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Abstract: A ridesharing system is a transport mode where two or more users share the same vehicle
and divide the trip’s expenses based on similar routes and itineraries. Popular ridesharing systems,
such as Uber, Flinc, and Lyft, define a matching among users based only on the coincidence of routes.
However, these systems do not guarantee a stable matching (i.e., a matching in which no user prefers
another different from the assigned one). In this work, a new ridesharing system model is proposed,
including three types of trips: identical, inclusive, and partial. This model is used to introduce a
new algorithm to address the stable matching problem for ridesharing systems. Finally, a set of
experimental simulations of the proposed algorithm is conducted. Experimental results show that
the proposed algorithm always produces a stable matching.

Keywords: ridesharing; ride-matching; stable matching; sustainable transportation

1. Introduction

Vehicular congestion is a growing problem and one of the main challenges in most
cities in Mexico. Only in the metropolitan area of the Mexico valley, 6.60 million of
trips are made daily in a private vehicle, where the average number of occupants per
vehicle is barely 1.5 users [1]. Within this area, Mexico City stands out as the city with
the highest traffic congestion in North America, with a time lost in rush hours per year
of four days and twenty-three hours (Tomtom Traffic Index Ranking 2021. Available at:
https://www.tomtom.com/en_gb/traffic-index/mexico-city-traffic/ (date of consultation:
25 July 2022)). This traffic congestion is in part because most users tend to use private
vehicles rather than public transport, despite the adverse impact both economically and
environmentally [2,3]. Traffic congestion also implies a considerable economic investment
in road infrastructure and security controls.

Some public policies and technological solutions have been proposed to mitigate the
problem of vehicular congestion. An example of a public policy in this vein is the imple-
mentation of the ‘today does not circulate’ program in Mexico (“hoy no circula” in Spanish),
in which some restrictions are applied to the usage of the vehicle for certain days [4]. Some
technological solutions raised to cope with this problem are autonomous vehicles [5,6],
vehicular networks [7], Internet of Things [8], among others [9]. From these technological
solutions, ridesharing systems stand out by their current applicability [10,11]. A rideshar-
ing system is a mode of transportation where two or more users share the same vehicle
and divide travel expenses (such as fuel, tolls, and parking fees) based on similar routes
and itineraries [12,13]. Compared to other conventional means of transport, a ridesharing
system maintains the flexibility and comfort of a particular vehicle in combination with
rates and prices similar to public transportation [14].

Nowadays, ridesharing systems support a dynamic allocation process between par-
ticipants considering times and routes [13]. The demand of multiple users (passengers
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and drivers) seeking to share a trip implies defining a relationship between them. Es-
tablishing this relationship of users based on their preferences is known as the ride-
matching problem [15,16]. Current ridesharing systems provided by companies such
as Uber (https://www.uber.com/, accessed on 25 July 2022), Flinc (https://flinc.org/,
accessed on 25 July 2022), and Lyft (http://www.lyft.me, accessed on 25 July 2022) are
based on a simple matching algorithm that allocates users only based on their traveling
route [17,18]. According to [18,19], these commercial systems employ a user-matching
scheme limited by two main aspects: (1) the driver’s destination depends on the passen-
ger’s destination; (2) the cost of the service is defined by a provider based on distances and
times, without considering the cost-sharing of both the passenger and the driver.

According to [20], the extant literature on the ride-matching problem focuses mainly
on settings considering ridesharing optimization, dynamic ridesharing pricing, and cost-
sharing schemes. Some works regarding ridesharing optimization address issues about
vehicle routes and the improvement of ridesharing matching rates [13,21]. For example,
Guan et al. [22] studied the bounded rational users’ travel decision-making from a perspec-
tive of a multi-objective problem. In particular, they sought to maximize the number of
users willing to share a trip while minimizing the total vehicle usage cost. On the other
hand, research on dynamic ridesharing pricing commonly addresses several problems with
the pricing and dispatching rules governing the ridesharing platforms [23]. A particular
concern in these works is that trips may be mispriced relative to each other, especially when
spatial imbalance and temporal variation of supply and demand incentivize drivers [24].
Finally, other research efforts study cost-sharing schemes about allocating cost savings as
an important factor in the adoption of ridesharing by the users [25–27]. In [25], Hsieh et al.
proposed a simple cost-sharing scheme based on a double auction mechanism involving the
passenger and the driver. Their solution approach includes a particle swarm optimization
algorithm to maximize cost savings while respecting timing constraints. In [26], a study to
compare metaheuristic algorithms intended to optimize monetary incentives in ridesharing
systems is performed. A theoretical study on the comparison of cost-sharing schemes
in ridesharing literature is proposed in [27] to provide a guideline for characterizing the
performance of proportional methods. Nevertheless, compared with the current research
on these topics, a limited number of works on the ride-matching problem deal with stable
matching (a matching in which no user prefers another different from the assigned one).

Formally, the stable matching problem represents a pairwise relationship M between
users of two disjoint sets, passengers and drivers, where no user prefers to other one
different from the current assigned [28]. Given two passengers, p1 and p2, and two drivers,
d1 and d2, where the assigned pairs (p1, d2) and (p2, d1) are part of a matching M. A block-
ing pair (p1, d1) exists with respect to M if p1 prefers to d1 more than d2, and d1 prefers
to p1 more than p2. Formally, a stable matching exists if there is no blocking pairs. The
concept of stability can be applied to different matching models such as one-to-one [28],
many-to-one [29], and many-to-many [30]. However, finding a stable matching (in any of
its variants) of maximum cardinality is NP-hard [31].

