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Featured Application: The results of this study can potentially contribute to the further devel-
opment of automated emotional facial expression analysis systems, to their usage in developing
screening/diagnostic systems, and to the refinement of methodological practices of their usage in
both applied and basic research in general.

Abstract: Automated emotional facial expression analysis (AEFEA) is used widely in applied research,
including the development of screening/diagnostic systems for atypical human neurodevelopmental
conditions. The validity of AEFEA systems has been systematically studied, but their test–retest
reliability has not been researched thus far. We explored the test–retest reliability of a specific
AEFEA software, Noldus FaceReader 8.0 (FR8; by Noldus Information Technology). We collected
intensity estimates for 8 repeated emotions through FR8 from facial video recordings of 60 children:
31 typically developing children and 29 children with autism spectrum disorder. Test–retest reliability
was imperfect in 20% of cases, affecting a substantial proportion of data points; however, the test–
retest differences were small. This shows that the test–retest reliability of FR8 is high but not perfect.
A proportion of cases which initially failed to show perfect test–retest reliability reached it in a
subsequent analysis by FR8. This suggests that repeated analyses by FR8 can, in some cases, lead
to the “stabilization” of emotion intensity datasets. Under ANOVA, the test–retest differences did
not influence the pattern of cross-emotion and cross-group effects and interactions. Our study does
not question the validity of previous results gained by AEFEA technology, but it shows that further
exploration of the test–retest reliability of AEFEA systems is desirable.

Keywords: autism spectrum disorder (ASD); automated emotional facial expression analysis
(AEFEA); children; Noldus FaceReader 8.0; test–retest reliability

1. Introduction

Automated emotional facial expression analysis (AEFEA) technologies are aimed at
processing digitized images of human faces in order to generate estimates of the intensities
of emotional states displayed on the face. It is expected that these systems can complete this
process faster and more cost-effectively than human agents [1–4], with higher reliability and
with at least comparable validity [5]. Although there is an ongoing discussion about AE-
FEA systems’ potentially intrinsic limitations—arising from estimating emotional content
without taking into account the context in which the facial expression arises [6,7]—there is
a rapidly growing interest in them. Beyond their use in academic research, there have been
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numerous attempts to utilize AEFEA technologies in applied fields, such as researching
consumer behavior, user experience, and marketing [5,8] and in diagnostic technologies
in psychiatry [6,9,10]. While their validity has been widely investigated, no study has
been published on their test–retest reliability; the latter is an equally important property
of any tool for collecting data on human behavior. Thus, the present study empirically
explored the test–retest reliability of a specific AEFEA system. As AEFEA technology seems
to have great potential in screening and diagnostic technologies for neurodevelopmental
conditions, we used data from typically developing children and children with autism
spectrum disorder (ASD). Our study suggests that the test–retest reliability of Noldus
FaceReader 8.0 (FR8; by Noldus Information Technology; Wageningen, The Netherlands)
is very high but not perfect. Our findings do not question the validity of previous results
gained by AEFEA technology, but they demonstrate that further exploration is needed
to gain a better understanding of this key characteristic of AEFEA systems. Test–retest
reliability showed highly similar patterns in the groups of children with ASD and with
neurotypical development.

Ekman’s Facial Action Coding System (FACS) [11] is a widely used framework for
identifying emotional facial expressions (EFEs) and assessing their intensities by human
coders based on the anatomical features of the face. It also serves as the foundation for
making emotion estimations in several AEFEA technologies [12], as it is highly valid and
reliable when used by human coders [13,14]. It can be elaborated precisely enough to be
implemented in computational algorithms [7,15]. It defines action units (AUs) anatomically,
that is, through different muscle movements of the face, to identify specific EFEs as consti-
tuted by their specific combinations. Intensity estimations for any emotional expression are
derived from the intensities of their component AUs, that is, from the amplitudes of the
relevant muscle movements.

At present, a few commercially available versions of AEFEA technology exist, based on
the FACS, including the AFFDEX (developed by Affectiva, Boston, MA, USA, distributed
by Affectiva and iMotions, Copenhagen, Denmark) [16–18]; the FACET (developed by
Emotient, San Diego, CA, USA, distributed by iMotions, Copenhagen, Denmark) [19];
and the Noldus FaceReader (developed by VicarVision, Amsterdam, The Netherlands,
distributed by Noldus Information Technology) [20]. See Dupré, Krumhuber, Küster, and
McKeown’s review [21] for others. Although all of these are based on FACS, they use
various computational algorithms for face and feature (AU) detection [21]. There is intense
simultaneous development in this area, which stretches beyond classical emotion theories
and FACS. Analysis of facial expressions has been supplemented by the processing of a
broader set of social signals [22]. Emotion identification has been extended beyond basic
or primary emotions (fear, disgust, anger, surprise, happiness, sadness, and contempt,
according to Ekman’s 1978 framework) to include secondary emotions (e.g., boredom,
interest, and confusion) [23]. Facial expressions have also been decomposed into sequences
of distinct phases, and their symmetry and micro-expressions, and the dynamic patterns
of differences between morphologically similar facial expressions, have been analyzed [4].
Input data from laboratory settings are increasingly replaced with data from “in-the-wild”
scenarios [2,4,22,24]. In this study, we focus on FACS-based AEFEA systems, and, more
specifically, on FaceReader 8.0.

