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Abstract: The main advantage of sonodynamic therapy (SDT), the combining of ultrasound with a
sonosensitizer, over photodynamic therapy (PDT) is that ultrasound penetrates deeper into tissues to
activate the sonosensitizer, which offers noninvasive therapy for tumors in a site-oriented approach.
In this study, we synthesized two symmetrical phenothiazine derivatives in which the methyl
groups of MB (methylene blue) have been replaced by a hexyl and hydroxyethyl chains, named
3,7-bis(dihexylamino)-phenothiazin-5-ium iodide (MB6C) and 3,7-bis(di(2-hydroxyethyl)amino)-
phenothiazin-5-ium iodide (MBOH), respectively. We explore the efficiency differences between
PDT and SDT induced by these phenothiazine derivatives based on the standard of methylene
blue (MB). Spectral studies indicate that these MB analogs exhibit sonosensitization ability with
a similar tendency to the photosensitization ability. This means that MB, MBOH, and MB6C can
be potential photosensitizers and sonosensitizers. After biological evaluation, we conclude that
compound MB6C is a potential PDT and SDT candidate because it exhibits higher uptake, efficient
intracellular phototoxicity and sonotoxicity over MB and MBOH, with IC50 values of ~2.5 µM and
~5 µM, respectively.

Keywords: photodynamic therapy; photosensitizer; sonodynamic therapy; sonosensitizer; reactive
oxygen species

1. Introduction

Cancer is one of the major causes of human death, and the number of patients diag-
nosed is increasing rapidly. Many efforts for cancer treatments involve invasive (surgery)
and noninvasive procedures (chemotherapy, radiation) to remove the tumor [1]. Recently, a
cancer therapy method called photodynamic therapy (PDT), which activates photosensitiz-
ers with related wavelengths, has been widely used [2]. PDT activates the photosensitizer
(Ps) accumulated in the tumor area through the light excitation of appropriate wavelengths,
transforms the Ps into a high-energy state and triggers a photochemical reaction to bring
about ROS (reactive oxygen species) to kill tumor cells but not normal tissues outside the
treatment area [3,4]. Currently, PDT has been widely used in the treatment of prostate,
breast, head and neck, skin, pancreas, and lung cancers [5]. Incidentally, recent research
on photosensitizers has mainly focused on their photochemical activity, which enables
PDT to be applied not only to the theranostics of cancer [6] but also to the photodynamic
inactivation (PDI) of viruses and microorganisms [7,8].

Extended from PDT, Umemura et al. first explored sonodynamic therapy (SDT) in
the 1990s as a noninvasive treatment [9]. Sonosensitizer-generated SDT is expected to
be a next-generation therapy strategy [10,11]. The energy source is the major difference
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between SDT and PDT for activating the sensitizer; one utilizes ultrasound and the other
uses light. Ultrasound penetrates deeper into tissues and can be focused tightly even
through tens of centimeters into soft tissues when compared to PDT, which is limited by
the short penetration depth of light [12,13]. The ultrasonically activated sonosensitizers
can produce reactive oxygen species (ROS), such as superoxide anion (O2

•−), hydroxy
radical (•OH), hydrogen peroxide (H2O2) or singlet oxygen (1O2) [9,14]. When discussing
the underlying mechanisms of SDT-induced apoptosis or necrosis, sonosensitizers are
considered the most critical factor to maximize effectiveness. We focused on organic
small molecule sonosensitizers and found that the most commonly used are porphyrin
derivatives, such as hematoporphyrin (Hp), protoporphyrin IX (PpIX), chlorin e6 (Ce6),
and hematoporphyrin monomethyl ether (HMME) [15–17]. The xanthene derivatives
erythrosine B (EB) [18,19] and rose bengal (RB) [20,21] have also been found to exhibit a
high relationship with ultrasonication. Other small molecule agents, such as hypocrellin
B (HB) [22,23], IR780 [24,25], indocyanine green (ICG) [26,27], curcumin [28,29], and 5-
aminolevulinic acid (a natural porphyrin precursor) [30,31], have also been reported as
effective sonosensitizers. Most notably, the anticancer drug doxorubicin was also found to
act as a sonosensitizer and showed relatively high SDT efficiency [32,33]. Thus, we know
that most sonosensitizers are derived from photosensitizers, which may cause apparent
phototoxicity and offer undesirable biological profiles.