In particular, the ride-matching problem can be studied through the well-known
hospital/resident problem proposed in [31], in which a set of medical residents seek
a position in a set of hospitals. While each resident ranks hospitals according to their
preferences, each hospital ranks the applicant residents for its available positions. If the
number of available hospital resident positions and the number of medical applicants is
different, the problem is the stable matching with incomplete lists. Stability is not possible
for different cardinalities in the matching sets [31].

A variety of matching models explore the concept of stability for dynamic ridesharing
considering relationships of one-to-one or many-to-one. While one-to-one matching applies
to a simple setting with unit vehicle capacity [32–36], many-to-one matching allows multi-
capacity settings. Regarding the many-to-one matching, where one vehicle can serve
multiple passengers simultaneously, some research efforts have been proposed [37–39].
For example, a recent taxi-sharing model considering many-to-one matching is proposed
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in [37]. The passenger’s preference depends on the taxi and the co-riders in their model,
which is reformulated to a scheme-based set partitioning model that a branch-and-price
algorithm can solve. The proposed branch-and-price algorithm achieves stable matchings
and, in some cases, nearly stable matchings. In [38], a many-to-one matching model
involving shared autonomous vehicles (SAV) is proposed. Their model characterizes the
waiting times of an SAV and multiple passengers who share rides in the SAV during online
matching. A new multimodal autonomous ridesharing user equilibrium is introduced in
their work in order to characterize the SAV traveler flow while considering seat capacity
utilization. Passengers, dedicated drivers, and SAV have different behaviors impacting the
matching decisions regarding these works. On the other hand, from the game-theoretical
perspective, a many-to-one matching game is proposed to address stable solutions focused
on the route-cost-assignment in [39]. Their model outputs a stable payoff space for the
post-evaluation of cost allocation mechanisms. A current comprehensive review of all these
topics can be found in [40]. However, most many-to-one matching models providing stable
solutions do not consider diverse types of trips between users.

This paper addresses the stable matching of users in ridesharing systems. The con-
tribution of this work is twofold. First, a new ridesharing system model is introduced.
This model considers users’ preferences based on two fundamental aspects of the service:
travel savings and the reputation of users (both passengers and drivers). Travel savings
consider three types of trips (identical, inclusive, and partial), where one of them is novel
in the literature. The reputation of users is computed through a modified version of the
EigenTrust algorithm [41] for peer-to-peer systems. In the proposed model, a driver may
pick up more than one passenger during the trip while respecting timing and capacity
constraints, such as the slack time and the number of available seats. To address these
constraints, the model assumes that the driver–passenger utility evaluation is independent
of interacting with other users. Second, a new stable matching algorithm for the rideshar-
ing system services is presented. This algorithm consists of a new iterated version of the
Gale–Shapley algorithm [28]. In contrast with [33,35], in the proposed model, the capacity
of each driver can be greater or equal than one, and it does not require that passengers and
drivers sets have the same cardinality. To achieve this, the assumption of complete and
strict preferences are relaxed through the concept of a ‘waiting list’. A demonstration that
the algorithm always guarantees a stable matching solution (as well as its execution time
analysis) is provided. Besides, the proposed model and the algorithm’s convergence were
also verified empirically through experimental simulations involving a benchmarking of
2880 random bipartite graphs as test cases. Experimental results show that the proposed
algorithm always converges to a stable matching solution for all test cases.

This paper is organized as follows. Section 2 defines a new ridesharing model based
on two main aspects of the services: the savings and the reputation of users. Section 3
presents the proposed algorithm to solve the stable matching in ridesharing systems.
Section 4 describes the experimental simulations conducted to measure the efficiency of the
proposed algorithm empirically. Finally, Section 5 presents some concluding remarks and
future work.

2. The Proposed Model

A network of roads is modeled through a directed multi-graph G = (V, A), where
the set of vertices V represents the intersections or corners in the network, and the set of
edges A the road segments. Let u be a user traveling through a path (or route) in G. The
route of u, from v0 to vk, is a sequence Ru = v0a1v1a2 · · · akvk, where {v0, v1, . . . , vk} ∈ V,
{a1, a2, . . . , ak} ∈ A, and each ai connects vi−1 to vi, ∀i ∈ [1, k]. A route
R′u = v′0a′1v′1a′2 · · · a′jv′j is a proper subroute of Ru = v0a1v1a2 · · · akvk iff j < k y v′0 = vi, a′1 =

ai+1, v′1 = vi+1, · · · , a′j = ai+j, v′j = vi+j. Additionally, a weight function w : A→ R+ de-
notes the length of each road segment in G. The total length of Ru is computed through the
function w̆(Ru) = ∑k

i=1 w(ai), ∀ai included in Ru.



Appl. Sci. 2022, 12, 7797 4 of 16

Two types of users, passenger and driver, are defined. Let p be a passenger requesting
a ridesharing service to reduce either the costs generated by using its own vehicle or the
travel times spent by using public transportation. On the other hand, let d be a driver
bidding a ridesharing service by considering σd available places in its vehicle over the
route Rd. Both types of users, p and d, can travel together by establishing a joint route Rpd
as follows:

1. Identical ridesharing: Rp = Rd, then Rpd is also the same.
2. Inclusive ridesharing: Rp is a proper subroute of Rd (or the opposite). For this case,

Rpd is equal to this proper subroute.
3. Partial ridesharing: Rpd is the longest proper subroute that is common between Rp

and Rd when Rp 6= Rd.

