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Abstract: The double exponential WJ distribution has been shown to competently describe extreme
events and critical phenomena, while the Gaussian function has celebrated rich applications in many
other fields. Here we present the analysis that the WJ distribution may be properly treated as an
extended Gaussian function. Based on the Taylor expansion, we propose three methods to formulate
the WJ distribution in the form of Gaussian functions, with Method I and Method III being accurate
and self-consistent, and elaborate the relationship among the parameters of the functions. Moreover,
we derive the parameter scaling formula of the WJ distribution to express a general Gaussian function,
with the work illustrated by a classical case of extreme events and critical phenomena and application
to topical medical image processing to prove the effectiveness of the WJ distribution rather than the
Gaussian function. Our results sturdily advocate that the WJ distribution can elegantly represent
a Gaussian function of arbitrary parameters, whereas the latter usually is not able to satisfactorily
describe the former except for specific parameter sets. Thus, it is conclusive that the WJ distribution
offers applicability in extreme events and critical phenomena as well as processes describable by the
Gaussian function, namely, implying plausibly a unifying approach to the pertinent data processing
of those quite distinct areas and establishing a link between relevant extreme value theories and
Gaussian processes.

Keywords: distribution function; applied physics; gaussian function; WJ distribution; scaling;
critical phenomena

1. Introduction
1.1. Backgrounds

With profound theoretical interests and numerous practical applications, probability
distribution functions are powerful apparatuses to describe stochastic random processes
and statistical results, classically exemplified by the Gaussian function (normal distribution),
exponential decay functions, and the Poisson function, among others [1–6]. Particularly
prominent, the Gaussian function distinguishes itself in many ways, and the statistics of
many sampling spaces show a tendency to become a normal distribution as the sampling
sizes increase. As a matter of fact, Gaussian distributions take place broadly in both natural
and social sciences and occupy a key position in mathematics, physics, and engineering.
Mathematically, the Gaussian function has its unique role in defining the Hermite poly-
nomials, as typical kernels of Green’s functions and in applying the Bayesian inference.
In probability statistics, both t-distribution and binomial distribution eventually trend to
the Gaussian distribution, from which t-distribution and F-distribution are derivable. Mul-
tivariate and multidimensional methods involving generalized Gaussian functions have
been developed for advanced applications [7]. In the field of communications, the Gaussian
function is incurred to quantify the statistical behaviors of channel noises, bit error rates,
image processing, and multimedia signal enhancement [8], as well as the response peak of
chromatographic detection [9]. In physics, Gaussian functions are introduced to work out
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thermodynamic and diffusion equations [10,11], define Gaussian light beams [12] and have
superior niches as the wave function describing the ground state of a quantum harmonic
oscillator, as molecular orbitals through their proper linear combinations and being related
to the vacuum state in quantum field theory. Medical phenomena such as mass population
heights, red blood cell numbers, and hemoglobin amounts are adequate to be characterized
or approximated by Gaussian distributions, with multidimensional-multivariate general-
izations in perspective. To a certain extent, researches in educational statistics confirm that
students’ academic performance and practical ability seem to follow Gaussian propensities.
In reality, the Gaussian distribution is a milestone in the development history of statistical
theory, with the probability density function as

f (x, µGS, σ) =
1√
2πσ

e−
(x−µGS)

2

2σ2 (1a)

where σ and µGS are the respective standard deviation and expectation of a random process,
defined over the domain of (−∞, +∞). The commonly used form of Equation (1a) is known
as the standard normal distribution when µGS = 0 and σ = 1, simply stated as

f (x, µGS = 0, σ = 1) =
1√
2π

e−
x2
2 (1b)

It appears relevant to emphasize that the parameters σ and µGS are independent of
each other, i.e., the former affects solely the shape of the curve while the latter exclusively
determines the location of its center (which is markedly different from the WJ distribution
as discoursed below [13]. As a note for the WJ distribution, we have wanted a short
term to represent the distribution for the simplicity of discussion and come up with the
abbreviation WJ which could mean wild, wide, or weird, even wonder jittering to reflect
unusual occurrences such as extreme events and critical phenomena).

The WJ distribution function shows a universal mechanism to account for extreme
events and critical phenomena [13], to which the Gaussian function is hard to be applied
and frequently happens in nature and society, from extraordinary occurrences to critical
properties, immensely diverse in types and dissimilar in properties [13–16]. In coping
with such extreme events, actually, a series of classical distributions have been proposed
comprising the Gumbel distribution, the Bramwell–Holdsworth–Pinton distribution, and
the generalized Gumbel distribution [14–16], all of which may find a unification in the
WJ distribution function [13]. Moreover, the WJ distribution function offers pertinent
elucidation for the Kohlrausch-Williams-Watts (KWW) relaxation [17], the glass transition
of glass-forming materials [17], and information theory [18]. Furthermore, closely related
studies are electroencephalographic recordings of rodents with induced ischemic stroke [19],
the transient current of organic field-effect transistors [20], and quantifying the effect of the
presence of linear chains on the orientation dynamics of the rings [21].

1.2. Important Application of WJ Distribution to KWW Relaxation

As an important example from the direct application of the WJ distribution [17], it is
constructive to emphasize that the proposal is constructed on the basis of the WJ distribution
to interpret the underlying mechanism of the famous KWW relaxation function [13,22,23].
Showing the ubiquitous irreversibility characteristics on the atomic, molecular, or electronic
scale and the dynamic nature of irreversible processes, the KWW relaxation function or the
stretched exponential relaxation function is a phenomenal observation in complex systems
from the intricate behavior of liquids and glasses, the folding of proteins to the structure
and dynamics of atomic and molecular clusters and well delineating the phenomena of
important time-dependent dynamic processes [13,22,23]. The research has a long history of
continuous interest, research inputs, and technological importance, in condensed matter
physics in particular, as manifested by the fact that our research outcomes [17] have
prompted wide attention from diverse fields [23–34].
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1.3. More Non-Gaussian Distributions

It should be adequate to point out that the list of non-Gaussian or skewed Gaus-
sian distributions, including the Gaussian distribution and working well in practice, is
truly long [1,35], encompassing the well-established Weibull distributions [23,35,36], Levy
distributions [27,35], skew-normal and related families [37–40], Beta distributions [35],
lognormal distributions [35], multivariate normal distributions [7,35], multidimensional
normal distributions [7,35], gamma distributions [35], hypergeometric distributions [35]
and Cauchy distributions [35] in addition to the above-mentioned models concerning
extreme events and critical phenomena [13–16].

1.4. Some Initial Considerations of the WJ Distribution

The WJ distribution is a double exponential function [13]

f (x, α, β, ν) =
β

Γ(α/β)
e−α(x−ν)−e−β(x−ν)

(2)

or equivalently

f
(

x, α, β, µW J
)
=

β

Γ(α/β)
e−α[x−µW J− 1

β Ψ( α
β )]−e

−β[x−µW J−
1
β

Ψ( α
β
)]

(3)

with ν = µW J + Ψ(α/β)/β, defined over the domain of (−∞, +∞). In terms of Equations
(2) or (3), the WJ function has three parameters α, β and µW J : The parameter µW J shifts the
location of the curve but does not affect the shape of the distribution (we may set it to 0 just
for the sake of discussion). The parameters α and β taking positive values jointly determine
the shape of the curve and make a contribution of Ψ(α/β)/β to the horizontal position of
the curve.