The photosensitizer methylene blue (MB) [34,35], a low-toxicity phenothiazine molecule,
has been approved for antifungal, antibacterial [36], and antimalarial activity [37] and in the
staining of living organisms for clinical use. The literature has reported that MB could be a new
sonosensitizer and cause ultrasound-induced cell death [38–40]. However, the specific cellular
mechanism of MB-induced SDT on tumors is unclear. The purpose of this study is to evaluate
the SDT efficiencies of MB, its hydrophilic derivative MBOH, and its lipophilic derivative
MB6C (as shown in Scheme 1). Molecular synthesis, spectra, and ROS measurements and the
cellular assays of these molecules were performed and discussed for SDT development.
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Scheme 1. Synthetic steps and conditions of these phenothiazine derivatives. 

2. Materials and Methods 
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(DPBF) was purchased from Aldrich Chemical Co. All of the solvents were of spectromet-
ric grade. In this study, the highest-grade general chemicals were employed that obtained 
from Acros Organic Co., Merck Ltd., or Aldrich Chemical Co. and used without further 
purification. All compound and DPBF stock solutions (10−2 M) were kept in the dark at 4 
°C until use. Molecular 3,7-bis(di(2-hydroxyethyl)amino)-phenothiazin-5-ium iodide 
(MBOH) and 3,7-bis(dihexylamino)-phenothiazin-5-ium iodide (MB6C) were synthesized 
as shown in Scheme 1. All the spectra for identifying compounds are listed in the support-
ing information (Supplementary Materials Figures S1–S6) 
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2. Materials and Methods
2.1. Materials

Methylene blue (MB) was purchased from Alfa Aesar. 1,3-Diphenylisobenzofuran
(DPBF) was purchased from Aldrich Chemical Co. All of the solvents were of spectrometric
grade. In this study, the highest-grade general chemicals were employed that obtained
from Acros Organic Co., Merck Ltd., or Aldrich Chemical Co. and used without further
purification. All compound and DPBF stock solutions (10−2 M) were kept in the dark at
4 ◦C until use. Molecular 3,7-bis(di(2-hydroxyethyl)amino)-phenothiazin-5-ium iodide
(MBOH) and 3,7-bis(dihexylamino)-phenothiazin-5-ium iodide (MB6C) were synthesized
as shown in Scheme 1. All the spectra for identifying compounds are listed in the supporting
information (Supplementary Materials Figures S1–S6)

Synthesis of phenothiazinium tetraiodide hydrate 1 [41]. To a solution of phenothiazine
(1.0 g, 0.005 mol) in chloroform (35 mL) contained in a 250 mL round-bottom flask, an iodine
(3.8 g, 0.015 mol)-containing chloroform (115 mL) was added dropwise in an ice bath and then
kept at room temperature for 4 h. The solution was filtered, and the solid was washed with
a large amount of chloroform (50 mL × 4) to remove the excess iodine. After drying, a dark
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green powder (3.1 g, 88%) was obtained. 1H NMR (400 MHz, DMSO-d6): δ (ppm) = 7.82–8.05
(m, 4H), 7.60–7.75 (m, 4H). Mass (ESI+): calculated for C12H8NS+ m/z = 198.04, found 198.0.