The type of ridesharing 3 differs from that described in the literature [12,40]. In the
partial ridesharing proposed here, it may be that none of the origin or destination points are
included in Rd. Figure 1 illustrates the types of ridesharing allowed in the proposed model.
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Figure 1. Types of ridesharing based on the routes. (a) identical. (b) inclusive. (c) partial.

Let πp→d be the utility of p when he/she shares its trip with d through Rpd. Equation (1)
models this utility based on two fundamental aspects of the ridesharing service: (1) the
travel savings of p by sharing its trip with d expressed by the function sp(Rpd); and (2) the
global reputation of d calculated by function r(d) ∈ [0, 1]. The coefficients β0 and β1 are two
constants weighting the relevance levels for both aspects of the ridesharing service, where
β0, β1 > 0.

πp→d = β0 · sp(Rpd) + β1 · r(d). (1)

Note that πp→d is not necessarily equal to πd→p.
An important assumption of the presented model is that the driver–passenger utility

evaluation is independent of interacting with other users. In this vein, travel savings
and reputations are computed involving only two users, discarding the information of
the others.

2.1. Travel Savings

The cost of the ridesharing service provided by p and d depend on the spatial and
temporal characteristics of the trip. Consider a user u (of the type p or d, interchangeably)
traveling through the route Ru. The transfer cost of u traveling by Ru is expressed in
Equation (2) by considering the unit price of fuel (gas), the vehicle performance measured
by miles per gallon (mpg), and the payment of services such as tolls, parking fees, or public
transportation (fees). Note that if u does not have a particular vehicle, the transfer cost
only depends on the fees.

c(Ru) = w̆(Ru) · gas/mpg+ fees. (2)
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Let zu→Ruv be the cost savings when u shares its trip with another user v through the
joint route Ruv. The cost savings depend on the type of user, as expressed in Equation (3).

zu→Ruv =

{
c(Ru)− c(Ruv)/2, if u is a passenger;
c(Ruv)/2, if u is a driver.

(3)

Let tu→Ru be the estimated length of time in which u travel from its origin to its desti-
nation through Ru. Then, the time savings of u following a joint route Ruv with a user v
(instead of its original route) is expressed as tu→Ru − tu→Ruv . On the other hand, a slack time
ηu indicates the time interval in which u is willing to wait for v at the origin point of Ruv.
Let t0

u→Ruv
be the instant of time in which u estimates to arrive to the origin point of Ruv.

Equation (4) computes the total time savings for u considering the joint route Ruv.

tu(Ruv) = tu→Ru − tu→Ruv + (ηu − |t0
u→Ruv

− t0
v→Ruv

|). (4)

Note that, traditionally, ηu − |t0
u→Ruv

− t0
v→Ruv

| is positive; however, it could be nega-
tive depending of the times saving estimated for the joint route Ruv. Thus, the travel savings
generated by u when sharing its trip with v through Ruv are calculated by Equation (5).

su(Ruv) = zu→Ruv + αtu(Ruv), (5)

where the coefficient α weights the importance assigned by the user about the times, and it
allows the comparison between different magnitudes.

2.2. Reputation System

The proposed model uses a reputation system to assign a level of trust to each user
regarding the quality of the service provided. In particular, this work uses a version of the
EigenTrust algorithm of [41] to obtain, manage, and assign a reputation to each user (of
type p or d) in the ridesharing system. This algorithm uses the notion of transitive trust,
where the trust value of each user is generated from the authentic opinion of those with
whom they have directly interacted. All users participate in the calculation of the trust
values in a distributed way in peer-to-peer systems, making it easily scalable and efficient
in terms of computational complexity [42,43]. The EigenTrust algorithm outputs a global
trust value, or global reputation, for each user on the system.

Assume a set of users U = {u1, u2, . . . , un} in the ridesharing system, where every
ui ∈ U is a user of type p or d interchangeably. By using the EigenTrust algorithm, a user ui
evaluates every transaction or service received by a user uj in the ridesharing system. Let
Yui→uj be the set of services that ui received from uj, then the local reputation of uj consists
of the aggregation of the evaluation results performed by ui. The local reputation of uj
from the perspective of ui is defined in Equation (6).

mui (uj) = ∑
z∈Yui→uj

Υui (z), (6)

where Υui is a function that evaluates the transaction or the service provided by uj based
on the following metrics:

• Punctuality. This metric has a value of +1 if the service provided by uj starts on time;
otherwise, the value is −1.

• Cordiality. This metric has a value of +1 if the service of uj was kind and respectful;
otherwise, the value is −1.

• Satisfaction. This metric has a value of +1 if the service provided by uj fulfilled the
expectations; otherwise, the value is −1.

• Safety. This metric has a value of +1 if the service provided by uj and the users
involved in it are considered ‘trustworthy’; otherwise, the value is −1.
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The reputation that ui locally assigns to uj, denoted as mui (uj), is normalized consid-
ering the previous rated users. This normalization seeks to avoid that arbitrary values
can be assigned to ‘malicious’ users and that users with more services prevail over others.
Equation (7) presents a normalized version of mui (uj) when ∑j max(mui (uj), 0) 6= 0. If ui
does not know anyone or does not trust anyone, then m̂ui (uj) = 1/(n− 1) where i 6= j.

m̂ui (uj) =
max(mui (uj), 0)

∑j max(mui (uj), 0)
. (7)

Note that negative scores are truncated to 0 in Equation (7). This truncation prevents
the ‘selfishness’ of some users from assigning arbitrarily low values to good users. It also
avoids the whitewashing of poor services since there is no distinction between those services
and the new ones.