Although the number of AEFEA algorithms has increased in recent years, only a few studies
on their validity and reliability have been published in peer-reviewed journals, e.g., [3,5,21,25].
More studies are available in conference presentations and proceedings [15,26–29].

Validation of AEFEA systems is conducted on controlled, publicly available reference
datasets of images of human faces with EFEs and corresponding emotion intensities, as
judged by trained human coders. Of the algorithms based on Ekman’s FACS, FaceReader,
AFFDEX, and FACET have been best documented to reach high validity [3,5,20,25,30].

In regard to the FaceReader system specifically, three different versions of FaceReader
have been validated on four different validated datasets of human expressions of basic
emotions in total, three of which are publicly available. FaceReader 1.0 exhibited an



Appl. Sci. 2022, 12, 7759 3 of 22

89% match with the reference emotion labels from the Karolinska Directed Emotional
Faces (KDEF) dataset [20,30,31]. FaceReader 6.0 reached an 88% overall hit rate [5] when
validated on the Warsaw Set of Emotional Facial Expression Pictures (WSEFEP) [32] and
the Amsterdam Dynamic Facial Expression Set (ADFES) [33]. Human emotion recognition
performance for these two datasets was 85% in the same study. For some action units,
FaceReader did not reach the 0.7 level of agreement required for the FACS certificate for
human coders; however, for other AUs, FaceReader showed high accuracy. It remarkably
surpassed human coders in identifying neutral faces [34]. FaceReader 7 was validated [35]
on the Standardized and Motivated Facial Expression of Emotion (SMoFEE) dataset [36],
and its performance was compared with that of FaceReader 6.0 and of human coders found
in earlier studies. Overall, FaceReader 7 performed well, as it correctly classified 79% and
80% of EFEs (in noncalibrated and calibrated conditions, respectively); however, it showed
somewhat uneven performance across emotions and underperformed FaceReader 6.0 in
some respects.

FaceReader is under continuous development; its most recent release is version 9.
There have been considerable efforts to study both the inter-rater reliability and the

test–retest reliability of human facial emotion analysis in the FACS framework. Inter-
observer agreement was studied in various ways, such as using spontaneous vs. posed
facial images and focusing on all AUs vs. specific AUs [1,37]. The most-cited study on
human–human inter-rater reliability within the FACS framework using spontaneous facial
expressions in three independent laboratory studies is that of Sayette et al. [14], which
reported good–excellent reliability measures.

While both the inter-rater reliability and the test–retest reliability of human emotion
analysis within the FACS framework have been explored, in the case of FACS-based AE-
FEA systems, perfect test–retest reliability was tacitly taken for granted (see below) and,
instead, inter-system reliability studies were published. In most of these, the systems’
performances were evaluated individually and sequentially against reference datasets,
and then compared. In other studies, agreement between the different systems was di-
rectly assessed. Study outcomes are not easy to compare, because diverse kits of stim-
ulus datasets and statistics were used. This is true of human–computer inter-system
comparisons [3,5,10,34,35,38,39]. A smaller number of inter-system comparison studies
have employed more sophisticated methods, where aspects of emotion dynamics, such
as onsets, peaks, and offsets of emotions, or changes in action unit intensities, were also
compared [1,20]. Overall, the results indicate that AEFEA performs almost equally to, or
occasionally better than, the reference human coders. An important exception is the study
by Dupré et al. [21], where human coders outperformed all eight of the AEFEA systems,
including FaceReader (version 7), in analyzing both posed and spontaneous EFEs.

Electromyography (EMG)/AEFEA comparison studies found that the two types of
systems yielded highly correlated output data; however, compared with EMG, AEFEA
systems are much easier to use [25,38,40].

In the case of human rating, test–retest reliability is perceived as an important method-
ological issue concerning EFEs as well as other aspects of human behavior. However, we
found no study exploring the test–retest reliability of any AEFEA system. Most research
reports seem to assume, either explicitly or implicitly, that AEFEA systems are based on
fully deterministic algorithms, thus taking their perfect test–retest reliability for granted
and implying that the stability of their input–output mappings is not an interesting question
for research [41].

To fill this gap in our knowledge on the characteristics of AEFEA systems, the present
study aimed to explore the test–retest reliability of a specific AEFEA engine, FaceReader
8.0 (henceforth referred to as FR8).

We explored the test–retest reliability of FR8 in a group of subjects with atypical
neurocognitive development, namely children with ASD, in addition to a sample of neu-
rotypical children. The quality and quantity of EFEs have diagnostic significance in several
conditions, including ASD [9,42]. This makes AEFEA technology an important candidate
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research tool in studying these groups and in developing technology-aided screening and
diagnostic systems.

In studying EFEs in atypical populations (including both individuals with develop-
mental disorders and those with other psychiatric conditions), three aspects of emotional
display seem especially relevant. These may potentially influence the validity and/or
reliability of EFE recognition methodologies (both human and automated ratings) in these
groups. The three aspects are as follows: (1) the congruence of facial emotions, i.e., the ade-
quacy of an EFE in a specific context [9,43]; (2) the match between the emotion subjectively
experienced and the corresponding facial expression [44]; (3) facial morphology [45,46].