Synthesis of 3,7-bis(dihexylamino)-phenothiazin-5-ium iodide (MB6C) [42]. Tetraio-
dide hydrate salt 1 (1.44 g, 0.002 mol) was dissolved in 40 mL of methanol at room tem-
perature. An excess amount of N,N-dihexylamine (8 mmol) in methanol (10 mL) was
added dropwise, and the system was stirred for 4 h. The product tetraalkylamino phenoth-
iazinium precipitated and was filtered and recrystallized three times by a CH2Cl2-MeOH
system. The final product was collected as a dark purple solid (yield 68%) after drying
overnight in an oven. 1H NMR (400 MHz, DMSO-d6) δ (ppm) = 7.92 (d, J = 8.8 Hz, 2 Ha),
7.50 (dd, J = 8.8, 2.4 Hz, 2 Hb)-7.47 (d, J = 2.4 Hz, 4 Hc), 3.68 (t, 8H), 2.99–2.75 (m, 8H),
1.7–1.45 (m, 8H), 1.4–1.2 (m, 8H), 0.8–1.0 (m, 20H). MS (ESI+): calculated for C28H42N3S+

m/z = 564.0, found m/z = 564.5.
Synthesis of 3,7-bis(di(2-hydroxyethyl)amino)-phenothiazin-5-ium iodide (MBOH). Sim-

ilar to MB6C [43], a solution of the appropriate N,N-di(2-hydroxyethyl)amine (8 mmol) in
methanol (10 mL) was added to the solution containing compound 1 and stirring was contin-
ued for 3 h by monitoring with thin-layer chromatography. The methanol was removed under
vacuum and purified by flash chromatography (eluent CH2Cl2/MeOH 95/5 (v/v)) to yield a
dark green–purple solid (52%). 1H NMR (400 MHz, DMSO-d6) δ (ppm) = 7.87 (d, J = 8.8 Hz,
2 Ha), 7.53~7.56 (m, 2 Hb and 2 Hc), 5.03 (t, 4H, CCOH) 3.84 (m, 8 H, CH2CH2OH), 3.71 (m,
8 H, CH2CH2OH). MS (ESI+): calcd. for C20H26N3O4S+ m/z = 404.16, found m/z = 404.2.

2.2. Apparatus

We used a Thermo Genesys 6 UV–visible spectrophotometer to collect the absorption
spectra. A HORIBA JOBIN-YVON Fluoromas-4 spectrofluorometer was used to record
fluorescence spectra on with a 1-nm bandpass in a 1-cm cell length at room temperature. EI
mass spectra were recorded using a MAT 95XL double-focusing mass spectrometer from
FINNIGAN MAT. Precision weights were determined via the peak-matching method. 1H
NMR spectra were recorded on a VARIAN Mercury 400 MHz spectrometer. The spectra of
samples of DMSO-d6 were recorded, and chemical shifts (δ) are given in ppm downfield
from Me4Si, determined by chloroform (=7.26 ppm). The cellular fluorescence images were
obtained using a Leica AF6000 fluorescence microscope combining a Leica DFC310 FX
digital color camera. The light source from Xenon Light Source LAX-Cute (Asahi Spectra,
Torrance, CA, USA) with a 400–700 nm cube and a 510 long pass filter was used to measure
the singlet oxygen yield and PDT effect. An ultrasonicator (CDS-100) in 22 ◦C ± 3 cold
water was used as the ultrasound source for measuring the singlet oxygen yield and SDT.

2.3. Cell Culture

A549 lung cancer cells were cultured in MEM and cultured in a 37 ◦C incubator
containing 5% CO2. The cells were purchased from Bioresource Collection and Research
Center (BCRC). Minimum Essential Medium (MEM), phosphate-buffered saline (PBS),
penicillin streptomycin (Pen-strep), MEM nonessential amino acids (MEM-NEAA), and
fetal bovine serum (FBS) were purchased from Invitrogen. The cell experiment was carried
out in a 3 cm petri dish, and 2 × 105 cells were seeded into the petri dish and cultured
overnight. On the second day, the precalculated concentration of the compound and the
culture solution were added, shaken evenly, and placed in the culture room for culture.