Local reputation values are disseminated and aggregated based on a transitive reputa-
tion schema to compute a global reputation in the system. Under this scheme, ui estimates
the reputation r̂0

ui
(uk) from any unknown user uk. To perform such an estimation, ui

requests the local reputation of uk to each user of type ui with whom uk has interacted,
i.e., m̂ui (uk). Thus, the trust value that ui assigns to uk is based on the opinions of its
acquaintances, as expressed in Equation (8).

r̂0
ui
(uk) = ∑

j
m̂ui (uj) · m̂uj(uk). (8)

Let M be a matrix [m̂ui (uj)] of dimension n× n, and let ~mui = [m̂ui (u1), . . . , m̂ui (un)]T

be the trust vector of ui with respect to each user in the system. Then, ~Rui

0
= MT ~mui =

[r̂0
ui
(u1), . . . , r̂0

ui
(un)]T represents the trust values of ui based on the opinions of its acquain-

tances. Additionally, ui can request the opinion of the acquaintances of its acquaintances

by computing ~Rui

1
= (MT)2 ~mui . After β iterations, and for a large β,~r n−1

ui
= (MT)β ~mui

represents a global opinion about each user in the system. Under the assumptions that M is
irreducible and not periodic [41], the confidence vectors of each ui in the system converge
to a single vector~r = [r(u1), . . . , r(un)] representing the left main eigenvector of M. Thus,
the global reputation of any user (of type p or d) computed by~r is considered in the utility
expression of Equation (1).

3. Stable Matching

In this work, an algorithm is proposed to solve the stable matching problem in rideshar-
ing systems according to the model described in Section 2. This algorithm is an “iterated”
version of the well-known Gale–Shapley algorithm [28], relaxing the original restrictions
concerning the equality in the size of the sets and the assumption of complete and strict
preference lists.

The set of users U of the ridesharing system consists of n = np + nd elements of the
type p and d, respectively. The number of available seats in the vehicle driven by a user
of type d is σd, where σd ≥ 1. When a matching occurs between a pair of users p and d,
a seat is assigned to p, decreasing σd in one. Let Nseats be the total of available seats in the
ridesharing system, i.e., Nseats = ∑d σd. Without loss of generality, assume that np ≥ Nseats
and δseats = np − Nseats. To ensure convergence to a stable matching, a waiting list µd is
assumed. This waiting list contains δseats = σµd remaining seats intended to those users of
type p that do not find a place in a vehicle. Since the waiting list represents the last option
for any passenger p, the model assigns πp→µd = −∞, and πµd→p = 1.

The proposed algorithm takes as input a complete bipartite graph B = (U, E), where
the set of vertices U = {p1, p2, . . ., pnp} ∪ {d1, d2, . . ., dnd , µd} and the set of edges E repre-
sents all possible allocations between users. Figure 2 illustrates an example of a complete
bipartite graph where np = 3 and nd = 2.
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Figure 2. Example of a complete bipartite graph B = (U, E).

Every user pi has a preference ranking to every user dj and vice versa. These prefer-
ences are computed through the estimated utility for each ridesharing service. Thus, each
edge eij ∈ E can be seen as two directed edges with a different weight according to their
directions, where eij and eji represent the utilities πpi→dj

and πdj→pi
, respectively. Figure 3

illustrates an example of a pairwise relationship between the vertices pi and dj, modeled as
two directed edges in the graph.
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Figure 3. Example of a pairwise relationship between a vertex of type p and other one of type d.

Let Bk = (Uk, Ek) be a bipartite graph after k iterations of the Gale–Shapley algorithm.
The matching in the k-th iteration consists of selecting a set Mk ⊂ Ek−1, for k > 0, such
that no pair of edges have a common vertex in Ek−1. In this context, the matching means
assigning a user pi to a user dj with σdj

available seats. Then, every matched vertex dj
“hosts” one vertex of type p, decreasing its available seats by one at each iteration k. Any
hosting vertex of type d in the iteration k represents a single vertex, called a ‘supervertex’,
for the iteration k + 1. For each iteration k, a subgraph Bk ⊂ Bk−1 is generated. Thus, Uk
contains the supervertices and the remaining vertices that were not chosen in Uk−1, and Ek
contains the edges of Ek−1 − Mk. Iteration matching ends in two cases. The first case
occurs when there are no available seats in vertices of type d; in this case, the remaining
users of type p match to the waiting list µd with its σµd = δseats seats. The second case
occurs when all the vertices of type p match a user of type d. Notice that this case only
occurs when Nseats = np. Figure 4 illustrates an example of a resulting bipartite graph
B1 = (U1, E1) after one iteration of the Gale–Shapley algorithm. Note that for this iteration
U1 = {p2, d1, d2} where vertices d1, d2, and µd are supervertices.
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d1

<latexit sha1_base64="rLuCyot27+fOKKq1cXBftQPqPDs=">AAAB5HicbZC7TgJBFIbP4g3xhprY2EwkJlZklwItCTaWEOWSwIbMDmdhwuwlM7MmZMMbaGXUzjfwLSx9ARufxeFSKPhX35z/n+T8x4sFV9q2v6zM2vrG5lZ2O7ezu7d/kD88aqookQwbLBKRbHtUoeAhNjTXAtuxRBp4Alve6Hrqt+5RKh6Fd3ocoxvQQch9zqg2o9t+r9TLF+yiPRNZBWcBhcpJ/Zu/Vz9qvfxntx+xJMBQM0GV6jh2rN2USs2ZwEmumyiMKRvRAXYMhjRA5aazVSfk3I8k0UMks/fvbEoDpcaBZzIB1UO17E2H/3mdRPtXbsrDONEYMhMxnp8IoiMybUz6XCLTYmyAMsnNloQNqaRMm7vkTH1nuewqNEtFp1x06k6hUoW5snAKZ3ABDlxCBW6gBg1gMIBHeIFXy7cerCfreR7NWIs/x/BH1tsPq92Oxg==</latexit>