Autism spectrum disorders are neurocognitive developmental conditions, and atypical
communication of emotions is among their diagnostic markers [47]. Although findings on
EFEs in ASD are diverse, studies suggest that all three anomalies mentioned are present in
ASD: atypical craniofacial features and development [48–52]; incongruent emotions and
mismatch between the expressed and experienced emotions [53–56]. It was also found that
some individuals with ASD tend to use EFEs intentionally instead of spontaneously in
social contexts, in order to “camouflage” their condition [57]. Therefore, individuals with
ASD form a candidate group for exploring whether the test–retest reliability of AEFEA
systems is influenced by atypical emotional expression patterns accompanied by atypical
craniofacial features.

The present study is part of a research-and-development project with the long-term
aim of developing and validating the concept and prototype of a social serious-game-
based digital system for the screening of high-functioning cases of ASD among children at
kindergarten age [58–61]. A partial prototype of the screening system is under validation
and further development; the data analyzed in the present study were collected with
this prototype. It records three kinds of behavioral data from the player while they play
the game: mouse position and action, gaze focus position, and EFE data (estimates of
displayed emotional content, provided by AEFEA on the basis of a video recording of the
player’s face). The intended output of the system is a three-level risk estimation, based on
a combination of the three kinds of collected data. The present study focuses on EFE data.

2. Materials and Methods
2.1. Study Aims

Given the exploratory nature of the study, we formulated research questions—not
specific hypotheses—as follows:

1. What level and pattern of test–retest reliability does a specific version of AEFEA
technology, FR8, provide in a group of typically developing children of kindergarten
age, and in a matched group of children with autism spectrum disorder (ASD)?

2. Does test–retest reliability, if found imperfect, influence the overall pattern of re-
sults, especially between-group and between-emotion differences in detected EFE
intensities? If so, how?

2.2. Participants

A total of 60 children, either with neurotypical development (in this paper, we use
the terms “neurotypical” and “typically developing” interchangeably, referring to indi-
viduals (children) without any known neurological or psychiatric conditions) (n = 31) or
with an ASD diagnosis (n = 29), were recruited in Hungary to participate in the study.
They were recruited via their parents, directly (explicitly), either into the neurotypical
(NT) or into the ASD (autism) group, using web advertisements (email circulars and social
media). They were all white/Caucasian and without facial artifacts (glasses, etc.). Before
collecting EFE data from them, all applicants went through a clinical and psychometric
assessment in order to ensure their correct placement into the ASD vs. NT groups and
their intellectual abilities, being in the IQ > 85 region, and to collect clinical, demographic,
and other background data. Autism-related symptoms were first assessed by the SCQ
(Social Communication Questionnaire) [62], and then by the ADOS (Autism Diagnostic
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Observation Schedule) [63] and the ADI-R (Autism Diagnostic Interview—Revised) [64].
The latter two are internationally accepted standard tools for autism diagnosis. Intelligence
was assessed by the Leiter-R Brief scale [65] and the level of receptive language (grammar)
was assessed by the TROG-H (Test for the Reception of Grammar) [66]—the Hungarian
adaptation [67]. As the recording of facial expressions was accompanied by eye tracking
(although these data were not analyzed in the present study), a questionnaire was used
to collect information on any potential eye or visual anomaly. General inclusion criteria
comprised the following: age between 36 and 72 months, unimpaired intelligence, and
receptive language (grammar). Further inclusion criteria for the NT group comprised the
following: SCQ total score < 4; all ADOS and ADI-R scores below the diagnostic cutoff
values. Further inclusion criteria for the ASD group comprised the following: all ADOS
and ADI-R scores above the diagnostic cutoff values; a clinical diagnosis of ASD from an es-
tablished diagnostic institution. Exclusion criteria were ophthalmological and neurological
conditions interfering with eye tracking; any neurodevelopmental condition, except ASD in
the ASD group; significant delay in language, intellectual, or motor development; being on
medication influencing the central nervous system; first language being a language other
than Hungarian; and any acute or chronic medical condition which might influence the
relevant behaviors.

From the total of 97 children who entered the recruitment process, 23 were excluded
for not meeting some of the inclusion criteria above or meeting some of the exclusion
criteria. Of the 74 children who went on to the EFE-data-collection phase, 14 were excluded
from further analysis, due to either failure to collect enough data from them for analysis, or
for any emerging doubt concerning the correctness of their diagnostic status (e.g., close to
or above the cutoff score in ADOS or ADI-R).

The final sample thus comprised 60 children, 31 being (neurocognitively) typically
developing and 29 having an ASD diagnosis. The two groups are well-matched with
respect to IQ, receptive grammar, and their performance in the game (as indicated by
number of correct (overt) mouse responses). In line with the diagnostic difference between
the groups, they showed a significant difference and no overlap in their SCQ scores. There
emerged a slightly significant difference in age, with small–moderate effect size; the mean
age of the ASD group being higher than that of the NT group. Table 1 shows their key
demographic and psychometric characteristics, and matching statistics.

Table 1. Demographic and psychometric characteristics of subjects. At the results of statistical
difference between groups “ns” means non-significant.

