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Abstract: The Urumqi area in China is a seasonally cold region, and the rock structures in the region
are susceptible to freeze-thaw (F-T) weathering. Therefore, this study investigated the effect of
F-T on the physical, mechanical, and fracture behavior of sandstone from Urumqi. The acoustic
emission method (AE) was used to determine the stress thresholds for the initiation and development
of cracks in the samples under cyclic F-T action. The results suggested that parameters such as
P-wave velocity, elastic modulus, and peak stress presented a significant negative correlation with
F-T damage, while porosity exhibited a close positive correlation. The elastic modulus of the sample
was more sensitive to the F-T action with the smallest half-life (27 cycles) and the largest decay factor
(0.0254). In addition, the stress threshold for micro-cracks development and macro-cracks initiation
in the samples decreased with increasing F-T damage. After 30 F-T cycles, the stress threshold for
micro-cracks propagation in the samples decreased from 20.73 MPa to 5.02 MPa by approximately
76%. The normalized stress threshold for the macro-cracks initiation was also decreased from 0.93
to 0.71. Moreover, the macro-cracks damage zone of the samples showed an increasing trend with
F-T damage, from 7% under natural conditions to 29% after 30 cycles. It is concluded that F-T action
lowers the stress thresholds for cracks development in sandstone in the Urumqi area, posing serious
safety concerns for mass rock engineering in this area.

Keywords: mechanical properties; acoustic emission; freeze-thaw damage; stress threshold

1. Introduction

The geomechanical behavior of rocks under freeze-thaw (F-T) action has drawn con-
siderable attention due to its crucial role in many rock projects in cold regions [1,2]. Since
the implementation of the national strategy of “One Belt, One Road”, many infrastructure
projects such as highways, railroads, and open-pit mines [3] have been built in western
China. However, the fact that western China belongs to a seasonal cold region with large
temperature fluctuations in winter makes the outcropping rocks prone to F-T damage, so
there are difficulties in maintaining rock projects in this region [4]. On the other hand, F-T
damage changes the rock fracture process, which in turn affects the durability of the rock [5].
Therefore, exploring the effect of F-T damage on rock mechanical behavior and fracture
processes has potential applications for engineering maintenance and safety assessment in
cold regions.

Extensive research efforts have been devoted to studying the changes in the physical
and mechanical properties of rocks that are exposed to F-T action in cold regions [6–9].
Huang et al. [10] carried out a series of uniaxial tests on the rock that was subjected
to F-T action and found that the uniaxial compressive strength and cohesion decreased
significantly. They concluded that the F-T damage was irreversible due to plastic freeze-
swell deformation, which occurs below 0 ◦C. Lan et al. [11] investigated the effect of F-T
cycles on the pore structure of red sandstone using high-pressure mercury injection tests and
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concluded that macropores in the samples are more sensitive to freeze-thaw action and may
affect the fracture mode of the samples. In addition, based on the test results, Xu et al. [12]
found that the dynamic strength and modulus of the sandstone decreased exponentially
due to the F-T action. Li et al. [13] studied the influence of pore structure evolution on
the dynamic mechanical behavior of rocks using nuclear magnetic resonance and found
that the evolution of pore structure leads to a decrease in the mechanical properties of
rocks. The above studies have shown that the F-T effect influences the microstructure
of rock, thus changing its mechanical response. In fact, rock failure is the result of the
initiation and development of cracks under load until macroscopic cracks appear [14,15].
Therefore, it is important to study the effects of F-T action on the stress threshold for the
development of cracks in rock. However, these studies have focused more on the changes
in the macroscopic mechanical properties of rock under F-T action than on the fracture
behavior, and particularly few studies have focused on rocks in the Xinjiang region.

Indeed, the application of acoustic emission technique (AE) is a reliable method to
study the fracture behavior of rocks under load in the laboratory. In short, AE signals are
the manifestation of microstructural behavior within the material and its intrinsic features,
because intense AE behavior can reflect the fracture processes of rocks, including crushing
of grains, the breakdown of pore structure, and the formation of micro-cracks [16]. Thus,
several studies have explored the correlation between the F-T action and the AE signals
of rocks. Su et al. [17,18] studied the effects of cyclic F-T action on the mechanical and AE
behavior of granite, and reported that F-T affected the frequency-domain characteristics of
the AE signals and the signals in the sample became gradually active with the increase of
F-T cycles. Yang et al. [19] investigated the mechanical properties and failure processes of
sandstone during thawing using the AE method and developed a damage model for frozen
sandstone. Jiang et al. [20] pointed out that the critical exponent of AE probability density
initially increased for each F-T cycle and then decreased with increasing cycle number
by studying the damaged mechanical properties of rocks. The results of these studies
have contributed to a better understanding of the effect of F-T action on AE characteristics.
However, studies of crack development information that is contained in AE signals during
loading are not well developed.