d2

<latexit sha1_base64="jH1BUzR3eq1uVMG5Y9stv902G/Y=">AAAB5HicbZC7SgNBFIbPxluMt6ilIoNBsAq7CmoZtLFM0FwgWcLs5GwyZPbCzKwQlpR2Wona+Rx5CF/AZ/AlnFwKTfyrb87/D5z/eLHgStv2l5VZWl5ZXcuu5zY2t7Z38rt7NRUlkmGVRSKSDY8qFDzEquZaYCOWSANPYN3r34z9+gNKxaPwXg9idAPaDbnPGdVmdBe3z9v5gl20JyKL4MygUDocVb4fj0bldv6z1YlYEmComaBKNR071m5KpeZM4DDXShTGlPVpF5sGQxqgctPJqkNy4keS6B6Syft3NqWBUoPAM5mA6p6a98bD/7xmov0rN+VhnGgMmYkYz08E0REZNyYdLpFpMTBAmeRmS8J6VFKmzV1ypr4zX3YRamdF56LoVJxC6RqmysIBHMMpOHAJJbiFMlSBQRee4Q3eLd96sl6s12k0Y83+7MMfWR8/zXaO3Q==</latexit>p3

<latexit sha1_base64="Q1POqsy6PTq3HsspMU3vbRR5b7o=">AAAB5HicbZC7TgJBFIbPekW8oZYaM5GYWJEdC7Uk2lhClEsCGzI7nIUJs5fMzJoQQmmnlVE7n4OH8AV8Bl/C4VIo+FffnP+f5PzHT6TQxnW/nKXlldW19cxGdnNre2c3t7df1XGqOFZ4LGNV95lGKSKsGGEk1hOFLPQl1vzezdivPaDSIo7uTT9BL2SdSASCM2NHd0mLtnJ5t+BORBaBziBfPBqVvx+PR6VW7rPZjnkaYmS4ZFo3qJsYb8CUEVziMNtMNSaM91gHGxYjFqL2BpNVh+Q0iBUxXSST9+/sgIVa90PfZkJmunreGw//8xqpCa68gYiS1GDEbcR6QSqJicm4MWkLhdzIvgXGlbBbEt5linFj75K19el82UWonhfoRYGWab54DVNl4BBO4AwoXEIRbqEEFeDQgWd4g3cncJ6cF+d1Gl1yZn8O4I+cjx/Keo7b</latexit>p1

<latexit sha1_base64="QnegHkHDBx+9g1aV4w87oQRmUmI=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiIxcUVaQ9Ql0Y1LTCyQQEOmwy2dMNM2M1MTQngFXRl15wP5Ar6NA3ah4Fl9c8+Z5J4bZoJr47pfTmltfWNzq7xd2dnd2z+oHh61dZorhj5LRaq6IdUoeIK+4UZgN1NIZSiwE45v537nEZXmafJgJhkGko4SHnFGjR35fZkPhoNqza27C5FV8AqoQaHWoPrZH6Ysl5gYJqjWPc/NTDClynAmcFbp5xozysZ0hD2LCZWog+li2Rk5i1JFTIxk8f6dnVKp9USGNiOpifWyNx/+5/VyE10HU55kucGE2Yj1olwQk5J5ZzLkCpkREwuUKW63JCymijJjL1Ox9b3lsqvQvqh7l/XGfaPWvCkOUYYTOIVz8OAKmnAHLfCBAYdneIN3J3aenBfn9Sdacoo/x/BHzsc3wEaMSw==</latexit>µd

Figure 4. Example of a bipartite graph B1 = (U1, E1) after an iteration of the Gale–Shapley algorithm.

Algorithm 1 presents the proposed solution for the stable matching problem in
ridesharing systems. An important assumption of this algorithm is that the evaluation
of the utilities does not change during each iteration. Therefore, every output matching
M1, M2, . . . , Mk maintains their original utility values.
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Algorithm 1 Stable matching for the ridesharing system.

Input: A complete bipartite graph B = (U, E) with a preference ranking computed by
πp→d : eij → R.

Output: The sequence of stable matchings M1, M2, . . . , Mk.
1: B0 ← (U, E)
2: k← 1
3: while exists a vertex dj ∈ Uk−1 in which σdj

> 0 do
4: Executes the Gale–Shapley algorithm to reach a stable matching Mk as a result
5: for each pair of vertices pi and dj connected by an edge of Mk do
6: The vertex dj hosts the vertex pi
7: σdj

← σdj
− 1

8: end for
9: Generates Bk = (Uk, Ek) such that Uk contains the supervertices and the no matched

vertices of Uk−1, and Ek contains the edges from Ek−1 −Mk
10: k← k + 1
11: end while
12: if exists a not matched vertex pi ∈ Uk−1 then
13: Match every vertex pi to the waiting list µd and generate the matching Mk
14: end if
15: return the sequence of stable matchings M1, M2, . . . , Mk

Let πMk be the sum of the utilities of each vertex incident to an edge of Mk. Equation (9)
shows this expression.

πMk = ∑
∀ edges (p,d)∈Mk

(πp→d + πd→p). (9)

The social welfare of the ridesharing system is the sum of the individual utilities of the
final sequence of matchings. Equation (10) describes the social welfare function SW, where
K is the total matching iterations of B = (U, E).