NT Group
n = 31

18 Male/13 Female

ASD Group
n = 29

21 Male/8 Female Statistical Difference between Groups

Mean (SD) Range Mean (SD) Range

Age (months) 53.2 (8.65) 38–68 57.8 (8.65) 41–70 t(58) = −2.042; p = 0.046; Cohen’s d = 0.26

IQ by Leiter-R Brief 120.5 (14.04) 98–147 116.3 (13.9) 91–139 t(58) = 1.156; p = 0.252 (ns)

TROG-H score (receptive
grammar) 118.2 (14.40) 83–147 111.3 (14.93) 82–153 t(58) = 1.156; p = 0.074 (ns); Cohen’s d = 0.23

Median Range Median Range

SCQ score
(ASD symptom severity estimate) 1 0–3 21 8–29

Mann–Whitney’s U < 0.0001; z = −6.732;
p < 0.001 (Mann–Whitney);

effect size (stochastic difference; [68]): 1 (large)

Game total score
(number of correct mouse

responses out of the total 24)
24 19–24 23 2–24

Mann–Whitney’s U = 342; z = −1.660;
p = 0.097 (ns); effect size (stochastic difference

[68]: 0.239 (large)

2.3. Stimuli

EFE data were collected while children played with the prototype of the computer
game. The game content was designed on the basis of empirical studies that revealed
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differences in EFEs, visual scanning patterns, or overt intended behavioral responses
between neurotypical children and children with ASD of the relevant age. The main
theme of the game was based on the story scripts used in an experimental developmental
psychology study by Sodian and Frith [69], which compared neurotypical vs. autistic
children’s ability to understand agents’ cooperative or competitive intentions, and to
manipulate their behaviors by means of sabotage and deception. Accordingly, our game
script centered around controlling the behaviors of social agents (cartoon figures) by
sabotage vs. deception, in cooperative and competitive contexts. It consisted of eight
such scenes, plus an opening scene to elicit potential group-specific attentional biases, two
instruction scenes, and a closing scene.

The game presented predominantly visual stimuli, accompanied occasionally by
sounds, such as bird tweets, characters’ speech, and various physical noises related to the
events shown. Table 2 outlines the scene structure of the game. This section may be divided
by subheadings. It should provide a concise and precise description of the experimental
results, their interpretation, and the experimental conclusions that can be drawn.

Table 2. Outline of the scene structure of the game (adapted from Gyori et al. [61]).

Scene Theme Scene Function Stimuli Presented (Visually)

“Perceptual preferences” To evoke spontaneous emotional and
gaze responses

Pinwheel, two birds, human
agent (narrator)

Introduction and instructions—1 To familiarize with characters, task,
controls

Human-like characters
(narrator, competitor,

cooperator), chest, candy,
bowl, controls

Sabotage in cooperative context

To evoke spontaneous emotional and
gaze responses, intentional behavioral

(mouse) responses

Sabotage in competitive context

Sabotage in cooperative context

Sabotage in competitive context

Introduction and instructions—2 To familiarize with task and controls

Deception in cooperative context

To evoke spontaneous emotional and
gaze responses, intentional behavioral

(mouse) responses

Deception in competitive context

Deception in cooperative context

Deception in competitive context

Closing To close the session Human agent (narrator)

As progress in a game session depended on some of the player’s responses, total
play time varied across individuals. Longer response latency resulted in longer game
time, and so did erroneous responses, as these resulted in repeating the given trial (up to
3 expositions). The mean total play time was 1482.123 s (SD 88.009, range 1360.933–1688.733).
In the ASD group, it was 1502.442 s (SD 102.453, range 1367.233–1688.733); in the NT group
it was 1464.426 s (SD 68.387, range 1360.933–1606.933). (Means were calculated only on
those subjects who played to the end of the game). The two group means did not differ
significantly (independent samples t-test, 2-tailed, with different variations).

2.4. Setting and Equipment

Recording EFE data from the game took place individually, in standard lab circum-
stances (lighting held constant, environmental noise reduced to minimal), in the presence of
the subject and the experimenter. Parents/caretakers were offered the choice to stay in the
lab or to follow the measurement from the neighboring room via a one-way mirror; all chose
the latter. Subjects were sitting at a desk in a comfortable fixed chair with adjustable height.
Initial viewing distance to the monitor was controlled according to the feedback from the
eye-tracking system and was kept at approximately 72 cm. Head and body movements were
not constrained, but children were asked to remain seated, and they all did so.

The game was controlled by using the Unity game engine (Unity Technologies) and
was running on a desktop-mounted eye-tracking PC (EyeFollower 2, by LC Technologies;
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Dresden, Germany). Visual elements of the game were presented on a 24-inch LCD
monitor (Benq V2410 ECO 24, Costa Mesa, CA, USA); sounds via a pair of commercial
computer loudspeakers. Children could control the game by a computer mouse, designed
specifically for young children. A webcam (Logitech®, Newark, CA, USA, C600, 2 MP,
1280 × 720 pixels, max. 30 fps) mounted below the PC monitor made video recordings of
the player’s face. For 52 subjects, the recording rate was 15 fps (with negligible variability),
the video image resolution was 1280 × 720. For the remaining 8 subjects, the recording
rate was somewhat higher (between 25.00 and 29.97 fps), and the resolution was lower
(between 720 × 480 and 800 × 504). To gain AEFEA data, these recordings were analyzed
offline by FR8. These analyses were run on a Lenovo ThinkStation P320, Beijing, China,
desktop PC, with key parameters exceeding the configuration recommended by Noldus
for running FR8 (in our case: XEON E3 1240v6 3.7 Ghz processor, 16 GB RAM, 256 GB SSD
Quadro P600 hard drive) and exceeding the minimum required configuration.

Data processing and analysis were performed using custom-made algorithms in JAVA
(Oracle Technology Network, Redwood Shores, CA, USA) and SPSS v25 and v26 (IBM Inc.,
Armonk, NY, USA).

