model, which
will be used to create and train the KNN model on the training set. To identify the malware
family class for each sample, test the trained KNN model.

Step 4.2: SVM Classifier.
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A linear maximum margin classifier called Support Vector Machines (SVM) [31] works
by identifying the ideal hyperplane that best distinguishes between two classes. Binary
SVM classification can be expanded for multi-class problems by breaking down a multi-
class task into numerous binary classification tasks using one-versus-one or one-versus-all
approaches. Multiple feature vectors are split into training and testing data sets to create
a model, which will be used to create and train the SVM model on the training set. To
identify the malware family class for each sample, test the trained SVM model [32].

Step 4.3: Extreme Learning Machines (ELM) Classifier.
An Extreme Learning Machine (ELM) [33] is a simplistic design that connects the input

layer connected to the hidden layer and the hidden layer to the output layer. Typically, an
ELM contains just one hidden layer. Random assignments are made to the weights and bias
matrix between the input and the hidden layer [34]. The aforementioned procedures are
computed once. In contrast, weights are regularly adjusted by back-propagation algorithms,
which go back and forth. ELMs are incredibly quick for training owing to this one-time
computation [34]. Figure 8 shows the ELM design, where the input layer is represented by
X, the hidden layer by H, and the output layer by Y.
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Despite some controversy, experimental investigations have demonstrated that ELMs
can deliver respectable predictive performance in some tasks and at a far lower training
cost than networks that are trained through back-propagation. The high number of new
malware varieties makes ELMs appealing for malware classification. To build a model,
multiple feature vectors are divided into two portions (training and testing data sets) that
will be utilized to develop and train the ELM model on the training set. Test the trained
ELM model to determine the family class of each malware.

5. Results and Discussion

In this section, we test the proposed technique using several indicators and analyze the
results. This section includes four subsections, namely datasets, performance evaluation
metrics, evaluation results, and comparison with alternative methods. The proposed
technique is developed in MATLAB version R2020a on an HP laptop with an Intel Core i7
processor operating at 2.60 GHz and 8 GB of RAM running Microsoft Windows 10 64-bit
(OS). The computer ran a 64-bit version of Windows 10.

5.1. Datasets

For academic research, a few malware databases are accessible. Malimg [4] is a
frequent dataset. The Malimg dataset was used to assess the performance of the proposed
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technique. The Malimg dataset includes 9339 malware photos from 25 different families
and classes. According to Table 1, each sample belongs to one of the 25 malware families.
Therefore, we aim to create a multi-class categorization of malware. Malware graphics come
in a variety of widths and lengths. Various malware families, including Dialer, Backdoor,
Worm, Worm-AutoIT, Trojan, Trojan-Downloader, Rouge, and PWS, were used to build
the photos. It makes sense that the Malimg dataset shares a lot of similarities in terms
of texture and size. As a result, classification is simple for a classifier to perform. While
variations of some malware families are shown to be extremely unique in other datasets.
There is a substantial imbalance in the Malimg dataset. More than 30% of the photos fall
under class 2 (Allaple.A), whereas 17% fall under class 3 (Allaple.L) as shown in Figure 9.
The Malimg dataset’s malware samples are represented as grayscale pictures with a range
of (0: black—255: white). Figure 10 illustrates diverse image textures from distinct malware
binary file segments.

Table 1. Description of the Malimg dataset families.

Class ID Family Name
Description

Malware Kind Sample No.

#1 Adialer.C Dialer 122

#2 Agent.FYI Backdoor 116

#3 Allaple.A Worm 2949

#4 Allaple.L Worm 1591

#5 Alueron.gen!J Trojan 198

#6 Autorun.K Worm 106

#7 C2LOP.P Trojan 200

#8 C2LOP.gen!g Trojan 146

#9 Dialplatform.B Dialer 177

#10 Dontovo.A Downloader 162

#11 Fakerean rogue 381

#12 Instantaccess Dialer 431

#13 Lolyda.AA1 PWS 213

#14 Lolyda.AA2 PWS 184

#15 Lolyda.AA3 PWS 123

#16 Lolyda.AT PWS 159

#17 Malex.gen!J Trojan 136

#18 Obfuscator.AD Downloader 142

#19 Rbot!gen Backdoor 158

#20 Skintrim.N Trojan 80

#21 Swizzor.gen!E Downloader 128

#22 Swizzor.gen!I Downloader 132

#23 VB.AT Worm 408

#24 Wintrim.BX Downloader 97

#25 Yuner.A Worm 800

Total - 9339
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5.2. Performance Evaluation Metric