2.4. MTT Assay

Cells were seeded in 96-well plates (2 × 103 cells per well) and placed in an incubator
at 37 ◦C in a 5% CO2. They were then treated with different concentrations (1 to 20 µM)
of the compound for 12 h to examine the short-term cytotoxic effect. Subsequently, the
culture medium was refreshed, and the plates were irradiated or ultrasonicated and then
incubated overnight at 37 ◦C. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide (MTT) was used to determine and analyzed the cytotoxicity by an automatic
microplate reader (Multiskan EX, Thermo Electron Corporation, Vantaa, Finland) fixing at
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595 nm. The data error bars were achieved based on three independent experiments. The
dark toxicity means that the cells are incubated with compounds but no light or ultrasound
treatment, and the control assay means that cells were not incubated with any compound
but with light or ultrasound treatment.

2.5. Hydrophilic–Lipophilic Balance (LogP)

The lipophilicities of theses photosensitizers were defined in terms of logP, which is
the logarithm plot of their partition coefficients relationships between phosphate-buffered
saline and 1-octanol. The data were calculated using the standard spectrophotometric
method based on the following relationship:

LogP = Log [(A − A1)/A1 × Vw/Vo]

where A and A1 are the intensities of absorption before and after partitioning, respec-
tively, and Vw and Vo are the divided volumes of the aqueous and 1-octanol phases. The
determinations were repeated three times.

2.6. Design of PDT and SDT Apparatus Setting
2.6.1. Measurement of Photoinduced ROS and Cytotoxicity Assay

As shown in Figure 1, the white light (400~700 nm) was produced by a 100 W Xenon
lamp with 20% output and then passed through mirror module (400–700 nm, Figure 1a).
Eventually, the desired light source with a wavelength range of 510~700 nm was achieved by
a 510 nm long pass filter (Figure 1b). The singlet oxygen quantum yield from the compound
was determined using the photo-steady state method using 1,3-diphenylisobenzofuran
as the scavenger in DMSO. For the cellular cytotoxicity assay, varying concentrations
of compounds were incubated with human lung A549 cancer cells in the dark for 12 h.
Subsequently, the culture medium was refreshed and then irradiated using a light source
as described above (the light power was 15 mW/cm2 on the dish surface, which was
measured using an optical power meter, Figure 1c) and then incubated overnight at 37 ◦C.
All of these experiments were performed in triplicate and presented an average from three
individual runs.
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Figure 1. Schematic diagram of light source conditions. The proprietary mirror module (400~700 nm)
with only the desired wavelength range (white light) from the xenon light source (a). The system
could also emit 510~700 nm by the bandpass 510 nm filter (b). The 15 mW/cm2 light power was
output to the dish surface (c).

2.6.2. Measurement of Sono-Induced ROS and Cytotoxicity Assay

As shown in Figure 2, ultrasonic water baths (frequency is 42 kHz, power 35 W) as the
energy source of ultrasound (US) were applied for spectral and cell disk measurements,
respectively. Prior to ultrasound exposure, the cell-containing culture plate was placed
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on a platform and then immersed in a tank (0.5 W/cm2 with a frequency of 1.7 MHz in
continuous waves) containing degassed water (16 × 4.5 cm). A transducer emitting plane
waves with 48-mm-diameter was fixed at the bottom of the tank, allowing the ultrasound
beams to point upward. The distance between the bottom of the culture plate and the
transducer was 2.5 cm.
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2.7. Sinlet Oxygen (1O2) Detection Using a Chemical Probe

A chemical trap DPBF has been used to detect 1O2 [44]. A DMSO solution of MB
(2 mL, with 1 absorbance (OD) of at 670 nm) was mixed with DPBF (with 1 absorbance (OD)
of at 418 nm). The mixed solution was sonicated in a glass vessel (diameter of 2.5 cm) for
10 min with an ultrasound device (CDS-100) at 42 kHz. The absorption spectra of the sample
solution after ultrasonic treatment were recorded using a UV–Vis Spectrophotometer
(Thermo Genesys 6, Madison WI, USA).