2.5. Procedure

Data collection took place in 3 sessions, individually, for each subject. At the beginning
of session 1, children and their parents received detailed information on the purpose and
procedure of the study and were asked for their explicit consent. After they provided it,
children played with a simple computer game to practice using the one-button computer
mouse. After reaching a pre-set criterion, they received brief instruction and then played
with the stimulus game, while facial expression data (facial videos) were recorded. In
the remaining part of session 1 and in session 2, clinical and psychometric data were
collected from the children (Leiter-R, TROG-H, ADOS). In session 3, the ADI-R interview
was administered with the parents/caretakers. All these measurements were administered
individually by a psychologist trained in the use of these psychometric tools.

2.6. Data Processing and Analysis

The input for AEFEA and further analyses were 60 facial video recordings, with a
mean length of 1455.862 s (SD = 167.831 s; range: 508.535–1688.733 s) (the mean length of
the video recordings was somewhat lower than that of total play times presented above
(and the range and SD were greater); this was due to one video recording stopping earlier
than the end of the game). These were analyzed by FR8 for gaining EFE intensity data.
No preprocessing was performed on the recordings before FR8 analyses. FR8 provides
expression intensity values between 0 and 1 on 8 emotions: neutral, happy, sad, angry,
surprised, scared, disgusted, and (optionally) contempt. FR8 attempts to assign such
intensity values to each frame of the video recording. If it is unable to find the face in any
given frame, it logs a “FIND_FAILED” entry for the frame, for each emotion. If it is able to
find the face, but unable to fit the face model onto it, it creates a “FIT_FAILED” entry for all
emotions for the frame. These data were exported with their time stamps and served as
raw data for further analyses.

FR8 provides several settings options to customize EFE analysis. Appendix A Table A1
presents and explains the settings used in this study.

For test–retest reliability analysis, each recorded facial video was analyzed by FR8,
repeatedly, a maximum of three times. If the first two subsequent analyses yielded exactly
the same EFE intensity values, then no further analysis was run on that specific recording.
If, however, no complete agreement was found, then a third analysis was performed.

This repeated analysis was performed by repeatedly sweeping along the set of video
recordings in the same order. That is, firstly, all recordings were analyzed once, from subject
#1′s recording to subject #60′s recording, and then the second analysis was carried out in
the same order. After checking the level of match between corresponding individual data
series, only those recordings were analyzed again (in the same order) where total test–retest
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identity was not reached with the second sweep. Those with perfect test–retest identity
were omitted from reanalysis. One dataset (file) was gained from each analysis of each
recording, and these datasets served as input for further analyses on test–retest reliability.
See Results, Section 3, for descriptive data on the repeated analyses and their outcomes.

3. Results
3.1. Test–Retest Reliability
3.1.1. Test–Retest Differences between First and Second Test Data Series

As a first approach to analyzing test–retest reliability, we compared data pairwise
from the first (test1) and second (test2) EFE FR8 analyses of the same videorecording for
each subject. Since the recordings differed in length, the number of data points generated
by EFE analyses also differed between subjects. For any given subject, we had < length in
seconds > times < frames/second > times < emotions: 8 > data points for both test1 and
test2. In contrast with the widespread belief reflected by the literature that algorithmic
AEFEA has total test–retest reliability, in 12 of 60 of our cases (subjects), the data series
gained from test1 and test2 were nonidentical. In these cases, test–retest differences affected
a considerable proportion of data points. We calculated the ratio of differing data points
between test1 and test2 outputs for each subject; Figure 1 shows the resulting distribution.
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Figure 1. Histogram on the 12 subjects with nonidentical data series when comparing test1 and test2

datasets, along differing data points, as a percentage of all data points.

For exploratory purposes, we calculated the mean differences for each subject and
emotion, based on individual test1–test2 difference distributions, and then calculated
group-level descriptive statistics on each set of individual means; see Appendix A Table A2.
Overall, the means of the individual test1–test2 differences were very small, on the order of
magnitude of 10−3–10−7 for the eight emotions. The SD values were on a similar order of
magnitude—10−3–10−6.

To explore the individual patterns of the magnitudes of differences between the test1
and test2 output data series, for each subject with nonidentical test1–test2 datasets and for
each emotion, we calculated the individual distributions of these different magnitudes.
A total of 12 (subjects) × 8 (emotions) = 96 frequency distributions were thus obtained.
For illustration, such difference distributions are shown for two subjects in Appendix A
Tables A3 and A4. In these two cases, similarly to other subjects showing test1-test2
differences, the means of the individual emotion difference distributions were low.

For the 12 subjects with nonidentical test1–test2 results, we checked the number of
FIND_FAILED (for the failure of finding the face on a video frame) and FIT_FAILED (for
the failure of fitting the face model onto the face on a video frame) error signals in the two
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subsequent test runs. Importantly, these error signals—and consequently the number of valid
data points—are always fully correlated across the eight emotion dimensions in any dataset.

On the subsequent runs (tests), these error indices were almost totally stable for each
of the 12 subjects. The differences in their absolute frequencies were not above 3 in any
of the 12 cases (cf. the mean total number of data points = 26,139). The FIND_FAILED
index was more stable than the FIT_FAILED index (showing difference only in one case
in the twelve-case cohort, and only in one data point). This clearly shows that imperfect
test–retest reliability did not arise from different distributions of these error signals in the
corresponding datasets.

Clearly, these error signals were perfectly stable for each of the 48 subjects with
identical test1–test2 datasets.