Considering the relative importance of F-T damage on rock materials in cold regions,
this work attempts to explore the acoustic, mechanical, and physical changes that are
induced by F-T action on Urumqi sandstone. First, fresh sandstone was obtained from an
open-pit mine slope and then processed into standard samples. Different amounts of F-T
cycles were applied to the samples. Then uniaxial compressive tests were performed and
the AE signals were recorded. Finally, the effect of F-T damage on the failure attributes of
the Urumqi sandstone was investigated by AE signals in the loading process.

2. Material and Methods
2.1. Material Characterization

In this study, sandstone samples that were collected from a rock slope in Urumqi in
western China (Figure 1) were used to investigate the mineralogy and petrology of the rock
by X-ray diffraction (Figure 2). The results showed that the rock is fine- to medium-grained
with a sandy structure mainly consisting of quartz (43.8%), albite (28.5%), fraipontite
(19.6%), nacrite (5.2%), and a small amount of kaolinite. The sandstone in the Urumqi
region is characterized by a short formation time, weak cementation, and low strength, and
has very distinct regional features [12].

To characterize the composition, distribution, size, and detrital properties of the differ-
ent mineral grains of the sandstone, fabric analyses were also performed in polarized light
on standard thin sections (Figure 3). The studied sandstone is mainly composed of detrital
quartz grains followed by albite, with grain sizes mainly in the range of 0.05–0.25 mm. The
sandstone is mainly supported by grains, and the contact between the grains is mainly
planar and to a lesser extent concave-convex. The cement between the grains is dominated
by kaolinite and clay, suggesting a weak cementing ability. In addition, the particle size of
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the samples decreased significantly after freezing, indicating that the sandstone structure
is more sensitive to F-T action. Therefore, it is reasonable to investigate the F-T action of
sandstones in the Urumqi region.
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Figure 1. Location of the Xinjiang province from where the sandstone samples were obtained:
(a) Location in China; (b) Detailed map of Xinjiang Province, China; (c) Actual view; (d) Satellite map
of sampling point; (e) Samples. Red circle: rough location of the tested sandstone.
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Figure 2. X-ray diffraction results for the tested sandstone.

2.2. Sample Preparation

The sandstone block that was used in this study was fresh, un-weathered, and without
obvious fractures. All the tested samples were cored from the same sandstone block and
then processed into cylinders with a nominal diameter of 50 ± 0.5 mm and a height of
100 ± 1 mm. According to the ISRM recommendations, the samples were ground with a
tolerance of 0.02 mm for flatness at both ends, and deviations from perpendicular to the
axis did not exceed 0.1% rad. To minimize the uncertainty of test results, the samples were
selected before the F-T test: first, the samples with visible defects were excluded; then, the
samples with similar P-wave velocities (3229 ± 50 m/s) were used by ultrasonic P-wave
velocity (UPV) tests; finally, a total of 24 sandstone samples were selected and randomly
divided into eight subgroups, with three samples in each subgroup. The subgroups F0, F1,
F2, F3, F4, F5, and F6 represented sandstone samples with 0, 5, 10, 15, 20, 25, and 30 F-T
cycles, respectively. Subgroup F7 was used to study the effect of F-T action on porosity,
P-wave velocity, and the dry density of the samples.
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Before the F-T testing, all the samples were left to dry in an oven (110 ◦C) until the mass
remained constant and then cooled to room temperature in a dry environment (Figure 4),
while the dry mass, P-wave velocity, and volume of the sample were measured. Then, all
the samples were kept in distilled water and saturated by the vacuum equipment with the
fixed vacuum pressure of 100 kPa and the saturation time of 12 h [21]. Next, the samples
were submerged completely in distilled water under vacuum conditions (total 24 h). Finally,
the initial physical properties were obtained. The average values are listed in Table 1.
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Table 1. The physical parameters of the selected samples.