2.8. Double Stain Apoptosis Detection (Hoechst 33342/PI)

We used a staining assay, propidium iodide (PI, P3566, Invitrogen, Waltham, Mas-
sachusetts, USA) and Hoechst 33342 (H-1399, Invitrogen, USA), to characterize SDT-
mediated phototoxicity by using a fluorescence microscope, which were stained after
sonicating performances. The blue-fluorescence dye Hoechst 33342 (ex/em~350/461 nm)
stains the condensed chromatin more brightly in apoptotic cells than the chromatin in
normal cells. The PI, red-fluorescence dye (ex/em~535/617 nm), is only permeant to
dead cells through the damaged member. Thus, the staining pattern resulted from the
simultaneous use of these dyes makes it possible to distinguish normal (blue−/red−),
apoptotic (blue+/red−), and dead cell (blue+/red+) populations by flow cytometer and
fluorescence microscopy [45,46].

3. Results
3.1. Molecular Basic Spectroscopic Properties

Figure 3a–c shows the solvent effects on the absorption and fluorescence spectra of
the three phenothiazine derivatives. The absorption spectrum curve of MB6C shows a
relative redshift (725 nm) in the water environment with a lower extinction coefficient,
which is indicative of aggregation with a higher dimer ratio (shoulder 650 nm) than in
other solvents. The opposite trend is observed in MBOH with progressively diethanolated
analogs of methylene blue. This fact confirmed that the peak broadening is not observed
in MBOH. Moreover, we observe that MB and MBOH do not dissolve in ethyl acetate
and toluene as MB6C does. This means that MBOH is relatively more hydrophilic while
MB6C is more hydrophobic with respect to MB. The octanol-buffer partition coefficients
were studied to check the LogP of these compounds. Figure 3d clearly shows that MB
(LogP = −0.1) and MBOH (LogP = −0.54) are hydrophilic, with more than 90% in the
aqueous phase. The longer-chain analogs MB6C ((LogP = +1.3) are more hydrophobic,
which causes 90% partition in the octanol phase. Please note that the NMR chemical shifts
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for these three molecules are very similar. In particular, the aromatic region (6~9 ppm,
Figure 3e) shows three sets of chemical shifts: doublet, doublet–doublet, and a set of meta
doublets. This is the standard spectrum of the 3,6-disubstituted phenothiazinium core.
Thus, we speculate that there is no difference in the electronic configurations of these three
compounds, which is why they reveal similar optical behaviors in most of the solvents in
Figure 3. However, when MB and MBOH are dissolved in EA and MB6C in water, they
present apparent differences compared to other solvents. We inferred that this result can
be caused by the molecular structure, which results in the observed solubility and the
tendency of molecules toward aggregation.
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comparison of the NMR chemical shifts (aromatic region) for these three molecules (e).

3.2. Generation and Stability of Singlet Oxygen

The singlet oxygen yields were checked by tracing the variation of the known singlet
oxygen reactor 1,3-diphenylisobenzofuran (DPBF) with photo/sonosensitizer-generated
singlet oxygen. The oxidative rates of DPBF by these compounds in DMSO solvent were
investigated under light irradiation/ultrasonic waves. By following the disappearance of
the 418 nm absorbance band of DPBF at the initial concentration of 50 µM in the presence
of 15 µM of these compounds, it is shown that singlet oxygen generation occurs during
the reaction. Methylene blue (MB) is a well-known type II ROS photosensitizer; here, we
use MB as the singlet oxygen generation standard. Figure 4a–c shows the changes in the
absorption spectra of DPBF in MB, MBOH, and MB6C after light (510 nm long pass, light
power 15 mW/cm2 with variable irradiating times) illumination. All the absorption peaks
of DPBF at 418 nm decrease with increasing irradiation time. Meanwhile, the control assay
in Figure 4d with their decreasing behavior shows no degradation of the DPBF trap without
the addition of the compound. These curves inserted in Figure 4d show that MB exhibits
better singlet oxygen generation ability in DMSO solvent.
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A similar trend is also found in the ultrasonicated singlet oxygen generation assay.
Figure 5a–c shows that the absorption peaks of DPBF in phenothiazine derivative-containing
DMSO solution decrease with increasing ultrasonic oscillating (using a 42 kHz/35-watt
ultrasound source) processing time. It must be stated here that the DPBF will also be
quenched when subjected to light irradiation. Thus, to avoid the absorption energy of
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DPBF, we used the light output of the 510 nm long pass as the light source in Figure 4.
However, ultrasound cannot avoid this phenomenon. During the experiment, the entire
dish was surrounded by ultrasonic energy in the tank, and the free DPBF was also affected
(Figure 5d). There are other ways by which the ultrasound mechanism can generate
ROS, and it is also possible to consume free DPBF without a photosensitizer (sonosen-
sitizer). Although it was observed that US can also cause free DPBF to disintegrate in
the blank experiment, we can judge that the three molecules indeed have the potential to
be sonosensitizers, as shown in Figure 5d, and the rate of singlet oxygen generation by
these phenothiazines is as follows: MB > MB6C > MBOH. Nevertheless, we conclude that
both MB-OH and MB6C can successfully produce singlet oxygen under luminescence and
US conditions.