SW(BMK ) =
K

∑
k=1

πMk . (10)

The following lemma proves that the proposed algorithm reaches a stable matching.

Lemma 1. Algorithm 1 always generates a stable matching.

Proof. The proof is by mathematical induction in the number of iterations k of the algorithm.
Base case. Let M1 = {(p1

1, d1
1), . . . , (p1

k1
, d1

k1
)} be the set of pairs matched at the first

round. There exists a blocking pair in any of the following two cases. The first case would
occur when nd < k1. In this case, the users p1

nd+1
. . . p1

k1
are assigned to the waiting list

µd. The second case would occur if any p1
i and d1

j both prefer to match with another user
rather than with their current one assigned in M1. However, this is not possible, because
after the execution of Gale–Shapley algorithm, all users in {p1

1, . . . , pk1
1 }match with their

corresponding user d1
j of their highest preference.

Inductive hypothesis. Assume that after k = r iterations there are no blocking pairs in
the matching M1, . . . , Mr.

Inductive step. Consider the iteration k = r + 1. Let Br = (Ur, Er) be the bipartite
graph obtained after the r-th iteration. Let Mr+1 = {(pr+1

1 , dr+1
1 ), . . . , (pr+1

kr+1
, dr+1

kr+1
)} be the

set of pairs matched at the round r + 1. There exists a blocking pair in any of the following
two cases. The first case would occur if the number of available seats at iteration r is less
than the remaining users of type p for that iteration, i.e., Nr

seats < kr+1. In this case, the
remaining users of type p are assigned to the waiting list µd. The second case would occur
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if any pr+1
i and dr+1

j both preferred to match with another user rather than their current
one assigned in Mr+1. Notice that this is not possible because, by inductive hypothesis and
by Gale–Shapley algorithm, all users in {pr+1

1 , . . . , pr+1
kr+1
} match with the user dr+1

j with
their highest preference.

Therefore, Algorithm 1 always generates a stable matching.

Corollary 1. Algorithm 1 requires O(kn2) time to generate a stable matching.

Proof. The result follows that each iteration of Gale–Shapley requires O(n2), and there
exist k iterations.

4. Experimental Simulations

Experimental simulations were conducted to measure the efficiency of the proposed
stable matching algorithm given the ridesharing model of Section 2. The implementation
was made in Python 3.6, and the experiments were run on a 3.1 GHz Intel Core i7 Mac
(Dual-core), with 8 GB of RAM, and under OS X 10.11.4.

4.1. Benchmarking

A collection of benchmark graphs were built through Python’s module networkx to
conduct the simulations. A set of 30 directed complete bipartite graphs were generated
for every possible combination between the number of passengers np and drivers nd,
where np > nd, np = Nseats + δseats, 15 ≤ np ≤ 30 and 2 ≤ nd ≤ 7 (providing a total of
2880 graphs). Each of these graphs includes a vertex representing a waiting list with δseats
available places. Random attributes were established for each bipartite graph under the
following criteria:

• The number of available seats can be from 1 to 4 for each set of users of type d.
• Every vertex of type p requires exactly one seat as part of the ridesharing service.
• The weight on each edge represents the preference of each user, which is randomly

obtained from the interval [1, 2(np + nd)].

The generated graphs were saved as text files in the GML (Graph Modeling Language)
format, consisting of a simple, extensive, and flexible syntax.

4.2. Metrics

The Price of Stability (PoS) [44,45] is used as a measure of inefficiency to determine
the degradation in solution quality caused by imposing the constraint of stability, i.e., the
‘sacrifice’ in the performance of the ridesharing system to obtain a stable matching. Since
the stable matching problem is a maximization problem, the PoS is computed by the ratio
between the SW values obtained by the maximum stable solution and an optimal matching
(not necessarily stable) for each graph instance. In order to experimentally approximate
such an optimal assignment, a version of Algorithm 1 using the well-known Munkres
algorithm [46] instead of the Gale–Shapley algorithm in Step 4 is also implemented.

Let BMK be the output matching for a complete bipartite graph B, produced by
Algorithm 1 using the Gale–Shapley version described in Section 3. Furthermore, let
BO∗ be the output matching for the same graph by using the algorithm with the Munkres
version. In order to experimentally approximate a PoS value for the proposed stable
matching problem, a lower bound is computed through Equation (11).

Approximated PoS =
Avg{np ,nd}(SW(BMK ))

Avg{np ,nd}(SW(BO∗))
, (11)

where Avg{np ,nd} computes the average SW values by considering all graphs with specific
np and nd values.
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4.3. Statistical Analysis

A statistical test analysis of the comparison results was carried out using the Gale–
Shapley algorithm versus the Munkres algorithm. First, a Lilliefors test [47] was used
to determine whether experimental data were adequately fitted to a normal distribution.
Previous tests showed that data do not have a normal distribution. Therefore, the Wilcoxon
rank-sum test [48] was applied to determine if there is a significant difference between
the outputs.