Parameters Vp (m/s) ρd/(g·cm−3) ρsat/(g·cm−3) ω/(%) η/(%)

Range 3193~3257 2.412~2.415 2.521~2.526 4.48~4.62 4.32~4.51
Average 3229 2.414 2.523 4.56 4.37

SD 33.005 0.00125 0.00235 0.135 0.122
Notes: Vp, P-wave velocity; ρd, dry density; ρsat, saturation density; ω, water absorption; η, effective porosity; SD
refers to the standard deviation.
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2.3. Experimental Methods
2.3.1. Freeze-Thaw Cycle Tests

To investigate the influence of F-T damage on the physical and mechanical properties
of the sandstone, the F-T tests were conducted on an F-T experimental system, as shown
in Figure 4. Accounting for temperature fluctuations of the open-pit mine, the saturated
samples were placed in the test equipment at −20 ◦C for 12 h and then in pure water at
20 ◦C for 8 h to thaw, and the process was considered as one F-T cycle [22]. Each F-T
cycle required 20 h to be completed. The F-T test was performed for 30 cycles on the
selected samples, and their physical and mechanical properties were investigated after
every 5 cycles.

2.3.2. Physical and Mechanical Tests

The compressive tests were done in a rock mechanical test system (MTS816) in the
State Key Laboratory for Geomechanics & Deep Underground Engineering (Figure 4).
During the test, a pair of strain gages was attached to the surface of the sample using epoxy
to measure the stress-strain variations in real-time. The effective porosity of the sample
with different F-T cycles was calculated by Equation (1). In addition, the P-wave velocity
and dry density of the sample were determined by the tests (Figure 4).

n =
ms − md

md
× 100% (1)

where n is the effective porosity of the rock sample, %; ms is the saturated mass of rock, g;
and md is the dry mass of rock sample, g.

2.3.3. Acoustic Emission Tests

An AE measurement equipment (developed by Physical Acoustics Corporation, West
Windsor Township, NJ, USA) converts energy release from the rocks into an electrical signal.
This technique was used for recording the corresponding stresses at cracks closure, cracks
germination, and cracks widening of the sample. In this study, both sides of each sample
were attached to Nano30 sensors with Vaseline as a coupling agent and gently secured
with black tape (Figure 4). The AE signals with high integrity and good matching with
stress-time curves were selected for data processing. Moreover, 40 dB was selected as the
monitoring threshold to avoid interference of the environment and electromagnetic noise.

3. Results and Discussion

To assess the influences of the F–T cycles on the physical and mechanical properties
of the tested sandstone, a loss rate Ri was employed and used for all the physical or
mechanical parameters, including porosity, P-wave velocity, dry density, and peak strength.
The Equation (2) for calculating Ri is as follows:

Ri =

(
1 − xN

x0

)
× 100% (2)

where i is the physical or mechanical property corresponding to the porosity (i = p), P-wave
velocity (i = v), dry density (i = d), and peak strength (i = c); N represents the number
of F-T cycles; xN is the physical or mechanical property after N times of F-T cycles; and
x0 represents the property of samples that were not subjected to F-T action. Here it is
important to note that a negative Ri means that the parameter increases with the number of
F-T cycles.

3.1. Effect on the Physical Characteristics

In these tests, the porosity, P-wave velocity, dry density, and SEM images were used to
assess the physical changes in the tested samples. For the samples that were subjected to
30 F-T cycles, a few cracks appeared on the surface with a small number of mineral particles
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spalling (Figure 5a). Besides, the failure modes of the samples varied after different F-T
cycles, showing from a shear failure to the typical tensile-shear failure (Figure 5b). As the
number of F-T cycles increased, the F-T damage promoted the formation of loose structures
within the sample, leading to a reduction in the internal friction angle [17]. Therefore,
the angle between the failure surface and the maximum principal stress (axial direction)
gradually increased, and the sample gradually changed from shear to tensile-shear failure.
Furthermore, the F-T action leads to the formation of microcracks in the rock, so that the
number of macroscopic cracks increases with the F-T action under load.
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cycles. (a) Before loading; (b) After loading.

3.1.1. Effect on the Porosity

The average porosity of the tested sample versus the number of F-T cycle is shown in
Figure 6. From that, the porosity presented an increasing trend with an increase in the F-T
cycle number. After 30 F–T cycles, the average porosity of the tested sandstone increased
by 13.7%, suggesting an increase in the volume of pores within the sandstone sample. This
means that irreversible damages occurred in the samples during the process of freezing
or thawing [23], and these damages within the rocks embodied the work that was done
by the frost heave force. Further, the change of stress path within the samples during
loading due to the existence of defect spaces explained the different failure modes with
the number of F-T cycles as presented in Figure 5. Besides, during cyclic F-T tests, some
mineral components on the pore wall of the sample dissolved in pore water, leading to
damage and deterioration of the weak pore wall [13]. Thus, crystallization pressures that
were generated by the ice and exerted on the pore walls caused the generation of more pore
space, which in turn leads to the decrease of the overall (tensile) strength of the rock.