The proportion of samples that are successfully identified to all items is known as
classification accuracy (CAc). When the classes are uneven, accuracy is less helpful. When
the classes are balanced, it offers helpful information [36]. The following formula is used to
calculate Classification Accuracy:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
× 100 % (6)
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Both existing and expected malware kinds might be viewed as positive in order to
calculate the TP (true positive). Both existing and expected malware kinds might be viewed
as negative in order to calculate the TN (true negative). In order to compute the FP (false
positive), the present malware kinds might be seen as negative, and the expected malware
kinds might be seen as positive. In order to determine the FN (false negative), the existing
malware kinds may be seen as positive and the expected malware kinds as negative.
Figure 11 illustrates an estimation of the TP, TN, FP, and FN parameters. In contrast to the
conventional confusion matrix of binary classification tasks, these parameters represent the
confusion matrix of multi-classification tasks.
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5.3. Evaluation Results

The model is assessed using the k-fold Cross-Validation process in order to produce
accurate results. By randomly dividing the data into 70% training and 30% testing, the
training and testing sets can be created. To guarantee that each malware family is fairly
represented on the divided dataset, the proportional populations of each malware family
are also taken into consideration when dividing the dataset. The results are classified into
two parts: (a) straightforward features obtained from a manual features process (Tamura)
and (b) deep features obtained from a pre-trained CNN model (GoogLeNet). Tables 1 and 2
show the overall accuracy of the proposed method based on three classifiers over the
Malimg dataset.
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Table 2. The results of classification accuracy of three classifiers on Tamura feature across the
Malimg dataset.

Class ID Family Name
Classification Accuracy (%)

KNN SVM ELM

#1 Adialer.C 100 98 100

#2 Agent.FYI 99 98 99

#3 Allaple.A 86 70 85

#4 Allaple.L 88 82 87

#5 Alueron.gen!J 99 98 99

#6 Autorun.K 100 99 100

#7 C2LOP.P 98 98 98

#8 C2LOP.gen!g 98 97 99

#9 Dialplatform.B 100 97 100

#10 Dontovo.A 100 99 100

#11 Fakerean 99 97 100

#12 Instantaccess 99 95 99

#13 Lolyda.AA1 99 97 99

#14 Lolyda.AA2 99 97 99

#15 Lolyda.AA3 100 100 100

#16 Lolyda.AT 99 97 99

#17 Malex.gen!J 99 98 99

#18 Obfuscator.AD 99 99 100

#19 Rbot!gen 99 99 99

#20 Skintrim.N 100 99 100

#21 Swizzor.gen!E 98 98 98

#22 Swizzor.gen!I 98 98 98

#23 VB.AT 99 96 99

#24 Wintrim.BX 99 98 99

#25 Yuner.A 100 96 100

Average 95.34 93.23 95.42

5.3.1. Performance Results of the Proposed Based on Tamura

In the first experiment, three classifiers: KNN, SVM, and ELM, are employed for
classification after applying the Tamura features approach to the Malimg datasets for
feature extraction. Table 2 displays the collected findings for each malware family and the
total average accuracy metric following the application of each classifier.

Most malware families have accuracy levels of 90 or above across all classifiers. It is
important to note that two malware families (Allaple.A and Allaple.L) have accuracy levels
below 90, as depicted in Figure 12. Consequently, the outcomes are based on unbalanced
features and data.
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The accuracy for each malware family, as seen in Table 2 and Figure 12, follows a similar
pattern, especially for the four malware families (CL2OP.gen!g, C2LOP.P, Swizzor.gen!E,
and Swizzor.gen!I). According to an examination of the picture data for each of the families,
these malware families share comparable visual motifs, as depicted in Figure 13.
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Even though all classifiers employ the same feature vector, their results vary. This
is because each classifier has a unique set of traits. The graph in Figure 12 also includes
the accuracy results of some classifiers. According to the accuracy results, the ELM on
unbalanced datasets achieved a high classification accuracy of 95.42 percent using 10-fold
cross-validation. The outcomes showed that the KNN produces substantial values (95.34)
close to the ELM optimal. SVM performed poorly when compared to other classifiers,
including KNN and ELM. For this purpose, in the first findings section of this paper, we
took the proposed model based on Tamura and ELM classifier into consideration.
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5.3.2. Performance Results of the Proposed Based on GoogLeNet

In the second experiment, three classifiers: KNN, SVM, and ELM, are employed for
classification after applying the deep GoogLeNet features approach to the Malimg datasets
for feature extraction. Table 3 displays the collected findings for each malware family and
the total average accuracy metric following the application of each classifier.