3.1.2. Test–Retest Differences between Second and Third Test Data Series

After finding differences between test1 and test2 data series in one-fifth of the cases
in our sample, we explored whether better or perfect test–retest reliability can be reached
by further analyses in these cases. This was motivated partly by the fact that, for the
majority of the cases, the test1 and test2 datasets were identical. Following the procedure
described in the Section 2, we ran another EFE analysis (test3) on each of the 12 recordings
and conducted test2–test3 comparisons. From the 12 cases, 5 (3 in the ASD, and 2 in the
NT group) showed identical test2 and test3 datasets—these were “stabilized” for test3. In
7 cases, test2–test3 comparisons still revealed differences. Table 3 summarizes the case flow
for repeated AEFEAs.

Table 3. Case flow for subsequent tests (FR8 analyses) and the number of identical testn−1–testn

data series.

ASD Group NT Group Total

Number of input cases for test1 and test2/number
of identical test1–test2 data series 29/23 31/25 60/48

Number of input cases for test3/number of
identical test2–test3 data series 6/3 6/2 12/5

Remaining “non-stabilized” data series after test3 3 4 7

Of the 7 individual dataset pairs with remaining differences in test2–test3 comparisons,
6 showed the same ratios of differing data points in test2–test3 as in test1–test2 contrasts. In
one case (subject #65; see Appendix A Tables A4 and A5) there were more mismatching data
points in the test2–test3 comparison than in the test1–test2 comparison. The absolute values
of the test–retest differences between the corresponding data points were again low, in the
[−0.1; 0.1] range. All the 7 (subjects) × 8 (emotions) residual difference means remained
below 0.001. The final distribution of percentages of differing data points in test2–test3
contrasts is shown in Figure 2 (analogously to the test1–test2 differences previously shown
in Figure 1).

We explored the residual differences for these 7 subjects; see data for individuals in
Appendix A Table A6. All the remaining differences are small, with the single highest value
being 0.069 (subject #94, Happy). Although this is close to a 7% difference on a 0–1 scale, this is a
single outlier difference value in the total dataset including data points in the order of magnitude
of roughly 11.5 million (i.e., 72 contrasts × ~20,000 intensity data points × 8 emotions).

By observing various characteristics of the 7 cases, we attempted to identify any factor
that could potentially underlie the lack of “stabilization” (such as group, age, gender,
position in the list of data series, video sampling rate, etc.). We failed to identify any
such potential factor. In addition, we ran group comparisons along several of these case
variables, comparing subject groups corresponding to their stabilized vs. non-stabilized
data series. Neither comparing a group of 48 cases to another group of 12 cases (with
identical vs. nonidentical data series pairs in test1–test2), nor comparing a 53-case group
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to a 7-case group (identical vs. nonidentical data series pairs in test2–test3) revealed any
significant cross-group differences. Additionally, as shown in Table 3, the two groups were
very balanced in terms of ratios of identical/nonidentical data series pairs.
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test3 data, along the ratio of differing data points. (Data of 5 subjects with identical test2–test3 datasets
are not included).

3.2. Data Robustness (Completeness)

As a background for examining emotion intensities, we briefly explored data robust-
ness (completeness) on the “stabilized” (teststable) data series (n = 53), together with the
7 non-stabilized data series from test3. Data robustness or completeness in the present
context means the ratio of successfully extracted emotion data within the total data series,
as a specific (simple) measure of data quality. As explained above, at any data point, the
FR8 system’s failure to assigning emotion intensity values may be either due to the failure
to find the face in a video frame (FIND_FAILED logged for all emotions), or due to the
failure to fit a face model onto the face found (FIT_FAILED logged for all emotions). Thus,
data robustness, as a proportion of numerical emotion intensity data logged within all data
points (all frames), can be assessed equivalently from any single emotion dimension.

The mean data robustness ratio for all subjects was 0.861 (SD: 0.134; min: 0.436;
max: 0.998). The average frequency of face finding failure was 0.0566 (SD: 0.065;
min: 0.0001; max: 0.240); the average frequency of face model fitting failure was 0.082
(SD: 0.084; min: 0.002; max: 0.417). This level of data completeness is fairly good, as
compared with other recent AEFEA studies [12]. As noted in Section 3.1.1, FIT_FAILED
and FIND_FAILED data points remained remarkably stable across tests and comparisons.
Importantly for further analyses below, data robustness did not differ between the groups
(two-tailed independent samples t-test with different variations; ns).

3.3. Between-Emotion and Between-Group Differences in Emotion Intensities

Finally, we explored the pattern of differences in EFE intensities across the eight emo-
tions and between the two groups and examined whether the not-perfect test–retest reliability
of AEFEA using FR8 influences this pattern. First, we calculated the emotion intensity means
for each subject and each emotion dimension, using their individual data series from their last
analysis (test). Accordingly, n = 53 of included individual data series showed total test–retest
identity (teststable), while n = 7 individual data series came from test3, still not showing total
identity to test2 data. Figure 3 shows these means for the groups.
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A two-way mixed ANOVA (two groups × eight emotions; repeated measures) re-
turned a main effect of emotion (Geisser–Greenhouse: F(1.566, 90.801) = 826.832;
p < 0.001; η2

partial = 0.934, ω2 = 0.930). There was no main effect of diagnosis; the in-
teraction was marginally significant (Geisser–Greenhouse: F(1.00, 58.00) = 3.684, p = 0.0599,
η2