3.1.2. Effect on the Micro-Morphology

The variations in the micro-morphology of the sandstone samples under different F-T
action were studied using the scanning electron microscope (SEM) images (Figure 7). The
results from the SEM images revealed that the F-T action had an important effect on the
surface morphology of the tested sandstone with the induction of more defects suffered
under increasing F-T cycles. The density of the micro-cracks under F-T action expanded to a
considerable extent. In particular, the transition from intergranular to transgranular cracks
in the micro-morphology indicated that stronger F-T action can not only affect the cement
strength but also decrease the strength of mineral particles. The damage of cement and
mineral particles provided favorable conditions for crack development and was embodied
in widening the F-T crack aperture. Besides, the variations of micro-morphology in images
also explained the increase of porosity in Figure 6.
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3.1.3. Effect on P-Wave Velocity

The physical parameter P-wave velocity was sensitive to the micro-morphology in
the medium, so it can be used as an appropriate indicator to examine the damage on the
microscopic scale [24]. In this study, the P-wave velocity was used to understand the degree
of cracking with F-T action. Figure 8 showed the average P-wave velocity with the different
number of F-T cycles and reflected that the F-T action significantly affected the P-wave
velocity of the samples. From that, the P-wave velocity showed a decreasing trend under
F-T action, with the average P-wave velocity decreasing by 5.8% after 30 F-T cycles. With
increased crack density, however, the P-waves reflected, refracted, diffracted, or scattered
through cracks in the medium, and the corresponding P-wave velocity slowed down [25].
Therefore, the variation in Figure 8 signified that plenty of micro-cracks have formed inside
the tested samples. In addition, the decrease in P-wave velocity also indicated the reduction
in the microstructural density of the tested samples that were subjected to F-T action.
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3.1.4. Effect on Dry Density

The dry density of the tested sandstone under different F-T cycles had a decreasing
trend in Figure 9. The curve showed that the change range of the first two data was
significantly larger than that of the later data, showing a fast change, followed by a slow
trend. This phenomenon suggested that F-T damage of the samples that was caused
by fewer F-T cycles occurs mainly on the surface of the samples, because some mineral
particles on the surface are easily detached in the early stage of F-T cycles, as shown in
Figure 5a. The change curve also indicated the development process of F-T damage from
the surface to the inside [17].
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In general, the F-T damage of rocks is mainly affected by the following factors: lithol-
ogy, moisture content, number of F-T cycles, ionic solution, temperature range, and stress
state [26,27]. When the samples were completely frozen, the frost heave force occurred in
the pore sides for the increase of ice volume (about 9%), promoting further development
and expansion of initial defects to form new micro-cracks [5]. On the other hand, when
the temperature decreased, inconsistent deformation appeared among different mineral
particles due to their different thermal expansion properties [9]. At the same time, the
expansion of ice volume aggravated this deformation, resulting in huge local crystallization
pressures (i.e., frost heave force) among the mineral particles or micro-cracks. The pressures
acted on the microscopic scale of mineral particles or micropores of the rocks. Therefore,
the presence of pore water had a profound effect on the rock damage under the F-T cycle
conditions [28]. If there is no water in the pores or micro-cracks, there is no so-called F-T
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damage, i.e., dry rocks are hardly affected by F-T cycles [29]. When the temperature rose,
the ice in the pores or micro-cracks melted, accompanied the release of frozen stress and
the migration of water, thus accelerating the damage [30]. After repeated F–T cycle tests,
therefore, numerous defects inside the samples caused the changes in physical properties
that were mentioned above.

3.2. Effect on the Mechanical Behavior

In this part, the results are combined with the F-T numbers to explore the changes
in the mechanical behavior with the F-T damage. Moreover, the peak stress and elastic
modulus of the tested sandstone samples are also discussed.