Table 3. The results of classification accuracy of three classifiers on deep feature across the Mal-
img dataset.

Class ID Family Name
Classification Accuracy (%)

KNN SVM ELM

#1 Adialer.C 98 99 98

#2 Agent.FYI 100 99 98

#3 Allaple.A 96 94 58

#4 Allaple.L 99 84 78

#5 Alueron.gen!J 100 97 96

#6 Autorun.K 100 98 97

#7 C2LOP.P 100 97 97

#8 C2LOP.gen!g 100 98 98

#9 Dialplatform.B 100 98 98

#10 Dontovo.A 100 98 98

#11 Fakerean 100 96 96

#12 Instantaccess 100 95 94

#13 Lolyda.AA1 100 98 98

#14 Lolyda.AA2 100 98 98

#15 Lolyda.AA3 100 99 98

#16 Lolyda.AT 100 99 99

#17 Malex.gen!J 100 99 97

#18 Obfuscator.AD 100 98 97

#19 Rbot!gen 100 98 97

#20 Skintrim.N 100 99 99

#21 Swizzor.gen!E 100 98 98

#22 Swizzor.gen!I 100 99 98

#23 VB.AT 100 95 95

#24 Wintrim.BX 100 98 99

#25 Yuner.A 100 98 90

Average 96.84 94.24 92.07

In comparison to previous results, as shown in Table 2, the malware families with the
highest number of variations, including Allaple.A and Allaple.L, have higher accuracy,
especially using KNN and SVM Classifier, as shown in Table 3. This could be attributed to
the dataset’s separation into training data and testing data, excluding relative populations
of each malware family. Most malware families have accuracy levels of 90 or above across
all classifiers. It is important to note that two malware families (Allaple.A and Allaple.L)
have accuracy levels below 80 as depicted in Figure 14, especially using the ELM Classifier.
Consequently, the outcomes are based on unbalanced features and data.
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According to the accuracy results, the KNN on an unbalanced datasets achieved a
high classification accuracy of 96.84 percent using 10-fold cross-validation. KNN has the
benefit of being very straightforward, not requiring a specific training phase, and being
quite efficient for many applications, particularly when the training set is big. The outcomes
showed that the SVM produces substantial values (94.24) close to the KNN optimal. ELM
performed poorly when compared to other classifiers, including KNN and SVM. For this
purpose, in the second findings section of this paper, we took the proposed model based
on deep GoogLeNet features and the KNN classifier into consideration. This indicates that
the performance results of the proposed methods are often consistent.

The results indicated that our method can efficiently and precisely classify malware
to their relevant families even when the training datasets are unbalanced. While remov-
ing the human feature engineering phase, the proposed classification method exhibits
good precision and completion time that is equivalent to traditional solutions based on
machine learning.

The results show that the Google net CNN model’s deep features have a significant
impact, especially when it comes to certain classes, such Allaple.A and Allaple.L. These
classes’ overall accuracy in prior experiments were (86, 70, 85) & (88, 82, 87) and improved
into (96, 94, 58) & (99, 84, 78). This demonstrates that the outcomes can be enhanced when
these classes have more than 2000 instances. It is evident that the use of KNN and SVM
classifiers significantly improves the outcomes.

These features are consistent and provide us with additional classification flexibility.
With the help of this data set, we create an effective classification technique that uses a
pre-trained network and a manually designed technique to decrease over training.

5.4. Comparison with Alternative Methods

To demonstrate the proposed method’s efficacy in identifying and classifying malware
even when applied to identical datasets with unbalanced malware families, its performance
is compared with a number of well-known methods that rely on hand-crafted features and
deep Features. Most comparison techniques have been tested using the Malimg datasets. In
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terms of the accuracy metric, Table 4 displays the performance comparison of the proposed
multi-classification framework employing Tamura, the GoogleNet CNN model, and three
classifiers. Comparison of the proposed method to existing MC methods, which employ
various hardware and software. Therefore, we use the outcomes of methods that employ
the Malimg database, various feature domains, different texture feature extraction, and
classification techniques.