partial = 0.060,ω2 = 0.042). Repeating the same analysis without data on Neutral left the
main effect of emotion significant (Geisser–Greenhouse: F(1.665, 96.589) = 51.492; p < 0.001,
η2

partial = 0.470,ω2 = 0.428); there emerged a main effect of diagnosis—as the equalizing
effect of Neutral was suppressed, the remaining emotions showed a different overall level in
the two groups, with a modest effect size (Welch’s test: F(1, 55.4) = 5.055, p = 0.0286,
η2

partial = 0.081, ω2 = 0.064). The diagnosis–emotion interaction was also significant,
but the effect size was small (Geisser–Greenhouse: F(1.665, 96.589) = 4.456; p = 0.0391;
η2

partial = 0.071,ω2 = 0.049). When Surprised was also removed, the remaining six emotions
still produced a significant main effect of emotion (Geisser–Greenhouse:
F(2.525, 146.452) = 14.98; p < 0.001; η2

partial = 0.205, ω2 = 0.165) but neither a main ef-
fect of diagnosis nor an interaction remained. The main effect of emotion in this case was
due to a number of between-level differences, as indicated by Tukey’s test (Happy > [Angry,
Scared, Disgusted, Contempt]; Sad > [Disgusted, Contempt]; Scared > Contempt; only those
differences are listed for which p < 0.01). However, all six of these emotion means were
very low in both groups (total group means: ASD: 0.0133; NT: 0.0135). The level of Neu-
tral differed only marginally significantly between groups (W(56.6) = −1.751; p = 0.0854;
Cohen’s d: −0.454; mean difference: −0.062, CI95: [−0.131; 0.009]); while the level
of Surprised differed significantly in the two groups (Welch test: W(52.8) = 2.36; p = 0.022;
Cohen’s d = 0.615, mean difference: 0.0469; CI95: [0.0071, 0.0876]); however, these differences
would obviously not survive a type I error correction for eight emotions.

To explore if the differences between the initial (test1) dataset and the final dataset
influence the results above, the same ANOVA was repeated using the test1 data of each
subject. All results were very similar, so much so that the overall emotion intensity means
plot was not noticeably different from Figure 3—therefore, we will not present it here.

The two-way mixed ANOVA (2 groups X 8 emotions) returned a main effect of emotion,
here, too (Geisser–Greenhouse: F(1.0, 58.0) = 827.835; p < 0.001; η2

partial = 0.931, ω2= 0.935).
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There was no main effect of diagnosis; the interaction was, again, marginally signifi-
cant (Geisser–Greenhouse: F(1.00, 58.00) = 3.664, p = 0.0605, η2

partial = 0.059, ω2 = 0.041).
Repeating the same analysis without data on Neutral left the main effect of emotion sig-
nificant (Geisser–Greenhouse: F(1.0, 58.0) = 51.387; p < 0.001, η2

partial = 0.470,ω2 = 0.427),
and there emerged a main effect of diagnosis; as the equalizing effect of Neutral was,
again, suppressed, the remaining emotions showed a different pattern in the two groups,
with a modest effect size (Welch’s test: F(1; 55.4) = 5.011, p = 0.029, η2

partial = 0.080,
ω2 = 0.063). The interaction was again significant, with a small effect size (Geisser–
Greenhouse: F(1.0, 58.0) = 4.416; p = 0.0400; η2

partial = 0.071,ω2 = 0.049). When Surprised was
also removed, the remaining six emotions still produced a significant main effect of emotion
(Geisser–Greenhouse: F(1.0, 58.0) = 14.955; p < 0.001; η2

partial = 0.205,ω2 = 0.165) but neither
a main effect of diagnosis nor an interaction remained. The post hoc comparisons between
levels of emotion returned the following differences at p < 0.01:
Happy > [Angry, Sad, Disgusted, Contempt]; Sad > [Disgusted, Contempt]; Scared > Contempt.
Once again, all six of these emotion means were at very low intensities in both groups (total
group means: ASD: 0.0133; NT: 0.0135). The level of Neutral differed, again, only marginally
significantly between groups (Welch test: d(56.6) = −1.748; p = 0.0859;
Cohen’s d: −0.453; mean difference: −0.061; CI95: [−0.131; 0.009]); the level of Surprised dif-
fered significantly in the two groups (Welch test: d(52.9) = 2.350; p = 0.0226; Cohen’s d = 0.612,
mean difference: 0.0469; CI95: [0.0069, 0.0873].

In sum, test1 vs. the “final” differences in data series did not lead to any significant
difference in the pattern of overall emotion intensity means among the different emotions
and the groups.

4. Discussion

Our most important finding is that the test–retest reliability of a specific version of
AEFEA technology, the FR8, is very high; however, it is not perfect. Having analyzed the
same set of facial video recordings by FR8 twice (test1 and test2), we found that in 12 of
the 60 cases, test1–test2 differences arose. These differences appeared in all eight of the
emotion dimensions, in up to 40% of the data points altogether, but were very small in their
absolute values. This suggests a remarkably high test–retest reliability as compared with
human coders [14], but lags behind a perfect test–retest reliability, which is often explicitly
or implicitly expected from algorithmic AEFEA technologies [41].

Another set of analyses (test3) of those facial video recordings which did not initially
show total test1–test2 identity led to further test–retest convergence or stabilization in five
cases. In the seven remaining cases, however, there were both test1–test2 and test2–test3
differences between the individual data series.