3.2.1. Stress-Strain Behavior

The stress-strain behaviors of the samples that were subjected to F-T action are pre-
sented in Figure 10, indicating that the F-T action significantly affects the pre-peak stress-
strain relations of the sandstone samples. All the curves showed a non-linear behavior in
the initial compressive stage and exhibited a consistent variation due to the increasing F-T
treatments. The stress-strain curves became gradually more non-linear with an increasing
number of applied F-T cycles, indicating that the number of pores or cracks in the samples
increased with F-T action. On the other hand, the crack closure strain increased with
more F-T cycles, which can be used to evaluate the density of cracks and further identify
the amount of cracks damage in the rocks [31]. Moreover, the non-linear stage near the
peak stress showed a clear increasing trend with the F-T action, signifying that part of the
energy was consumed after the elastic stage in the loading process; these energies were
closely related to the porosity, damage degree, mineral particles, and cement strength of the
sample. Li et al. [32] considered that the crack propagation and frictional increase among
mineral particles in samples were primarily responsible for the energy consumption near
the peak stress. For the samples that were subjected to F-T action, the microstructures
inside the rock changed from relatively dense to loose (Figure 7). Meanwhile, the peak
strain corresponding to peak stress tends to increase with F-T action, signifying a larger
deformation in rocks with more F-T cycles (Figure 10). These variations that were induced
by F-T action facilitated the development of cracks, so the variations of non-linear behavior
near peak stress reflected the significant effect of F-T action on the microstructure in the
tested sandstone. Besides, the slope in the linear stage of the stress-strain curves decreased
with the increase of F-T action number, indicating a reduction in the elastic modulus.
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3.2.2. Mechanical Behavior after F-T Action

There have been many studies about the decline in the mechanical behavior with
F-T damage in different rocks [33,34]. This decreasing trend can be attributed to the
development of cracks in the rocks that is caused by the F-T action. In this research,
the peak stress for the tested sandstone sample also decreased with the increasing F-T
action [35]. In Figure 11, there is a negative correlation between the peak stress and the F-T
cycle number of the tested samples, with the sample under 5 F-T cycles showing a minor
mechanical deterioration (about 6.9%), and the sample suffered 30 F-T cycles having a larger
loss (about 49%) in the peak stress. Zhang and Yang [36] argued that the combined effect of
F-T action and loading aggravated the total damage of the rock with obvious non-linear
characteristics, whereas its coupling effect weakened the total damage. Moreover, the
variation in the stress path that was caused by the F-T cracks was vitally important on the
peak strength decrease of the tested samples at high F-T damage.
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Figure 11. Change in the peak stress and loss rate with F-T action in the tested sandstone.

As shown in Figure 12, a schematic diagram of the freezing sequence of the ‘main-
side branch’ was developed based on the size of the pore structure. The F-T damage in
sandstone is the result of a combination of capillary, crystal pressure, hydrostatic, and
volumetric expansion mechanisms [13]. When the temperature drops below 0 ◦C, the main
pores initially freeze as ice by heterogeneous nucleation due to their greater curvature [27].
At this time, the ice in the pores drives the unfrozen water to form seepage damage on
the pore wall, which is known as the hydrostatic pressure mechanism. The volumetric
expansion mechanism, on the other hand, is the damage that is caused by the volumetric
expansion of the ice [9]. Since the chemical potential of the water in the small pores is higher
than that of the pore ice in the main pores, the supercooled water from the small pores
migrates through the pellicular water into the main pores, promoting further development
of the structural damage in the pores [27]. The capillary mechanism plays an important role
in this process. In addition, when the pore ice develops into secondary pores, the growth of
the pore ice causes a hydraulic fracturing effect at the pore tips when the secondary pores
are closed [5]. As the F-T effect increases, the damage to the pore structure in the sandstone
increases. Thus, as mentioned above, there are significant differences in the physical and
mechanical behavior of sandstone under loading.
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Figure 12. F-T damage mechanism.

Besides, the elastic modulus showed a negative correlation with the increasing number
of F-T cycles (Figure 13a). This indicates a considerable reduction in the deformation
resistance of the studied samples that was induced by the F-T process. Additionally, the
F-T damage (DN) was estimated using the empirical Equation [22]. The empirical Equation
is as follows:

DN= 1 − E(N)

E(0)
(3)

where DN is the damage under the F-T action; E(0) is the elastic modulus of the fresh rock;
and E(N) is the elastic modulus of the rocks that are subjected to N F-T cycles. The F-T
damage for the tested samples exhibited an increase with increasing F-T cycle number
(Figure 13b), and a prediction model was developed for damage changes.
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3.3. Physical and Mechanical Prediction Model