In contrast to the symmetric shape of the Gaussian curve about the line x = µGS,
the characteristics of the WJ distribution are more complex and assorted with changes in
the parameters α and β (as deliberated later in the text, such curves can behave similarly
to the Gaussian for specific sets of α and β). A more direct intuition of the behavior of
the WJ distribution is unquestionably beneficial from 2D plotting by fixing the ratio of
α to β in the scaled form of fW J

(
x, α, β, µW J

)
Γ(α/β)/β vs. (x − ν), as shown in Figure 1.

Figure 1a exhibits the cases of α/β = 1 and α ∈ (0.5, 1, 2, 3, 4). The various kinds of curves
demonstrate an asymmetrical bell-like shape and tighten the distribution as the α value
increases (and the β value increases simultaneously), with the peaks roughly located at the
same position. Figure 1b sums up the results of setting α/β = 2 and β ∈ (0.5, 1, 2, 3, 4),
in which the curves are characterized by tightening the shapes and a right-shifting of the
maxima with an increasing value of β. Comparing Figure 1a with Figure 1b, the curves look
more symmetrical when α/β = 2. Purportedly, the WJ distribution with proper choices of
α and β can be highly symmetrical like a Gaussian function, sharing some characteristics
in common.

1.5. Content of This Work

To the best of our knowledge, there is no report on linking extreme value theories and
the Gaussian function as representable by a possible relation between the WJ distribution
and the Gaussian function yet. In this work, we are going to establish such bridging
and give a primary objective to establish that the Gaussian function may presumably be
treated as a subclass of the WJ distribution. In the next sections, we shall explore the
transformation between the WJ distribution and the Gaussian function by the technique
of the Taylor expansion. The lines of deliberation run along the Taylor expansion at three
distinct points, i.e., around x = 0 (Method I), x = ν (Method II) and x = xm (Method III),
properly elaborated with numerical solutions. For Method I, in particular, we show in
detail that for properly selected sets of the parameters, such an approximation of the
WJ distribution to the Gaussian function is indeed quite good. Thereon, we develop the
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parameter scaling relations how to definitely express the general Gaussian function by
the WJ distribution. The work is highlighted by a classical case of extreme events and
critical phenomena and applications to current medical imaging analyses to attest to the
usefulness of the WJ distribution in preference to the Gaussian function and endorse a
scheme integrating both Gaussian processes and non-Gaussian ones such as extreme events
and critical phenomena.
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Figure 1. Effects of the parameters α and β on the behavior of the WJ distribution. (a) Curves 1~5
in order correspond to α ∈ (0.5, 1, 2, 3, 4) for α/β = 1; (b) Curves 1~5 in order correspond to
β ∈ (0.5, 1, 2, 3, 4) for α/β = 2.

1.6. Contribution of This Work

Concisely, we have proven for the first time that the two parametric Gaussian func-
tions may be treated as a special subclass of a tri-parametric WJ distribution for specific
parameter sets, or alternatively, the WJ distribution can be appropriately considered as an
extended Gaussian function. Building up a connection between extreme value theories
and Gaussian processes, moreover, the study shows that the WJ distribution has funda-
mental interests and advanced applications in critical phenomena, extreme occurrences,
and processes such as topical medical image processing that can be described by the Gaus-
sian function. Our proposal of transforming the WJ distribution to the Gaussian function
through proper Taylor expansion offers a plausible unifying, broad approach to promoting
comprehensive mechanistic understandings on the basis of integrated data processing in
those very different fields. Thus, our work has topicality and assumes theoretical impact
and applicational usefulness.

2. Methods
2.1. Theoretical Considerations

The Taylor expansion method was applied to convert the WJ distribution to the form of
a Gaussian function. The expansion was performed around three representative positions,
i.e., around x = 0 (Method I), x = ν (Method II) or x = xm (Method III). The expansion
outcomes were appropriately elucidated with numerical solutions. The fitting methods
adopted were nonlinear regressions, and the overall goodness-of-fit criterion was the
correlation coefficient R2 (COD, Coefficient of Determination), supported by the analysis of
the residual errors for individual points.

2.2. Methodological Considerations

The software packages Matlab 2017a (downloaded from the site http://xxb.njupt.
edu.cn/MATLAB/list.htm, accessed on 6 July 2022) and Origin 2021 (downloaded from

http://xxb.njupt.edu.cn/MATLAB/list.htm
http://xxb.njupt.edu.cn/MATLAB/list.htm
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the site https://www.originlab.com/, accessed on 6 July 2022) were employed in our
computation, and commercial laptop computers were used to execute the programs. The
runtime typically took less than 10 s.

3. Results and Discussion

In the study, we have found that the WJ distribution may give a proper description
of the properties of the Gaussian function, which is attributable to the fact that the WJ
distribution in a double exponential form is capable of being converted to the expression of
a Gaussian function by a proper Taylor expansion of it with a truncation of the resulted
series. Below we carry out detailed analyses of the results from the Taylor expansion of the
WJ distribution in three different ways (methods).

3.1. Method I
3.1.1. Development of the Method

We first expand the term of e−βx in the exponential part e−β(x−ν) in Equation (2) on
the basis of the Taylor formula around the point x = 0, explicitly,

e−βx = ∑∞
n=0

(−1)nβnxn

n!
,

then carry out the substitution, giving

f (x, α, β, ν) =
β

Γ(α/β)
e−α(x−ν)−eβν ∑∞

n=0
(−1)n βn xn

n! (4)

Considering the truncation of the terms after x2 when the value of βx is small enough,
we take the first three terms in the sum

∞

∑
n=0

(−1)nβnxn

n!
= 1− βx +

β2x2

2
+ O

(
β3x3

)
and acquire the approximate expression for the WJ function in the form of

fI(x, α, β, ν) =
β

Γ(α/β)
e−

eβν β2x2
2 −(α−βeβν)x+αν−eβν

(5)

The exponential part of Equation (5) is subsequently rearranged to the square form
about x (i.e., the exponential term of a Gaussian function) as

fI(x, α, β, ν) =
βe

(βeβν−α)
2

2eβν β2 +αν−eβν

Γ(α/β)
e−

β2eβν(x− βeβν−α

β2eβν
)
2

2 (6)

As Equation (6) is the result of truncating the Taylor expansion to second order,
however, the expression is not certainly normalized as a probability distribution. To
guarantee the normalization and still a good approximation to a Gaussian function, we
adopt the line of rationalization: Comparing the equation with the formulation of the
Gaussian function in Equation (1a), we have two options for the estimation of σ, exponential
based and prefactor based, that is,

σ̂I1 =

√
1

β2eβν
(7)

and

σ̂I2 =
Γ(α/β)

√
2πβe

α2

2eβν β2−
α
β +αν− eβν

2

(8)

https://www.originlab.com/
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With regards to the expectation µGS, we have its estimation of µ̂I,

µ̂I =
βeβν − α

β2eβν
(9)

Therefore, we have come to the two equations, (7) and (8), for estimating σ on the
basis of the parameters of the WJ distribution function. In combination with Equation
(9), two normal distributions N(µ̂I, σ̂I1) and N(µ̂I, σ̂I2) are available to approximate the
WJ distribution to be expressed as Gaussian functions, labeled respectively as CaseI1 and
CaseI2 for the convenience of discussion. In explicit, the expressions representing the
normal distributions are

fI1(x, α, β, ν) =
βeβν/2
√

2π
e−

β2eβν(x− βeβν−α

β2eβν
)
2

2 (10)

for N(µ̂I, σ̂I1) and

fI2(x, α, β, ν) =
βe

(βeβν−α)
2

2eβν β2 +αν−eβν

Γ(α/β)
e
−π(

βe

α2

2eβν β2
− α

β
+αν− eβν

2

Γ( α
β
)

)

2

(x− βeβν−α

β2eβν )
2

(11)

for N(µ̂I, σ̂I2).