3.3. Cellular Toxicity

The combination of light illumination and photosensitizer resulted in cellular photo-
toxicity. Figure 6a presents the cell morphologies from A549 lung cancer cells incubated
with or without phenothiazine derivatives before and after irradiation, and then cell death
was estimated overnight. Figure 6b summarizes the concentration-dependent dark toxicity
and phototoxicity cell viability plots. The A549 lung cancer cell lines display no deter-
minable dark toxicity or phototoxicity with MB and MBOH up to a concentration of 20 µM.
MB6C shows more efficient dark toxicity (with EC50 at ~7 µM) and phototoxicity (with
EC50 at ~2.5 µM) than the others, although this compound offers a lower singlet oxygen
quantum yield than MB. Figure 6a also shows that cells become highly condensed after
ROS are triggered from MB6C, and the cell morphology clearly shows that in the 5 µM
condition, the cells are slightly dark-toxic before irradiation. Increasing the chain length
from methyl to n-hexyl results in an increase in intracellular toxicity. This means that there
is no correlation between intracellular phototoxicity and ROS generation ability. We infer
that the different cellular toxicities of these phenothiazine derivatives are most likely due
to cellular uptake, as shown in Figure 6c. We tried to quantitively assess the compound
accumulation in the cells and found that only MB6C presents clearer intracellular fluores-
cent image signals, even though the emissions of these molecules are all weak and similar,
as shown in Figure 3. There is no doubt that MB shows no toxicity in our experimental
concentration range because it is known to present low cellular toxicity EC50 values of
147 µM in dark toxicity and 54 µM in phototoxicity [42]. MBOH presents very low cellular
dark toxicity and phototoxicity, which probably due to its low logP (higher hydrophilicity
than MB), causing the low cellular uptake of the compound.