To describe the relationship between the F-T action and the rock properties, Mut-
lutürk et al. [37] developed a decay model to characterize the decay rate of different
sandstones, incorporating the decay constant and half-life, as shown in Equation (4):

− (dI/dN) = λI (4)

where the minus sign indicates a decrease in the rock integrity; I denotes the rock integrity;
N denotes the number of F-T cycles; and λ denotes the decay constant.
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If the integrity of the sample prior to applying the F-T cycles is I0, it is IN after N F-T
cycles. By integrating Equation (4), the decay model can be expressed in an exponential
formula, Equation (5):

IN = I0e−λN (5)

In addition, another useful parameter, half-life (H1/2), is defined as the number of
cycles that are necessary to halve a physical or mechanical property and is introduced
to measure the long-term durability of the rock. This durability parameter (half-life) is
inversely proportional to the decay constant and can be calculated by using I0/2 to replace
the IN in Equation (6) as follows:

H1/2 = ln 2/λ ≈ 0.693/λ (6)

Given that the integrity of rock involves physical and mechanical properties, the
degradation characteristics of properties such as the P-wave velocity, density, strength,
and deformation modulus of rocks under F-T action also fit Equation (5). The degradation
characteristics are shown in Table 2. The half-life of the elastic modulus is only 27 cycles
compared to other parameters such as density and strength, indicating that the deformation
resistance of this sandstone to F-T damage is more pronounced. At the same time, the
decay factor of the elastic modulus is 0.0254, which is much higher than the decay factor of
P-wave velocity and density. Therefore, rock deformation in open pit mining in this area
must be carefully monitored.

Table 2. Relationships among the physical and mechanical parameters with F-T cycle.

Parameter Fitted Curves Decay Factor Half-Life (H1/2) R2

P-wave v v = 3237.7 · exp(−0.00214 · N) 0.00214 324 0.987
Density ρ ρ = 2.414 · exp(−6.97 × 10−4 · N) 0.000697 994 0.912
Strength σ σ= 27.924 · exp(−0.0217 · N) 0.0217 32 0.991
Modulus E E = 3.092 · exp(−0.0254 · N) 0.0254 27 0.989

As mentioned earlier, the deformation, failure behavior, and mechanical properties
of the tested sandstone under loading were all affected by F-T action. These variations
can be attributed to changes in the stress threshold for crack initiation, propagation, and
failure during loading [38]. To deeply understand this process, the changes in the AE
parameters were combined with stress to explore further the variations in crack germination,
propagation, and failure degree that was caused by the freezing or thawing damage in the
loading process for the tested sandstone.

3.4. Effects on the AE and Failure Behavior

Since the F-T damage complicates the fracture processes in the tested samples, un-
derstanding the fracture behavior under loading is crucial. The acoustic signal can offer
abundant information concerning the fracture processes and the associated stages of defor-
mation in rocks [38]. The dynamic monitoring of the rock deformation and fractured space
evolution in the loading process using AE data has become a useful method for damage
evaluation. As shown in Figure 14, a possible relationship between AE activity and stress-
strain behavior during loading deformation was observed by Boyce et al. [39]. Therefore,
this study employed AE technology to understand the variations in stress thresholds for
fracture processes (cracks germination propagation and damage) that were caused by F-T
action. Thus, the changes in AE signals were carefully studied and evaluated with Figure 13
in mind, and these results were then related to the damage that was done to the samples by
the F-T cycles.
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Figure 14. The relationship between the AE signal and stress with rock deformation (after [39]).

3.4.1. Acoustic Behavior

The AE and cumulative AE responses over the time of samples during the loading
process were drawn in Figure 15a–d. The variation in AE counts under different F-T
cycles can be divided into three regimes, including the initial period, quiet period, and
active period. During loading, the AE counts became more active in the samples that
experienced more F-T cycles, which was reflected in the increasing cumulative AE counts.
In the initial loading period, the AE counts were a result of friction among the particles for
the micro-cracks closure within the rock. In Figure 15, the AE counts showed a significant
increase with the F-T cycles in the initial period, suggesting that F-T action promoted the
development of microscopic defects (tensile micro-cracks) in the sample, thereby affecting
the variation of AE counts [17]. After the initial crack closure, the AE activity entered the
quiet period in which the elastic energy is being accumulated in the sample. This continues
until the required energy or stress for crack growth is reached. However, as the number
of F-T cycles increased, the density of AE counts in the quiet period also increased, with
more abrupt points appearing before the failure of the sample (Figure 15d). In this process,
a part of the energy was released by a stress waveform, resulting in a sharp increase in AE
counts. This interesting phenomenon indicated that tested samples were about to enter the
stage of unstable crack development and gradually reach the peak stress point to produce
failure. Moreover, it can be observed that the duration of the active period was influenced
by the F-T effects and showed an increasing trend. Therefore, the changes in AE behavior
due to the F-T action need to be taken into account in the monitoring and warning of rock
projects to avoid misjudgments in the cold regions.