3.1.2. Numerical Appraisal: As an Accurate, Self-Consistent Method

As the important special case of the general Gaussian function (1a), we shall first focus
on the aspects of analysis based on the standard normal distribution x ∼ N(0, 1), which
can be recovered from the former by the transform of

x =
y− uGS

σ
.

The relevant interval probability is evaluable by the expression

P(a < x < b) = Φ

(
b− µGS

σ

)
−Φ

(
a− µGS

σ

)
(Φ[(x− µGS)/σ)] is the cumulative probability function of the normal distribution). Illumi-
nating the relationship between the WJ function and the normal distribution, the assessing
procedure proceeds in the following way: Appropriately select a set of discrete points from
the standard normal distribution (1b) as an experimental dataset, then fit it with the WJ
distribution (2) and thus obtain the corresponding parameters α0 = 12.52, β0 = 0.07915 and
ν0 = 63.96 (R2 ≈ 0.9997). As shown in Figure 2a, in which the dots are the Gaussian values,
and the curve is the fitting outcome of the WJ function, it is clear that both of them match
optimally and are consistent with the almost unity of the correlation coefficient (0.9997).
The calculation error is estimated by the scattering points ∆I in Figure 2b, with each point
close to 0 (the maximum error is less than 0.005). As a result, the WJ distribution proves its
excellent capability in characterizing the Gaussian function N(0, 1), suggesting that such
deliberation may be extendable to general cases as outlined below. There is another way to
examine the accuracy of the Taylor expansion for the WJ distribution in the Gaussian form;
that is, the fitting parameters as obtained above are substituted into Equations (7)–(9) to
generate the estimated parameters of Gaussian functions as σ̂I1 = 1.0052, σ̂I2 = 1.0051 and
µ̂I = −0.01648, correspondingly. The values of σ̂I1 and σ̂I2 are remarkably almost equal and
virtually one, together with the mean value µ̂I close to 0. Such findings are in accord with
the standard normal distribution function (σ = 1 and uGS = 0). Therefore, we may draw
a conclusion that the transformation of the WJ distribution to the Gaussian function by
Method I is both accurate and self-consistent. In Figure 2b, ∆I1 and ∆I2 present the residuals
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of N(µ̂I, σ̂I1) and N(µ̂I, σ̂I2) compared to N(0, 1) over the entire curves, respectively. Similar
to the precedent estimation, it is apparent that each error point is near zero and less than
0.01. Such proceeding prospectively reveals the feasibility of assessing the parameters
σ and µ of the standard normal distribution according to Equations (7)–(9) with α0, β0
and ν0 as acquired through the fitting. In brief, the truncation method incurred above is
substantiated to be valid in exploiting the relation between the WJ distribution and the
Gaussian function.
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Figure 2. Analyses of expanding the WJ distribution based on Method I. (a) Scatter points of the stan-
dard normal distribution function (1b) at the intervals of 0.1 and fitting curve by the WJ function (2);
(b) Symbols of ∆I, ∆I1 and ∆I2 for the residuals of the WJ function, N(µ̂I, σ̂I1) and N(µ̂I, σ̂I2) relative
to N(0, 1), respectively; (c) Signs of Gaussian, CaseI1, CaseI2 and WJ for the cumulative probability
distribution functions of N(0, 1), N(µ̂I, σ̂I1), N(µ̂I, σ̂I2) and the WJ function, correspondingly; (d) La-
bels of CaseI1, CaseI2 and WJ for the residuals of the cumulative probability distribution functions of
N(µ̂I, σ̂I1), N(µ̂I, σ̂I2) and the WJ function in comparison to N(0, 1), respectively.

The validity of Method I may be further verified by appraising the related cumulative
probability distribution function F(x). Since we consider in this work the cases such as the
standard normal distribution with the meaningful values around the origin exclusively,
it stays justified to take the lower limit to be a finite number, say −4, to replace −∞ in
the integral F(x) =

∫ x
−∞ f (x)dx to compute the numerical solution of the cumulative

probability distribution function. Figure 2c shows the cumulative probability distribution
functions of N(0, 1), N(µ̂I, σ̂I1), N(µ̂I, σ̂I2) and the WJ function, denoted by the symbols of
Gaussian, CaseI1, CaseI2, and WJ, respectively. It is obvious that the curves of the integrals
nearly overlay one another. A more detailed manifestation is to weigh the residuals of
N(µ̂I, σ̂I1), N(µ̂I, σ̂I2) and the WJ function relative to N(0, 1), and the results are summed
up in Figure 2d with errors smaller than 0.01, consolidating the previous analysis.
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3.1.3. Parameter Scaling Relations: Generalization

This subsection discourses a route to express the general Gaussian function by the
WJ distribution. According to the analysis in the precedent section, it is straightforward
that the WJ function is capable of representing the standard normal distribution function
with the parameter set of α0 = 12.52, β0 = 0.07915 and ν0 = 63.96. Since the general
Gaussian distribution (1a), as previously noted, can be transformed to the standard normal
distribution (1b) by the equation x = (y− µGS)/σ, it is likely to formulate the general
Gaussian function with arbitrary parameters by a set of specific parameters α, β and ν of
the WJ function. In fact, we can transform Equations (2) to (12) below by taking advantage
of rescaling [41,42]

f (x, α∗, β∗, ν∗) =
β∗

Γ(α∗/β∗)
e−α∗(x−ν∗)−e−β∗(x−ν∗)

(12)

where α∗ = α/σ, β∗ = β/σ and ν∗ = µGS + νσ (In this paper, we assume the parameters
α, β and ν obtained by fitting the WJ distribution to the standard normal function as the
reference, that is, α∗ = α0/σ, β∗ = β0/σ and ν∗ = µGS + σν0) to accomplish the procedure
of fitting the general Gaussian distribution y ∼ N(µ, σ) by the WJ distribution. The forms
of Equations (2) and (12) are essentially the same, but the distinction lies in the scale change
of the variables and the interpretation of the parameters. The derivation of Equation (12)
has been based on the substitution of y = xσ + µGS into Equation (1b), resulting in the
formulation of

f (y, α, β, ν) =
β/σ

Γ(α/β)
e−

α
σ (y−µGS−νσ)−e−

β
σ (y−µGS−νσ)

Several other useful relations involved include

µW J
∗ +

1
β∗

Ψ

(
α∗

β∗

)
= µGS + σµW J +

σ

β
Ψ

(
α

β

)
,

Γ

(
α∗

β∗

)
= Γ

(
α

β

)
,

Ψ

(
α∗

β∗

)
= Ψ

(
α

β

)
,

and µW J
∗ = µGS + σµW J .