4.4. Experimental Results

Figure 5 shows the average SW values obtained by the proposed stable matching
algorithm when using the Gale–Shapley version to reach stability versus the Munkres
version intended to achieve maximum SW values. These two versions rely on different
implementations of Step 4 in Algorithm 1. While Figure 5a illustrates the SW behavior in
the increment of the number of passengers and drivers (np and nd, respectively), Figure 5b
shows the boxplot of the SW values by considering all their combinations. In both of these
images, it can be observed that the solutions obtained by the implementation using Munkres
have higher average SW values than those obtained for the Gale–Shapley version. These
differences seem to be homogeneous according to the number of available seats and drivers.
However, the higher the number of available seats provided by drivers, the higher the
differences in SW values between the Gale–Shapley and Munkres versions (see Figure 5a).
Statistical tests show that the differences are significant between the solutions for both
implementations. The maximum average SW value achieved in the experiments is 3091 by
the Munkres version, while the Gale–Shapley version is 2787 (see Figure 5b); nevertheless,
the Gale–Shapley version algorithm always reached a stable matching for all test cases.
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Figure 5. Average SW values of the proposed stable matching algorithm when using the Gale–Shapley
version versus the Munkres version. (a) SW behavior in the increment of the number of passengers
and drivers. (b) boxplot considering all the combinations.

Figure 6 shows the approximated PoS values of the solutions of the proposed algorithm.
Figure 6a presents these values regarding the increment in the number of passengers and
drivers. Although a decrement in the approximated PoS is shown as np and nd increases,
there is no a clear association with respect to the configuration of the benchmark graphs.
On the other hand, Figure 6b shows that the approximated PoS values ranges from 0.8712
to 0.9237, with an average value of 7.63% of degradation of the solution quality for the
outcome being stable by considering all the test cases. Therefore, in general, guaranteeing
the matching stability between passengers and drivers does not cause severe effects on
their individual utilities.
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Figure 6. The approximated PoS of the solutions of the proposed algorithm. (a) PoS behavior in the
increment of the number of passengers and drivers. (b) boxplot considering all the combinations.

4.5. Case Study

This section presents a small case study of the ridesharing model introduced in
Section 2. Suppose a driver d bidding a ridesharing service in the Metropolitan Zone of
Guadalajara (MZG), Mexico. Commuting data are taken from the Google Maps platform,
generating potential routes with real costs, times, and distances. Assume that d offers
σd = 2 available seats for a ridesharing service, driving a small vehicle with a 1.6-L,
16-valve, four-cylinder engine with a combined fuel economy of 27 miles per gallon (mpg)
and a fuel price of 83.30 Mexican pesos per gallon of regular gasoline. The user d publishes
the route Rd = v0a1v1a2 · · · akvk in the ridesharing system, where v0 represents the origin
and vk the destination.

Figure 7 shows the route Rd considering the location points (20.4767, −103.4484) and
(20.7439, −103.4285) as origin and destination, respectively. The total length of this route
is w̆(Rd) = 22.3 miles with an estimated travel time td→Rd

= 57 min, and a transfer cost
c(Rd) = $68.80 Mexican pesos calculated by Equation (2).

Figure 7. The route Rd (shown in blue) in which driver d offers a ridesharing service in the Metropoli-
tan Zone of Guadalajara, Mexico.
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Assume three passenger users p1, p2, and p3, which seek to arrive at their destinations
using public transportation based on the commuting data presented in Table 1. Given these
data, they seek to improve their travel conditions by requesting a ridesharing service. As
observed, user p1 has the exact origin and destination points as those contemplated in
Rd, but with a significant difference in traveling times due to their transportation mean.
Furthermore, user p2 also intersects in the destination point of Rd. Therefore, the rideshar-
ing system proposes potential joint routes implying the following types of ridesharing:
identical Rp1d, inclusive Rp2d, and partial Rp3d (see Section 2).

Table 1. Commuting data for the passenger p ∈ {p1, p2, p3} traveling via public transportation.

Routes Origin Destination tp→Rp c(Rp)

Rp1 20.4767, −103.4484 20.7439, −103.4285 146 $28.50
Rp2 20.5883, −103.4428 20.7439, −103.4285 90 $19.00
Rp3 20.6122, −103.4283 20.7516, −103.5131 62 + 58 = 120 $28.50

For simplicity’s sake, suppose all users have a departure time of 9:00 am and a
predefined slack time of ten minutes. Each passenger p ∈ {p1, p2, p3} independently
evaluates the savings produced by sharing its trip with d through the joint route Rpd. The
travel savings are measured in terms of cost and time savings by Equation (5).

The cost savings for any p, denoted as zp→Rpd , is computed by the difference of the
transfer costs when p travels in Rpd instead of Rd, as expressed in Equation (3). The transfer
costs depend on the route’s total length, the vehicle’s characteristics, or the trip’s estimated
fees. Table 2 shows the cost savings for p and d when they travel via Rpd. On the other
hand, time savings rely on the difference between the estimated travel times when p shares
its trip or not, i.e., tp→Rp − tp→Rpd . Additionally, an implicit loss of time is assumed by
considering a delay in which d arrives to the origin point of Rpd at the instant of time t0

d→Rpd
.

Considering that ηp = 10, t0
p→Rpd

= 9:00, and t0
d→Rpd

> 9:00 in Equation (4), the total time

savings for d and p, denoted as td(Rpd) and tp(Rpd), respectively, are also shown in Table 2.

Table 2. The total time savings and costs estimated for passengers and driver sharing a trip through
the joint route Rpd.

Routes w̆(Rpd) c(Rpd) zp→Rpd zd→Rpd t0
d→Rpd

tp→Rpd tp(Rpd) td(Rpd)

Rp1d 22.3 $68.80 −$5.90 $34.40 9:02 57 97 8
Rp2d 11.5 $35.50 $1.25 $17.75 9:24 40 36 −14
Rp3d 7.2 $22.50 $17.25 $11.25 9:27 17 28 −17

Notice that the estimated cost savings for the passengers when they share their trip is
low (even negative) due to the cheaper costs of traveling via public transportation; however,
the total time savings for all cases are significant. Because of these noteworthy differences
in time, the slack time is not necessarily limited to the ten minutes considered initially. To
weigh the importance between the cost and time savings in Equation (5), a value α = 1/2
is considered. Conversely, drivers generally do not save time traveling through a joint
route, so cost savings is the main factor in their matching decisions. Table 3 shows the
travel savings estimated for all driver–passenger interactions via the joint route Rpd. It is
important to note that values of travel savings represent a combination of cost and time, no
longer separately considering terms of money or minutes used in this example.
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Table 3. The travel savings computed for passengers and driver through the joint route Rpd.