Table 4. Comparison of the proposed method to existing MC methods which were evaluated on the
Malimg dataset.

Feature Method
Domain Methods Feature Extraction Classifier Kind Dataset Accuracy (%)

Handcrafted
Features

Garcia et al. [37] Texture features Random Forest Malimg 95

Dahl et al. [44] Sparse binary
features

Neural networks and
logistic regression Malimg 86

Cui et al. [38] GIST SVM Malimg 92.20

Makandar & Patrot [8] Gabor wavelet KNN Malimg 89.11

Hsien-De et al. [45] LBP SVM Malimg 75.02

Proposed (Tamura + ELM) Tamura ELM Malimg 95.42

Deep Features

Wen et al. [40] static and
dynamitic analysis SVM Malimg 95.2

Manish and Raman, [39]
VGG-16,

ResNet-50 and
AlexNet

CNN Malimg 98.88

Yeo et al. [43] CNN MLP Malimg 85

Abttan et al. [42] VGG16 Naive Bayes Malimg 91.72

Agarap et al. [12] CNN SVM Malimg 84

Rezende et al. [41] VGG16 SVM Malimg 92.29

Khan et al. [19] GoogleNet GoogleNet Malimg 74.5

Abien & Agarap [12] CNN SVM Malimg 77.22

Proposed (DEEP + KNN) GoogleNet KNN Malimg 96.84

After incorporating Tamura and ELM, the proposed classification accuracy increased
to 95.42 percent, which is higher than that of conventional hand-crafted feature methods.
The accuracy results of the methods [37,38] can be near to the presented method’s optimal
accuracy. However, these methods rely on GIST texture features, which demand huge
feature vector dimensions. In contrast, our approach only needed a 1 × 3 feature vector.
After incorporating GoogLeNet and KNN, the proposed classification accuracy increased
to 96.94 percent, which is higher than that of conventional deep Feature methods.

The technique [39] may have the highest overall accuracy out of all the techniques.
However, the combined feature of Pretrained VGG-16, ResNet-50, and AlexNet models
involves greater computation time. The accuracy outcomes of the approaches [40–42]
may be close to the best accuracy of the method described. As a result, the pre-trained
feature of the VGG16 model displays impressive resilience. Unfortunately, processing these
features took additional time. On the other hand, we attain high accuracy by exploiting
the features of a pre-trained GoogleNet model. It is important to note that [19] is the least
efficient method available. The usage of the end-to-end GoogleNet CNN model is the cause
of this. Because of their whole reliance on full CNN, the techniques [12,43] give rather
moderate results.
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The proposed method’s accuracy rate was higher than both the hand-crafted fea-
ture and Deep Feature techniques, at 95.42 and 96.84 percent, respectively, as shown in
Figures 15 and 16.
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6. Conclusions

In order to improve classification performance while dealing with unbalanced datasets,
the majority of conventional MC-based Techniques now in use employ a variety of data
balancing techniques. In contrast, we classified malware images in this work with excellent
accuracy and without using any data augmentation or other balancing strategies by using
the unbalanced malware families of the benchmark Malimg database. The proposed
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malware classification method consists of the following five steps: (i) Dataset preparation:
2D malware images are created from the malware binary files; (ii) Visualized Malware
Pre-processing: the visual malware images need to be scaled to fit the CNN model’s
input size; (iii) Feature extraction: both hand-engineering (Tamura) and deep learning
(GoogLeNet) techniques are used to extract the features in this step; (iv) classification: to
perform malware classification, we employed KNN, SVM, and ELM. After incorporating
GoogLeNet and KNN, the proposed classification accuracy increased to 96.94 percent,
which is higher than that of conventional deep Feature methods. The proposed method’s
accuracy rate was higher than both the hand-crafted feature and Deep Feature techniques,
at 95.42 and 96.84 percent, respectively. This indicates that the performance results of
the proposed methods are often consistent. An important factor in improving malware
classification findings is data augmentation. Therefore, data augmentation may be applied
in the future. Additionally, we investigated different feature engineering domains.
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