In a subsequent section, we shall present explicit examples to illustrate the obtained
expressions of the general Gaussian function by the WJ distribution.

3.1.4. Investigation of Parameter Solution Spaces of the WJ Distribution

It is known that the standard deviation σ of a Gaussian function determines the shape
of its curve, while the shape of the WJ distribution is jointly controlled by both parameters
α and β. Thus, it is significant to study the interrelation between the estimate σ with respect
to the solution space of α and β. Inspecting Equations (7) and (8), we find that the estimate
σ is related to ν in addition to the parameters α and β. Thus, we need to initially derive
the expression of ν in relation to α and β in terms of the maximal value of the distribution
function as the starting point of calculation. When the WJ distribution can well represent
the Gaussian function, actually, the corresponding curve reflects a certain degree of axial
symmetry, indicating that the extreme point should approach x = µGS. Since the mode of
the WJ distribution is located at the point

x = ν− 1
β

ln
α

β
,

it leads to
ν = µGS +

1
β

ln(
α

β
). (13)
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Substituting Equation (13) into Equations (7) and (8), we deduce the following expres-
sions for σ̂I1 and σ̂I2 (noted as DI1 and DI2 for the specific selection of ν), respectively,

DI1 =

√
1

αβeβµGS
(14)

and

DI2 =
Γ(α/β)

√
2πβe

α
β [

1−e2βµGS

2eβµGS
+ln( α

β )−1]+αµGS

(15)

The parameter µGS is identified provided that the Gaussian function is specified.
Afterward, we can solve Equations (14) and (15) for α and β of the WJ function with respect
to a given value of µGS by setting DI1 and DI2 to desired quantities. Figure 3 shows the
solution space in the form of α vs. β with DI1 and DI2 set to one. In detail, Figure 3a plots
the relationship curves when µGS is set to 0, and the values of DI1 and DI2 are given to one.
As shown in the figure, the curves are awfully sensitive to the change of α when α is less
than one, whereas they become sensitive to the change in β when α is greater than four.
The two curves of DI1 and DI2 apparently overlap when α is greater than two, meaning
that the same set of the α and β values is available to make DI1 = DI2 and the WJ function
is anticipated to have a better characterization of the Gaussian function. As α decreases, the
two curves grow away from each other so that DI1 and DI2 do not share the same solution
anymore and thus cannot take one at the same time.

Instead of µGS by utilizing Equation (13), we can tackle the solution space of σ̂ with
respect to α and β by substituting

ν = µW J +
1
β

Ψ

(
α

β

)
into Equations (7) and (8) according to Equation (3), separately. As an adjustable parameter,
µW J is going to play the role of µGS and can be investigated with suitable values. Upon the
condition of σ̂I1 = 1 and σ̂I2 = 1, the curves in Figure 3b depict the relationship between
α and β for the particular case of µW J = 0. The trend of the curve for σ̂I1 is analogous to
that of Figure 3a, more sensitive to a change in α. Nevertheless, σ̂I2 appears particularly
disparate: The curve first rises to the peak and then declines, displaying more sensitivity to
a change in β. Figure 3c summarizes a series of curves under the conditions of σ̂I1 = 1 and
a set of µW J ∈ (0.5, 1, 2, 5). When µW J ∈ (0.5, 1), the curves have comparable trending
as in Figure 3a, shifting to the left as µW J increases. With µW J rising from two to five, the
available solution range of β diminishes. Generally, the curves become closer for the larger
α and the effect of µW J on both α and β is weakened. Figure 3d is the case of σ̂I1 = 1 and
µW J ∈ (−5,−2,−1,−0.5). Of interest are the curves developing connected branches in the
solution space and manifesting the shape of a boomerang [43,44]. As µW J becomes smaller,
the curves move to the right, and the branches become closer. In Figure 3e, branching
similarly ensues in the curves of α vs. β under the condition of σ̂I2 = 1 and a chosen set of
µW J ∈ (0.1, 0.2, 0.5, 1), but it is a disconnected bifurcation instead. However, the scenery
of branching varies significantly with smaller values of µW J . When µW J ∈ (0.1, 0.2), one
branch is observable in the graph, but the other branch is far away (out of the graph). As
µW J increases to (0.5, 1), the two separate parts of the curves gradually approach each
other. The upper branch looks like the shape of an arc or a boomerang, while the lower
branch is distinguishingly analogous to the case of σ̂I2 = 1 and µW J = 0 in Figure 3b,
accompanied by the gradual rise of the peak value with the increase in µW J . In parallel,
the right parts in the lower branches of the curves in the series nearly overlap, implying
an insensitive contribution of µW J to the change in the value of α and β in the specific
range. In light of Equation (8), Figure 3f exposes the solution space when σ̂I2 = 1 and
µW J ∈ (−1,−0.5,−0.2,−0.1). The shapes of the curves behave like that of µW J = 0,
featuring lower peak values as µW J decreases.
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on the behavior of α and β in Method I. (a) Cases of DI1 = 1 and DI2 = 1 for µGS = 0; (b) Cases
of σ̂I1 = 1 and σ̂I2 = 1 for µW J = 0; (c) Sceneries of σ̂I1 = 1 for positive µW J ∈ (0.5, 1, 2, 5);
(d) Sceneries of σ̂I1 = 1 for negative µW J ∈ (−5,−2,−1,−0.5); (e) Sceneries of σ̂I2 = 1 for positive
µW J ∈ (0.1, 0.2, 0.5, 1); (f) Sceneries of σ̂I2 = 1 for negative µW J ∈ (−1,−0.5,−0.2,−0.1).

By the same token, we work on the behavior of the estimated mean µ̂I as a function of
α and β for a reference value of µW J . Substituting the expression

ν = µW J +
1
β

Ψ

(
α

β

)
into Equation (9) yields

µ̂I =
βeβ[µW J+

1
β Ψ( α

β )] − α

β2eβ[µW J+
1
β Ψ( α

β )]
.

Figure 4a illustrates the 3D plot of µ̂I as a function of α and β when µW J = 0. It is
apparent that for a fixed β, µ̂I increases with α and the growth gradually slows down, with
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the maximal value across the surface in the approach of 0. Figure 4b presents the pattern
for the case of µW J = 3, which is comparable to Figure 4a and has the maximum value near
three within the displayed range of α.
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3.2. Method II
3.2.1. Development of the Method

This method proceeds in the way of expanding the double exponential part e−β(x−ν)

of Equation (2) around the point x = ν by the Taylor formula, i.e.,

e−β(x−ν) =
∞

∑
n=0

(−1)nβn(x− ν)n

n!
,

converting the equation to

f (x, α, β, ν) =
β

Γ(α/β)
e−α(x−ν)−∑∞

n=0
(−1)n βn(x−ν)n

n! . (16)

Provided that β(x− ν) is sufficiently small, the terms after (x− ν)2 in the sum may be cut
off, and only the first three terms are retained. Thus, the Taylor series is reduced to

∞

∑
n=0

(−1)nβn(x− ν)n

n!
= 1− β(x− ν) +

β2(x− ν)2

2
+ O[β3(x− ν)3].