Routes sp(Rp1d) sd(Rp1d)

Rp1d 42.60 38.40
Rp2d 19.25 10.75
Rp3d 31.25 2.75

On the other hand, assume that all users but p3 have a local reputation in the rideshar-
ing system regarding the quality of their previous services (punctuality, cordiality, satisfac-
tion, and safety), as shown in Table 4. Since p3 is a new user, its initial local reputation is
zero (see Section 2.2).

Table 4. Local reputation values.

d p1 p2 p3

d 0 8 8 0
p1 18 0 2 0
p2 −10 12 0 0
p3 0 0 0 0

By Equation (7), a normalized matrix M is generated as follows:

M =


0 1/2 1/2 0

5/7 0 2/7 0
0 1 0 0

1/3 1/3 1/3 0

 (12)

Let u be any user (passenger or driver) of the ridesharing system. Suppose an initial
trust vector ~mu = [1/4, 1/4, 1/4, 1/4]T , representing a uniform probability distribution
over all users. A transitive reputation schema is used to estimate the global opinions about
each user in the system, which correspond to the left principal eigenvector of M. After a
large number β of iterations (where β is the rank of the matrix), the global reputations for
all users are the following:

(MT)β ~mu =


0 5/7 0 1/3

1/2 0 1 1/3
1/2 2/7 0 1/3

0 0 0 0


β

×


1/4
1/4
1/4
1/4

 =


0.3030
0.4242
0.2727

0

 (13)

When β0 = 1/2 and β1 = 50, the utilities for the users sharing a trip via Rpd are
shown in Table 5. As observed, driver d obtains a higher utility when he/she provides a
ridesharing service to p1 and p2, rejecting the service to p3.

Table 5. The utilities estimated for passengers and driver through the joint route Rpd.

Routes πp→d πd→p

Rp1d 36.45 40.41
Rp2d 24.78 19.01
Rp3d 30.78 1.38

4.6. Research Limitations

Limitations of the research are mostly related to assumptions of the proposed model,
in which any pair driver–passenger utility evaluation is made independently of the interac-
tion with other users. In this sense, although the model supports multi-capacity settings in
which a driver can provide a service to two or more passengers (according to its availability
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of seats), estimations of travel savings and reputation values should be adjusted. On the
other hand, an ideal model is considering the ridesharing with deviation (in addition to
the types of trips considered in Section 2), in which there is no common proper subroute
between the passenger and the driver. Most works modeling ridesharing with deviation
assume that the only one that deviates from its route is the driver. In contrast, a new joint
route can be generated for both passenger and driver.

5. Conclusions and Future Work

This paper studies the stable ride-matching problem, an allocation process of rideshar-
ing users in which no user prefers another different from the assigned one. With the aim to
address this problem, a new ridesharing model using a specific pairwise utility function is
introduced. This utility function is based on two fundamental aspects of the ridesharing
service: travel savings and the reputation of users. While travel savings consider some
spatial and temporal characteristics of the trip, the users’ reputation is calculated based on
community members’ positive and negative opinions. In particular, the reputation system
proposed here is a modified version of the well-known EigenTrust algorithm, where each
user evaluates a service based on punctuality, cordiality, satisfaction, and trust.

A small case study was developed to show how and whether the proposed rideshar-
ing model applies in practice. The case study focuses on public transportation users in
the Metropolitan Zone of Guadalajara, the third largest city in Mexico, who are willing
to improve their travel options through a ridesharing service. Although using public
transportation is commonly seen as an option to reduce traffic congestion, resulting data
shows that ridesharing services provide a higher utility in terms of cost and time savings
(commuting public services could take hours in Mexico). In this vein, a model suitable to
these contexts could motivate the use of ridesharing services, increasing the occupancy
rates of vehicles, one of the significant factors behind road traffic congestion. However,
mitigating traffic congestion is regarded as a result rather than a factor.

The proposed ridesharing model is used to introduce an algorithm designed to pro-
duce stable matching solutions in ridesharing systems. This algorithm consists of an
iterated version of the Gale–Shapley algorithm, in which restrictions about the equality
in the size of the sets and the assumption of complete and strict preferences are relaxed
through the concept of a ‘waiting list’. Experimental simulations were conducted by consid-
ering a benchmarking of 2880 random bipartite graphs as test cases. Experimental results
show that the proposed algorithm always converges to a stable matching solution for all
test cases. An experimental price of stability indicates a level of degradation of 7.63% in the
social welfare due to the stable solutions.

This study may be extended in several directions for future work. One consists of
adjusting the proposed ridesharing model to incorporate trips with deviation, where no
common proper subroute exists between passenger and driver. This adjustment would be
in addition to the three supported types of trips: identical, inclusive, and partial. Another
interesting direction would be to implement a reputation system that considers not only
the service’s evaluation but also the users’ identity. Finally, a critical question is whether
this ridesharing model can reduce traffic congestion. It would be interesting to evaluate if
this is possible considering a critical mass of shareable trips in terms of specific factors like
trip density, city scale, and demand heterogeneity, among others.
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