3.4.2. Variation in Acoustic Properties and Damage Stress

The acoustic profiles that were obtained from uniaxial compressive tests are shown in
Figure 16. The deduction of F-T damage based on acoustic signals was divided into four
stages following Figure 14 [40], including (I) crack closure stage where some acoustic signals
were recorded; (II) new cracks began to appear, showing an increase in acoustic signals;
(III) interaction among cracks began to intensify, resulting in micro-cracks propagation
and coalescence with lots of acoustic signals; and (IV) the appearance of macro-cracks led
to unstable fracture propagation resulting in final failure. Figure 16 presents an obvious
demarcation and a different variation in the AE-stress relationship of the sample with a
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different amounts of FT cycles applied, indicating that the F-T damage has a vital effect on
the fracture process of the tested samples, including micro-crack initiation, their coalescence,
propagation, and eventually macro-cracks formation. Consequently, the tested samples
exhibited different deformation behavior under loading with the variation of the F-T
damage. Here, it is necessary to point out that visible damage refers to the propagation
of the macro-cracks. Besides, the crack germination stage (II) of the sample decreased
with the increasing F-T action, while the macro-cracks damage zone (IV) widened with the
increasing F-T cycles. As the compression progresses, the AE rate that was produced by the
test samples decreased significantly due to the coalescence of micro-cracks in stage II [41].
When the samples entered the failure phase, the deformation changed from micro-cracks
coalescence to micro-cracks propagation, forming macro-cracks damage zones, while the
AE rate showed a dramatic increase. The extent of F-T damage dramatically affected the
macro-cracks generation and subsequent propagation. Therefore, these results proved
that the F-T damage largely controls the AE behavior of the tested samples under uniaxial
compressive loads.
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Figure 15. Relationship between the AE counts, cumulative AE counts, and the time of samples with
different numbers of F-T cycles under uniaxial compression condition: (a–d) represent the tested
samples that were subjected to 0, 5, 15, and 30 F-T cycles, respectively.
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Figure 16. The relationship between the AE behavior and the stress of samples with different F-T
cycles under uniaxial compression conditions: (a–d) represent the samples that were subjected to 0, 5,
15, and 30 F-T cycles, respectively.

Furthermore, the crack propagation of the sample under loading was varied with F-T
cycles. The tested samples without F-T damage showed an obvious elastic deformation
(II) process and prolonged the initiation and coalescence of micro-cracks but limited micro-
cracks propagation and macro-cracks initiation (Figure 16a). These results indicated that
the samples in the fresh state require sufficient stress to provide energy for the micro-cracks
propagation before the failure, i.e., it is hard for micro-cracks of untreated samples to
propagate due to the stability of the sample microstructure. However, with the increase of
F-T action, the elastic deformation tended to decrease (II), while the propagation phase of
the micro-cracks presented an increasing trend with a high AE rate before sample failure
(III stage). This was probably due to the volumetric expansion that was introduced by
the phase transformation of the water and ice in the cracks or pores [1]. These processes
promoted the initiation and coalescence of micro-cracks, thereby reducing the energy that
was provided by stress in the elastic deformation stage. As the study of Fang et al. [22],
the F-T action had a significant deterioration effect on the bonding strength of rocks. This
conclusion strongly proved that the F-T damage caused a decrease of resistance to the micro-
cracks growth under loading, thereby facilitating the micro-cracks to initiate and coalesce
(stage II) effortlessly with less stress input, matching with Figure 16. At the same time,
the deterioration of the bonding and particles in the samples promoted the micro-cracks
initiation and propagation. These microstructures then produced sliding friction under
loading, resulting in increased energy consumption that was manifested in the extension
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of the III and IV stages. Additionally, the generation of friction between the cement and
particles well explained the increasing AE rate.