Subsequently, we reformulate the exponential part of Equation (16) after the truncation in a
Gaussian form with a square term about x and come to the deduction

fII(x, α, β, ν) =
βe

α2−2αβ−β2

2β2

Γ(α/β)
e−

β2(x−ν+ α
β2 −

1
β
)
2

2 (17)

Analogous to Method I, we compare Equation (17) with the Gaussian distribution function
(1a), which results in two choices of estimating the parameter σ, one labeled by σ̂II1 from
the exponential part as

σ̂II1 =
1
β

(18)

and the other σ̂II2 from the pre-exponential factor as

σ̂II2 =
Γ(α/β)

√
2πβe

α2−2αβ−β2

2β2

(19)
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Evidently, the expression for an estimation of the mean µ̂II reads

µ̂II = ν− α

β2 +
1
β

(20)

3.2.2. Numerical Assessment

Following the tactic employed in Method I to appraise the effectiveness of Method
II, we consider the case of the standard normal distribution and replace the fitted pa-
rameter values α0 = 12.52, β0 = 0.07915 and ν0 = 63.96 of the WJ distribution into
Equations (18) and (19), respectively. It is immediately found that both σ̂II1 and σ̂II2 differ
enormously from one, for instance, σ̂II1 ≈ 12.63, which is obviously much larger than one.
As a consequence, the results obtained by means of the expansion in Method II may not
appositely be discoursed in the same way as in Method I. In view of the discrepancy, we
observe Equation (18) which shows an inverse relation between σ̂II1 and β. Accordingly, it
exists a possibility to derive the value of β directly from the parameter σ of the Gaussian
function and then calculate the value of α based on Equation (19). This is shown by taking
the standard normal distribution as an example: Setting both σ̂II1 and σ̂II2 equal to one, it is
convenient to obtain β = 1 and then substitute it into Equation (19) to obtain the computed
result of α ≈ 1.15. As a remark, the substitution of α and β into Equation (20) results in
ν = 0.15 under the condition of µ̂II = 0. The corresponding curve of the WJ function (2)
with the calculated parameters, labeled by WJII, is shown in Figure 5a. It is transparent that
the WJ function fits the Gaussian better near the peak, but the discrepancy grows bigger
as x moves away from the origin. The errors of the curve relative to the standard normal
distribution are presented as the scatter points ∆II in Figure 5b, plainly larger than that of
Method I.

Nonetheless, the value of σ is to be determined when the Gaussian function is un-
known; thus, we are not in the position to set a value to β by applying Equation (18).
We propose an alternative estimation scheme. According to Equations (16) or (17), the
parameter ν appears only as (x− v) in the exponential part and affects only µ̂II. Taking the
point into consideration, we could move forward by assuming (x− v) as the independent
variable (equivalent to the case of taking v = 0 which reflects the properties of some special
distributions [12–14]). In actuality, fitting the standard normal distribution by the WJ
function with (x− v) as the independent variable produces the parameter set of α = 1.188
and β = 0.9522. The associated curve is shown by the label of WJ0 in Figure 5a and demon-
strates better performance than that of WJII. In Figure 5b, the scatters ∆0 chart the errors of
the fitted WJ function versus the standard normal distribution. Employing Equation (20),
we directly obtain µ̂II = −0.26, which surely reveals a systematic deviation due to selecting
(x− v) as the independent variable. We need to correct it when analyzing the truncated
functions involving µ̂II and the magnitude of the correction is−µ̂II or ν = 0.26. In Figure 5b,
the symbols ∆II1 and ∆II2 represent the residual plots of N(µ̂II, σ̂II1) and N(µ̂II, σ̂II2) relative
to N(0, 1) after substituting the values of α, β and v into the equations for µ̂II, σ̂II1 and
σ̂II2. The errors are certainly larger when compared to Method I. The observation is further
supported by calculating the related cumulative probability distributions, as presented in
Figure 5c (where Gaussian, CaseII1, CaseII2, and WJ0 denote the cumulative probability
distribution functions of N(0, 1), N(µ̂II, σ̂II1), N(µ̂II, σ̂II2) and the fitted WJ function, respec-
tively). It is evident that the first three curves are close together as a result of the choice
of the parameters, but the difference with the fitted WJ function is large. Figure 5d plots
the residuals of the cumulative probability distribution functions, showing a systematic
deviation of the fitted WJ distribution.

Unlike Equation (18), independent of α and showing a straightforward relation be-
tween σ̂II1 and β, Equation (19) expresses σ̂II2 as a complicated function of α and β. As
before, Figure 5e plots the constraint relationship between α and β for σ̂II2 = 1 with β
as the x-axis and α as the y-axis, portraying a feature of rapid rising to a maximum and
then declining ultimately to level off. Based on Equation (20), Figure 5f exemplifies the
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relationship between α and β with the variation of µW J ∈ (0.2, 0.5, 1) under the condition
of µ̂II2 = 0. The curves are shaped like boomerangs and gradually move down to the left as
µW J increases.
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3.2.3. An Account of the Differences between Methods I and II

We give conceivable reasoning for the different outcomes between Methods I and II.
First of all, it is noticeable that the parameter α = 1.188 in Method II is much smaller
than α = 12.52 in Method I, whereas the corresponding β = 0.9522 is much larger than
β = 0.07915. In its deduction, the WJ function has assumed that a series of random variables
follow exponential distributions

f (xn) =
α + (n− 1)β

e
e−[α+(n−1)β]xn(n = 1, 2, 3, . . .).

when β is far smaller than α, both the means and variances of the first several random
variables may be considered roughly equal (and are the main contributing terms to the
probability). The observation, in essence, satisfies the assumptions of the Gaussian function,
and thus, the outcome of Method I discloses better characteristics in modeling the Gaussian
function than that of Method II.

Referring to the computation above, either of the two expansion methods has distinct
advantages itself. In Method I, the WJ distribution fits the Gaussian function much more
effectively in an accurate and self-consistent manner. In Method II, the WJ distribution
obtained exhibits unsatisfactory performance to fit the Gaussian function, but the expression
of σ estimation is simpler, and we may conveniently derive the parameter values of the
WJ function for fitting the Gaussian distribution or as initial inputs for searching more
accurate solutions.