The above results suggest that MB6C is a potential reagent for studying intracellular
photosensitization, the oxidative stress of PDT. Meanwhile, we expect that MB6C should
exhibit more efficient SDT than MB and MBOH. Following to the incubation of the cells with
MB6C for 24 h and the exposure to ultrasonication for 20 min and then culture overnight,
Figure 7a shows that the cells exhibit different morphologies and become somewhat
condensed. A further cell death occurs after repeating one cycle of ultrasonication and
incubation (total: ultrasonicate then incubation overnight ×2). The EC50 values for SDT
of MB6C are ~5 µM and ~1.5 µM for one and two cycles of ultrasonicated treatments,
respectively. Herein, the ultrasound power must be adjusted to avoid damaging the cells
without molecular incubation. There is no doubt that MB6C is a potential reagent for SDT.
Table 1 shows the dark toxicity, phototoxicity, and sonotoxicity of the phenothiazines in
A549 cells after 12 h of incubation.
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Figure 6. (a) Several extracted bright-field photodamage photographs from A549 lung cancer cells
incubated with or without phenothiazine derivatives, 5 µM MB, MBOH, and MB6C and 3 µM of
MB6C, for 12 h in order to check the dark toxicity. Then cells were irradiated with an average
18 J·cm−2 of light source (510 nm lp) for 20 min and cell deaths were estimated after a further 12 h.
(b) Dark toxicity and phototoxicity cell viability plots of A549 cells treated with variable concentrations
of phenothiazine derivatives, as in the experiment in (a). Each datapoint is the average from three
separate experiments. (c) Fluorescent photodamage images extracted from experiment (a) to check
the cellular uptake for every compound in (a).
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Figure 7. (a) Bright-field sonodamage images from A549 lung cancer cells incubated with or without
phenothiazine derivatives, 5 µM MB, MBOH, and MB6C and 3 µM MB6C, for 12 h and then ultrason-
icated for 20 min (conditions are as described in the experimental section, scale bar: 50 µm). (b) Cell
sonotoxicity plots of A549 cells treated with variable concentrations of phenothiazine derivatives, as in
experiment (a) but ultrasonicated twice; each datapoint is the average of three individual experiments.

As can be seen from the results in Figures 3 and 4, increasing the alkyl chain length and
altering the hydrophilicity of the NR2 did not change the singlet oxygen generate ability. On
the other hand, the bio-assay result reveled that longer chain methylene blue MB6C showed
improved intracellular phototoxicity with a higher uptake. These results are consistent with
the literature [42]. Despite this, as can be seen from Figure 3c, we still need to be concerned
about the intracellular aggregation problem of MB6C. Thus, as demonstrated in Figure S7,
the concentration effect of these phenothiazine derivatives was checked and it was found
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that more hydrophilic MBOH seems to have no apparent aggregation, while MB showed
more obvious aggregation (wavelength 610 nm) at high concentration. In contrast, based
on specific absorption spectral shifts and patterns, accompanied with the almost complete
quenching of emission, we inferred that MB6C was able to aggregate through a different
mechanism, which could cause the inactivation of optical behaviors, such as emission and
singlet oxygen generation. Furthermore, the SOSG assay in Figure S8 pointed out that
the compound MB6C actually presented a weaker ability for singlet oxygen generation in
aqueous solution.

Table 1. LogP (octanol: buffer partition coefficients) values, dark-, photo- and sonotoxicities of the
phenothiazine derivatives after 12 h incubation in A549 cancer cells.

LogP
Toxicity (IC50, µM)

Dark- Photo- Sono- *

MB −0.1 >20 >20 >20
MBOH −0.54 >20 >20 >20
MB6C +1.3 ~7 ~2.5 5 (×1), 1.5 (×2)

* The EC50 values for SDT of MB6C is ~5 µM and ~1.5 µM for one and two cycles of US treatments, respectively.

The preceding discussion seems to indicate that MB6C is not suitable for applying
PDT in water condition, let alone SDT. However, our bioassay results presented the positive
responses. MB6C implemented intracellular fluorescence images, better cellular uptake,
phototoxicity, and ultrasonic toxicity over MB and MBOH. These phenomena suggested
that MB6C is unlikely to stay in a hydrophilic environment in the cells so that it could
exhibit above optical behavior. Proposing the cell death mechanism for MB6C-induced
SDT, Figure S9 shows the double stain result from Hoechst/PI and we observed, during
the current period of SDT execution, apparent blue emission enhancement in the nucleus
but no red fluorescence. It was inferenced that DNA condensed while the nuclear member
is intact. The nucleus then dramatically presented red fluorescence enhancement from PI
after the second ultrasonication proceeding. This is a symptom of the rupture of the nuclear
membrane damage during a later period of sonication. That is, this cell death pathway
is more or less related to pro/anti-proteins in mitochondrial [47], and this phenomenon
seems to be consistent with the inferences above, in the early stage of cell death (staining
with the two probes, immediately after ultrasonication).