The cumulative AE parameters against stress values under loading are shown in
Figure 17. With increasing F-T damage, the AE signals showed a continuous transition
during loading, corresponding to the different stages of crack development. The cumulative
AE rates increased with increasing F-T damage, except in the pre-peak stage. This is due to
the fact that F-T damage changes the brittleness of the rock and prolongs the macroscopic
crack failure phase before the peak. To better understand the variations in the AE behavior
of the samples as a result of F-T action, the normalized stress values were plotted against
the normalized cumulative AE rate. This plot provided helpful insight into identifying the
stress levels at which fracturing changes due to F-T damage. Figure 17b showed that the
acoustic properties of all the samples under F-T action follow an identical pattern. This
indicated that the fracture tendency shifts at 70% to 95% of the peak stress. In addition, F-T
damage led to early crack development. All the tested samples exhibited drastic AE rates
in the initial stage, which gradually decreased after reaching the crack extension stress.
To determine the effect of F-T damage on the crack development of the sample during
loading, the point of AE transition was chosen as the stress threshold for crack development
according to Figure 14, as shown in Figure 18.
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Figure 17. Changes in the acoustic behavior and stress with different F-T cycles. (a) Stress; (b) Nor-
malized stress.
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As Sirdesai et al. [38] reported, the stress threshold was helpful to determine the onset,
coalescence, and propagation of the micro-cracks in rocks. Therefore, this study focused on
the stress threshold of the sandstone in each deformation stage by analyzing the change
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of AE behavior with the F-T cycles. At the same time, the stress threshold values were
normalized by the peak stress to better understand the effect of F-T damage on them.
Figure 18 shows the stress threshold values corresponding to each shift point in the loading
process. From that, with the increase of F-T damage, the stress threshold for micro-cracks
propagation and micro-cracks initiation decreased obviously. For example, the normalized
stress threshold for micro-cracks propagation decreased from 0.734 (20.73 MPa) to 0.348
(5.04 MPa) after 30 F-T cycles. Also, the normalized stress threshold for macro-cracks
initiation dropped from 0.932 (26.3 MPa) to 0.708 (9.8 MPa) after 30 F-T cycles. These
phenomena indicated that micro-cracks appeared in rocks even under low-stress inputs
with the increase of F-T damage, resulting in reducing the load-bearing capacity and
strength. The strength can be considered as the result of the particle, bonding strength, and
the particle chimeric action. However, with more F-T treatment, the stress-strain curves
witnessed a diminishing trend of peak stress, signifying the deterioration of the mineral
particle strength and bonding among minerals. Meanwhile, this degradation of strength
can be considered as a change in rock brittleness on the stress-strain curve. Li et al. [32]
believed that this change indicated that the rocks absorbed more energy before failure.
Thus, the macro-cracks damage zone (III) enlarged with the increase of F-T damage under
the loading process in Figure 16. After 30 F-T cycles, the macro-cracks damage zones
increased from 7% (IV) under fresh conditions to 29%. The sandstone sample witnessed
about a 76% increase in macro-cracks damage zones. These results strongly proved that the
F-T damage has a substantial impact on the fracture behavior of typical sandstone samples
in Xinjiang, China.

4. Conclusions

In cold regions, the changes in the physical and mechanical properties of rocks under
F-T action often lead to some rock engineering disasters. In this study, the sensitivity of
physical and mechanical properties of sandstone in Urumqi to F-T action was investigated.
In addition, the evolution of stress thresholds for crack initiation and development in
the sandstone with F-T cycles was analyzed based on AE-stress relationships. The main
conclusions are as follows:

1. In the Urumqi region, the elastic modulus of the rock is more sensitive to F-T cycles
than other physical-mechanical parameters such as density and strength, which have
a half-life of only 27 cycles. Therefore, special attention should be paid to the rock
deformation to prevent open-pit mining disasters.

2. The acoustic behavior of the studied sandstone clearly shows the effect of F-T cycles
on the AE-stress relationship. As F-T damage increases, the crystallization pressure
that was induced by freezing forms cracks, making the crack closure phase more
pronounced with larger cumulative AE rate values. Subsequently, with the load
increases, micro-cracks begin to develop and expand, forming visible crack damage
zones on the surface.

3. The stress thresholds for micro-crack development and macro-crack initiation decrease
with the increasing F-T damage. After 30 F-T cycles, the stress threshold for micro-
cracks propagation decreases from 20.73 MPa in the natural condition to 5.02 MPa,
while that of the macro-cracks damage zone increases from 7% to 29%. The F-T damage
has an important impact on the fracture behavior of typical sandstone samples from
Xinjiang, China.
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