3.3. Method III
3.3.1. Development of the Method

The WJ distribution reaches its maximum value at the point x = xm (xm = ν −
ln(α/β)/β [13]. Thus, it is a natural choice to expand the part e−β(x−ν) in Equation (2)
around x = xm on the basis of the Taylor formula, overtly,

e−β(x−ν) =
∞

∑
n=0

(−1)nαβn−1(x− xm)
n

n!
,

resulting in the following expression for the WJ distribution

f (x, α, β, ν) =
β

Γ(α/β)
e−α(x−ν)−∑∞

n=0
(−1)nαβn−1(x−xm)n

n! (21)

Supposed that the truncation of the terms after x2 is reasonable when the value of
β(x− xm) is sufficiently small, we retain the first three terms in the way of

∑∞
n=0

(−1)nαβn−1(x− xm)
n

n!
=

α

β
− α(x− xm)+

αβ(x− xm)
2

2
+ O ((x− xm)

3)

and attain the approximate expression for the WJ function

fIII(x, α, β, ν) =
β

Γ(α/β)
e−

αβ(x−xm)2
2 − α

β +
α
β ln α

β . (22)

Equation (22) is readily rearranged to the form of a Gaussian function as

fIII(x, α, β, ν) =
βe

α
β ln α

β−
α
β

Γ(α/β)
e−

αβ(x−xm)2
2 (23)
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Associating the equation with the formulation of the Gaussian distribution function
in Equation (1a), we have two possibilities for assessing the variance σ: argument of the
exponential-based and pre-exponential factor-based, viz.,

σ̂III1 =

√
1

αβ
(24)

and

σ̂III2 =
Γ(α/β)

√
2πβe

α
β ln α

β−
α
β

(25)

Concerning the expectation µGS, we acquire its estimation of µ̂III,

µ̂III = xm (26)

or given in the full formula

µ̂III = µW J +
1
β

Ψ

(
α

β

)
− 1

β
ln

α

β
(27)

In analog to Method I, two normal distributions N(µ̂III, σ̂III1) and N(µ̂III, σ̂III2) are ready
to formulate the WJ distribution in the form of Gaussian functions (labeled individually as
CaseIII1 and CaseIII2), as explicitly described by the expressions of

fIII1(x, α, β, ν) =

√
αβ

2π
e−

αβ(x−xm)2
2 (28)

for N(µ̂III, σ̂III1) and

fIII2(x, α, β, ν) =
βe

α
β ln α

β−
α
β

Γ(α/β)
e−π(

βe
α
β

ln α
β
− α

β

Γ(α/β)
)

2

(x−xm)2

(29)

for N(µ̂III, σ̂III2).

3.3.2. Numerical Verifications: As an Accurate, Self-Consistent Approach

As in the precedent undertakings, we aim to apply the standard normal distribution
and its fit parameter set by the WJ distribution function, substituting the numbers of
α0 = 12.52, β0 = 0.07915 and ν0 = 63.96 into the relevant equations for analysis. Figure 6a
sums up the plots for the standard normal distribution, N(µ̂III, σ̂III1) and N(µ̂III, σ̂III2),
showing their excellent superposition in the curves. The observation is further validated
by their corresponding residuals ∆III1 and ∆III2 in Figure 6b. Having been used in the
calculations, the estimated values of σ̂III1 = 1.0046, σ̂III2 = 1.0051 and µ̂III = −0.01647
are obtainable by substituting α0, β0 and ν0 into Equations (24)–(26). They are basically
indistinguishable from the outcomes of Method I (revealing tiny improvement if not
negligible in σ̂III1 and µ̂III over σ̂I1 and µ̂I, respectively). Similar to the findings in Method I,
both σ̂III1 and σ̂III2 strikingly are nearly equal and effectively one (with the mean value
µ̂III adjacent to 0), signifying the features of the standard normal distribution function
(σ = 1 and µGS = 0). Hence, we may draw the same conclusion as in Method I that the
transformation of the WJ distribution to the Gaussian function by Method III is both
accurate and self-consistent.
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Figure 6. Analyses of expanding the WJ function by Method III performed at the mode x = xm.
(a) Gaussian, Case III1 and Case III2 for the standard normal distribution, N(µ̂III, σ̂III1) and
N(µ̂III, σ̂III2), correspondingly; (b) ∆III1 and ∆III2 for the residual scatters of N(µ̂III, σ̂III1) and
N(µ̂III, σ̂III2) versus N(0, 1), respectively; (c) Gaussian, CaseIII1 and CaseIII2 for the cumulative
probability distribution functions of N(0, 1), N(µ̂III, σ̂III1) and N(µ̂III, σ̂III2), separately; (d) CaseIII1
and CaseIII2 for the respective residual plots of the cumulative probability distribution functions of
N(µ̂III, σ̂III1) and N(µ̂III, σ̂III2) relative to N(0, 1); (e) σIII1 and σIII2 for relationship between α and β

when σ̂III1 = 1 and σ̂III2 = 1, respectively; (f) Relationship between α and β assuming µ̂III = 0 with
µW J ∈ (0.05, 0.1, 0.2, 0.5) according to Equation (27), individually.
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Consistent with the well-defined observation above, Figure 6c evaluates the accu-
racy of the cumulative probability distribution functions for N(0, 1), N(µ̂III, σ̂III1) and
N(µ̂III, σ̂III2), with their residuals, plotted in Figure 6d. The relationships of the parameter
spaces are exemplified for σ̂III1 = 1 and σ̂III2 = 1 in Figure 6e, which are only a function of
α and β and show the monotonic decrease in β with increasing α, separately. In contrast,
the estimation µ̂III is a function of µW J in addition to α and β, as delineated in Equation (27).
Figure 6f is the graphs representing the relation between α and β upon the selected µW J for
the specific case of µ̂III = 0. Overall, the graphs display a rapid monotonic increase in β
with increasing α. Perceptibly, the features of the parameters behave tremendously in a
different way from Method I to Method III (cf. Figures 3 and 6).

3.4. On the Relationship of the Three Methods

We have proposed the three methods, Methods I–III, of expanding the WJ distribution
function to the Gaussian form by truncating the corresponding Taylor series. It looks stim-
ulating to inspect their relations. Here we focus discussion on the estimation parameters
of σ̂I1 of Method I, σ̂II1 of Method II and σ̂III1 of Method III. In light of their expressions,
σ̂II1 is derivable from σ̂I1 by setting ν to 0 in Equation (7) and σ̂III1 can be obtained from σ̂I1
by setting

ν =
1
β

ln
α

β

in Equation (7). Nevertheless, there is no general relation between σ̂II1 and σ̂III1 except for
the condition of α = β.

3.5. On Mutual Fitting of WJ Distributions and Arbitrary Gaussian Functions

Having performed the analysis of the relationship between the WJ distribution and
the standard Gaussian function above, we now go over the capacity of the WJ distribution
to fit a general Gaussian function, or vice versa, and the merits of fitting general WJ
distributions by Gaussian functions. Figure 7a lists several selected examples of fitting
the Gaussian function, N(0, 1), N(−1, 0.5), N(1, 2), and N(2, 5), by the WJ distribution
(for convenience of later discussion, the subscripts 0, 1, 2 and 3 are assigned in order from
left to right). Table 1 sums up the parameter values of the designated curves and the
corresponding fitting outcomes as obtained. In the figure, each individual fitting result is in
excellent agreement (Gaussian functions in solid dots and fitting WJ distributions in solid
lines), as statistically reflected in their correlation coefficients of almost one (0.9997 or larger
for all the examples in actual). Based on the obtained parameters in Table 1, we compute
the value of µW J in terms of ν and obtain µW J0 = 0.0235, µW J1 = −0.9835, µW J2 = 1.0104
and µW J3 = 2.1504 accordingly. A more direct calculation produces the ratios of

α0

α1
≈ 0.5,

α0

α2
≈ 2 and

α0

α3
≈ 4.96

as well as
β0

β1
≈ 0.5,

β0

β2
≈ 1.98 and

β0

β3
≈ 4.99,

which are satisfactorily consistent with the previous derivations of

α∗ =
α

σ
and β∗ =

β

σ
.