We prepared and studied phenothiazine derivatives, the analogs of MB, and evaluated
their ROS to improve phototoxicity and sonotoxicity against cancer cells in vitro. Com-
pound MB6C is more efficient than other compounds with particular cellular toxicity. Based
on our studies, spectral photo- and sonodynamic activity levels correlate with the cellular
phenothiazine levels and subcellular behaviors of these photosensitizers or sonosensitizers.
All these MB analogs are localized in the cytoplasm, with MB6C presenting the highest
uptake. We infer that this is why MB6C exhibits better PDT and SDT. However, upon expo-
sure to light, MB6C does not relocalize into the nucleus, as MB does [39]. This phenomenon
also does not occur in ultrasonicated systems. Therefore, MB6C, a more hydrophobic MB
analog, shows significantly improved PDT and SDT. In addition, this compound makes
it possible to avoid the problems of PDT/SDT-induced photosensitizer/sonosensitizer
relocation to the nuclear, which causes mutagenicity.

4. Conclusions

We synthesized two symmetrical phenothiazine derivatives, in which the methyl
groups of methylene blue were substituted by hexyl and hydroxyethyl chains. Spectral
studies indicate that the intrinsic photosensitizing ability was not altered. Here, the first
conclusion is that these MB analogs exhibit a sonosensitizing ability with a similar tendency
to photosensitizing ability. This means that MB, MBOH, and MB-6C can be potential
photosensitizers and sonosensitizers. However, in terms of the in vitro phototoxicity and
sonotoxicity after cell-assays, a more hydrophobic MB6C, implemented intracellular fluo-
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rescence images, better cellular uptake, phototoxicity, and ultrasonic toxicity over MB and
MBOH can result in the improved PDT and SDT of methylene blue derivatives. Eventually,
potential PDT and SDT candidate MB6C exhibits efficient intracellular phototoxicity and
sonotoxicity with IC50 values of ~2.5 µM and ~5 µM, respectively. In addition, MB6C
is excluded from the nucleus, thus reducing the mutagenic potential of PDT and SDT.
Investigations utilizing animal testing are currently underway.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12157819/s1, Figure S1: H1 NMR spectrum of MBOH in
DMSO-d6 solution (400 MHz). Figure S2: C13 NMR spectrum of MBOH in DMSO-d6 solution
(400| MHz). Figure S3: H1 NMR spectrum of MB6C in DMSO-d6 solution (400 MHz). Figure S4:
C13 NMR spectrum of MBOH in DMSO-d6 solution (400 MHz). Figure S5: Electrospray ionization
mass spectra (ESI-MS) of MBOH (M/Z). Figure S6: Electrospray ionization mass spectra (ESI-MS) of
MB6C (M/Z). Figure S7: Concentration effect absorption (a) and emission (b,c) spectra of compound
MB (top), MBOH (middle) and MB6C (bottom). The emission spectra was collected by exciting
dimer form (b) and monomer form (c), respectively. Figure S8: The emission spectra recorded for
the Singlet Oxygen Sensor Green (SOSG) in the presence of three MB derivatives as a function of
illumination time. Following the experimental condition in Section 2.6.1 of manuscript, and the
excitation wavelength for the SOSG was 490 nm. The result also shows the singlet oxygen generation
plots, and the rate of singlet oxygen generation by compounds is as follows: MB~ MBOH > MB6C.
Figure S9: Following the experimental condition of Figure 7: (a) Before ultrasonication (no Hoechst or
PI treatment). (b) Cells were treated with Hoechst and PI once after ultrasonication. (c) second cycle
of ultrasonication and then overnight. The images of Hoechst-stained cells were collected by exciting
with a blue light which was guided through a 370 ± 10 nm bp filter, and the emission wavelength
rang was collected through a 450 nm lp filter (A cube). The images of PI-stained cells were excited
by a green light which was guided through a 530 ± 20 nm bp filter, and the emission wavelength
rang was collected through a 590 nm lp filter (N cube). Under this light intensity condition, the red
emission was from PI, not MB6C.
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