Still, setting δ = µW J
∗ −

(
µGS + σµW J

)
gives the results of δ1 ≈ 0.0048, δ2 ≈ −0.0366

and δ3 = 0.0329, all of which are close to 0 as expected. Obviously, the sound fits of the
Gaussian functions by the WJ distributions sanction the validity of the rescaling scheme as
deduced in the section of Method I.
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Table 1. Parameteric selection and fitting results for mutual fitting between Gaussian functions and
WJ distributions.

µ σ α β ν R2

WJ fitting GS

0 1 12.52 0.07915 63.96 0.9997
−1 0.5 25.01 0.1575 31.17 0.9998
1 2 6.251 0.0399 127.6 0.9998
2 5 2.526 0.01584 322.1 0.9997

α β ν µ σ R2

GS fitting WJ

12.52 0.07915 63.96 0 1 0.9997
1 2 3 3.632 0.8439 0.9500
2 20 5 5.305 0.3055 0.8588
1 15 10 10.59 0.5974 0.8347

The scrutiny in the previous sections has attested that the WJ distribution is capable to
well characterize the Gaussian function of arbitrary parameters. Next, we investigate the
effect of fitting the WJ distribution by the Gaussian function. Figure 7b shows four cases
of Gaussian functions fitting to WJ distributions, and Table 1 summarizes the parameters
taken for the WJ distributions and the fitting results from the Gaussian functions. As
indicated in the first panel of Figure 7b (WJ distribution in hollow squares and fitting
Gaussian function in solid line), the fit is expectedly desired since the WJ function takes
the specific set of the parameters α0 = 12.52, β0 = 0.07915 and ν0 = 63.96. Combined with
the preceding analysis (the WJ distribution fits almost the standard normal function), the
WJ distribution and the Gaussian function can mutually represent each other with these
particular parameters. This phenomenon, nonetheless, alters dependent on the set of the
parameters specified when we vary the values of α, β and ν. It is true that the second plot
in Figure 7b shows a significantly unsatisfactory fit in comparison to the first, while the
Gaussian functions in the third and fourth figures no longer portray properly the trends
of the corresponding WJ distributions, which are enormously distinct by the difference in
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the peaks of the curves. Thus, it follows that Gaussian functions are not able to capture the
main characteristics of the WJ function in general. Statistically, the features of the curves
are overall manifested in the change in their correlation coefficients from almost one (0.9997
in actual) for the first panel declining to 0.8347 for the last panel.

The explication in the above points to the fact that if a stochastic process is describable
by a Gaussian function, it can be at the same time quantified by a WJ distribution almost in
the identical way; on the contrary, it may not be the case.

3.6. Analyses of Typical Cases
3.6.1. Application to Advanced Magnetism

To demonstrate the practical usefulness of the WJ distribution in preference to the
Gaussian function, we first analyze a typical case in extreme events and critical phenomena
as an example [45]. A set of the experimental data are extracted from the literature and
fitted with the WJ distribution and the Gaussian function, respectively. The assessment is
conducted by interpreting the magnetization intensity (M− < M >)/σM as the negative
variable x in the WJ distribution (2) and the Gaussian function (1a) due to the positive
definition of the parameters α and β, with the probability density scaled by the magnitude
of σM. The fitting results are shown in Figure 8, yielding the fit parameters of α = 1.542,
β = 0.7467 and ν = 0.5878 (R2 = 0.9983) for the WJ distribution and µGS = 0.8879 and
σ = 1.28 (R2 = 0.8091) for the Gaussian function, separately. It is plain from the figure that
the WJ function offers a well-defined matching to the experimental data with the correlation
coefficient of 0.9983 (virtually one for a most optimized fit), in striking contrast to the
unsatisfied performance of the Gaussian function with a rather poor correlation coefficient
of 0.8091. This example strongly advocates that the WJ function has the advantage in
such practical situations. In turn, we apply the WJ distribution to refit this Gaussian
function of µGS = 0.8879 and σ = 1.28 itself, and the outcome is given in the inset of
Figure 8. As expected, both of them agree quite impressively with the parameter values of
α = 8.482, β = 0.0764, and ν = 62.36 and give a remarkable correlation coefficient of 0.9969,
substantiating the proposition once more that the WJ distribution can well represent the
general Gaussian function.
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3.6.2. Application to Topical Medical Imaging Analyses

It is noteworthy that the data set considered in the above deliberation has provided
an example to demonstrate the representation of the WJ distribution for the Gaussian
function in addition to the pertinency to extreme events and critical phenomena. Due to its
skewedness; however, a concern could arise about the legitimacy of applying the Gaussian
function to it as a result of possible misinterpretation in the procedure. To resolve the
issue and give more examples in practical application, we are going to present the data
acquired from the same experiment [7], both with and without skewedness, to directly
appraise the applicability of the WJ distribution and the Gaussian function in the following.
The experiment reports a multidisciplinary fitting approach to improve the localization of
parathyroid glands from their Single-Photon Emission Computed Tomography (SPECT)
images using generalized Gaussian functions for quantitative assessment of preoperative
parathyroid SPECT/CT (CT, Computed Tomography) scintigraphy results in a large patient
cohort in combination with Particle Swarm Optimization (PSO) modeling and generates the
distributions of several important parameters. Two sets of experimental data are retrieved
to initiate a preliminary evaluation of the effectiveness of the Gaussian function and the
WJ distribution in analyzing such cases. One is the distribution of the mean scale errors
for random topology, and the other is the distribution of the mean amplitude errors for
random topology. Since the data are not normalized, we need to introduce a normalization
factor k (kGS for the Gaussian function and kW J for the WJ distribution) to modify the
corresponding Equations (1a) and (2) in the way of

fm(x, µGS, σ) =
kGS√
2πσ

e−
(x−µGS)

2

2σ2 (30)

and

fm(x, α, β, ν) =
kW J β

Γ(α/β)
e−α(x−ν)−e−β(x−ν)

(31)

Figure 9 shows the fitting results and related analyses. Figure 9a presents the outcomes
on the distribution of the mean scale errors for random topology (in dots) assessed by
the Gaussian function (in a continuous curve) and the WJ distribution (in dashed line)
separately. It is easily recognizable that both the Gaussian function and the WJ distribution
can excellently match the data points, giving virtually no discernible difference between
them. The fitting parameters read α = 19.06, β = 0.1444, ν = 35.84 and kW J = 0.1027
(R2 = 0.9981) for the WJ distribution and µGS = 2.043, σ = 0.6022 and kGS = 1026
(R2 = 0.9980) for the Gaussian function, correspondingly. Statistically substantiating
the visual observation above, the correlation coefficients, almost one (0.9981 for the WJ
distribution and 0.9980 for the Gaussian function), manifest that both of them have the same,
equal goodness of fit with a slightly better performance of the WJ distribution if any. The
obtained normalization factors, kGS and kW J , are essentially the same, in accord with the
precise estimation of the experimental data by both the WJ distribution and the Gaussian
function. As recorded in Figure 9c, the good fits are mirrored in the calculated deviations
of the fittings, with no apparent preference in spreading between the WJ distribution and
the Gaussian function.



Appl. Sci. 2022, 12, 7773 21 of 25
Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 26 
 

 

Figure 9. Comparative analyses of experimental data for different parameters obtained from the 

topical medical studies. (a) Distribution of mean scale errors: Experimental data (dots), Gaussian 

function (continuous curve) and WJ distribution (dash); (b) Distribution of mean amplitude errors: 

Experimental data (dots), Gaussian function (continuous curve) and WJ distribution (dash); (c) Cal-

culated deviations of mean scale errors: Gaussian function (dots) and WJ distribution (triangles); (d) 

Calculated deviations of mean amplitude errors: Gaussian function (dots) and WJ distribution (tri-

angles); (e) Fitting Gaussian function by WJ distribution for the case of mean scale errors: Gaussian 

Figure 9. Comparative analyses of experimental data for different parameters obtained from the topi-
cal medical studies. (a) Distribution of mean scale errors: Experimental data (dots), Gaussian function
(continuous curve) and WJ distribution (dash); (b) Distribution of mean amplitude errors: Experi-
mental data (dots), Gaussian function (continuous curve) and WJ distribution (dash); (c) Calculated
deviations of mean scale errors: Gaussian function (dots) and WJ distribution (triangles); (d) Calcu-
lated deviations of mean amplitude errors: Gaussian function (dots) and WJ distribution (triangles);
(e) Fitting Gaussian function by WJ distribution for the case of mean scale errors: Gaussian function
(dots) and WJ distribution (curve); (f) Fitting Gaussian function by WJ distribution for the case of
mean amplitude errors: Gaussian function (dots) and WJ distribution (curve).
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Figure 9b displays the fitting results on the distribution of the mean scale errors for
random topology (in dots) appraised by the Gaussian function (in a continuous curve)
and the WJ distribution (in dashed line) individually. In terms of the figure, both the
Gaussian function and the WJ distribution can capture the major features of the data, but the
performance becomes much worse for the Gaussian function than for the WJ distribution.
The relevant parameters from the fittings are α = 0.5157, β = 0.4840, ν = 3.343 and
kW J = 0.2218 (R2 = 0.9846) for the WJ distribution and µGS = 3.700, σ = 2.152 and
kGS = 0.2032 (R2 = 0.9531) for the Gaussian function, correspondingly. Examining the
correlation coefficients, 0.9846 for the WJ distribution and 0.9531 for the Gaussian function,
statistically reveals the degrees of deviation, which show much better performance by the
WJ distribution than by the Gaussian function. Nonetheless, the acquired normalization
factors, kGS and kW J , are quite different, reflecting the fact of the dissimilar estimation
capabilities in gauging the experimental data between the WJ distribution and the Gaussian
function. As shown in Figure 9d, such discrepancy is straightforwardly revealed in the
calculated deviations of the fittings, which indicate that the maximum deviation from the
Gaussian function can be twice as large as from the WJ distribution.

Subsequently, we apply the WJ distribution to refit the Gaussian function with the
parameter set obtained from the fitting above. In the case of the mean scale errors, the
parameter set of µGS = 2.043, σ = 0.6022 and kGS = 0.1026 is used, and the fitting outcome
is given in Figure 9e with the parameter values of α = 20.2, β = 0.1358, ν = 38.85 and
kW J = 0.1026 (R2 = 0.9997) for the fitted WJ distribution. As anticipated, the agreement
between the WJ distribution and the Gaussian function is, in virtue, seamless as the
correlation coefficient of 0.9997 is essentially one, confirming once more the representation
of the WJ distribution for the Gaussian function. In the case of the mean amplitude errors,
the parameter set is µGS = 3.700, σ = 2.152 and kGS = 0.2032, and the fitting result is
shown in Figure 9f with the parameter values of α = 5.204, β = 0.04077, ν = 122.6 and
kW J = 0.2032 (R2 = 0.9997) for the fitted WJ distribution. Analogous to the case of the mean
scale errors, the superior agreement, as reflected in the outstanding correlation coefficient
of 0.9997, between them proves once again the representation of the WJ distribution for the
Gaussian function.

In summary, the preceding analysis shows that the WJ distribution, overall better than
the Gaussian function, can give a unified approach to treating the data of the different
parameters in such topical medical studies for the well-being of the patients. The unification
should offer valuable insights to deepen the understanding of the experimental results and
potentially facilitate the operative recovery.

4. Conclusions and Future Research

We have developed the three methods of transforming the WJ distribution to the
form of the Gaussian function by means of the proper Taylor expansion, showing an
accurate and self-consistent approach by expanding the double exponential part around
x = 0 (Method I) or around x = xm (Method III). The relationship between the parameters
µGS and σ of the Gaussian function and α, β and µW J (or ν) of the WJ distribution are
systematically examined. Overall, the WJ distribution can represent the Gaussian function
quite well, but the latter only fits the former satisfactorily under the condition of special
sets of parameters. In addition, the parameter scaling relation of the WJ distribution
to express the general Gaussian function is given. For assessing practical usefulness,
we have performed the evaluation of typical cases on advanced magnetism and topical
medical image processing by the WJ distribution and the Gaussian function separately. In
consequence, the WJ distribution may be regarded as an extended Gaussian function, and
our work initiates building up a bridge for the gap between relevant extreme value theories
and Gaussian processes.

It may be appropriate to emphasize that the WJ distribution is of interest for more
study owing to its suitability for circumstances subject to the Gaussian function as well as its
unique potential to describe the scenery of extreme events and critical phenomena, namely,
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suggesting practically a unifying platform to the pertinent data processing of those quite
distinct fields. In this way, future research may proceed in three aspects. (1) It is clear that
Methods I and III developed in the work are accurate and self-consistent in representing
the Gaussian function by the WJ distribution, but Method II shows a limited capability
in doing so. As Method II has simple expressions, however, it is easy to carry out proper
normalization (direct normalization) though the solution found is far from satisfactory as
outlined in the section of Method II. Nevertheless, both Methods I and III possess more
complicated expressions for solving and promising possibilities of direct normalization
but with great challenges in finding optimized solutions if existent. Undoubtedly, it is
motivating to conduct more research along the line of direct normalization in the future.
(2) We have directly compared in the text the applicability of both the WJ distribution
and the Gaussian function to advanced magnetism and current medical image analyses,
showing a unified framework provided by the WJ distribution in preference. It is useful
to broaden and deepen such initial investigations of germane experimental databases to
give more insights into relevant phenomena for mechanistic understanding and advanced
applications. (3) A comparison with other distributions is constructive and should put
the research in a far-reaching perspective, e.g., to enrich studies in connecting pertinent
extreme value theories and Gaussian processes.
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