From the perspective of utilizing AEFEA technology in screening, diagnosis, and
other health technologies, it is of special importance that our analyses did not reveal any
cross-group difference in test–retest reliability. Data series from neurotypical children and
from children with ASD were very similarly prone to imperfect test–retest reliability and
showed very similar stabilization tendency in proportional cases. Additionally, a similar
proportion of cases in both groups was left non-stabilized after three analyses. The pattern
we found in the cross-group and cross-emotion differences in emotion intensities fits well
with the series of previous findings on emotional display in ASD [53,56,70]. To the best of
our knowledge, the test–retest reliability of AEFEA techniques has not been explored so
far; therefore, these findings are unprecedented in the literature.

We address four questions: (1) Is it possible that the findings on imperfect test–retest
reliability are artefacts? (2) If they are not artefacts, what may cause the imperfect test–retest
reliability? (3) What factor(s) may determine which cases or data series are affected by it?
(4) Does imperfect test–retest reliability influence the fundamental results?

In our view, it is crucial to consider the issue of whether the above findings may be
artefacts. We see two factors that could potentially lead to the emergence of spurious results.
Firstly, non-sufficient hardware performance in the course of FR8 analyses might—as pilot
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analyses we ran suggested—lead to noise in the emotion intensity data that could deteri-
orate test–retest reliability. However, the hardware configuration we used considerably
surpassed that recommended by Noldus for using FR8. In addition, the partial test–retest
convergence of subsequent data series could not be explained by such a factor.

Software updates of FR8, arriving between subsequent analyses and changing the
input/output mapping of the system, represent another candidate. These could explain
both test–retest differences and their later partial decrease (assuming subsequent updates
converge towards a stable mapping). Updates, however, were turned off for FR8 during
and between analyses. A “software update effect”, moreover, could not explain why some
data series converged in subsequent analyses while some failed to stabilize within two
subsequent comparisons.

Finally, we note that data completeness in our data series was fairly good, as compared
with other recent studies [12]. Even if it were lower than usual, it would be surprising and
methodologically significant if the sparsity of data could lead to imperfect test–retest reliability.

The following question arises: which feature of FR8 explains its imperfect test–retest
reliability? In this study, we treated the FR8 system as a black box. We refrained from
reverse-engineering it and from speculating about possible specific causes. Nevertheless,
we briefly raise three possibilities. One is that artificial neural network (ANN) technology,
which is a feature of FR8, may underlie our findings. ANNs “naturally” respond differently
to repeated stimuli in the learning phase, and they also tend to converge onto more stable
input/output mappings. In the case of such an ANN learning effect, the methodological
consequences of imperfect initial test–retest reliability are still to be considered. Secondly,
the “continuous calibration” feature of FaceReader arises as a candidate for changing anal-
ysis characteristics. In our understanding, continuous calibration does modulate emotion
estimation output: it adjusts facial intensity values in an ongoing analysis continuously,
as a function of previous intensity values in that analysis. However, FaceReader uses
a fixed formula for this process—that is, if the detected raw intensities are stable across
analyses, then continuous calibration in itself could not add “noise” to these. Thirdly,
another, more “profane” possibility—suggested by our informal experimentation with this
factor—is that hardware requirements for running FR8 might be underestimated by its
producer, and insufficient hardware resources lead to unstable performance. However,
this explanation would go against the fact that most data series showed either test–retest
stability or stabilizing tendency across the subsequent re-analyses.

In this study, 20% of our cases/initial data series were affected by nonperfect test–
retest reliability. Empirical research using AEFEA could benefit from understanding which
cases/data series are more prone to this than others. Although we examined several
candidate subject- or data-related factors, we failed to identify any that could determine
which subsets of cases showed perfect/imperfect test–retest reliability.

The question of whether imperfect test–retest reliability of AEFEA technology substan-
tially influences results is of crucial importance in a field of research where this issue has
been ignored so far. We analyzed the patterns of cross-emotion and cross-group differences,
both in the first and the last (mostly stabilized) tests’ data series, to see whether there were
fundamental differences in the two sets of results. The overall patterns of emotion intensity
differences remained closely similar. That is, the less-than-perfect test–retest reliability did
not substantially influence these results in either group.

Two cautionary notes must be made, however. Here, we used relatively long video
recordings as input for AEFEA, resulting in relatively big emotion intensity data series.
Other studies have used much shorter recordings, and therefore obtained smaller data
series [41,71]. We did not explore the distribution of test–retest differences along the data
series, leaving it possible that potential “locally high” test–retest differences, especially in
shorter data series, may have a greater effect on the patterns of the results. The overall
pattern of emotion intensities itself may also affect the test–retest differences. Data from
different emotions may be differently affected by the test–retest differences. Exploring this
possibility was beyond the scope of this study.
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Finally, we wish to point to the fact that the validity of the data gained repeatedly by
FR8 was not addressed or examined in this study. Therefore, we cannot know whether the
initial or the final (“stabilized”) data series were more valid. (Although small test–retest
differences generally suggest little, if any, potential difference in their validity.) Accordingly,
we cannot provide any insight into which should be preferred in further analyses and in
reaching study conclusions, where the validity of emotion intensity data is essential.

5. Conclusions

Our study demonstrated the high but imperfect test–retest reliability of a specific
AEFEA system—FR8. As the second main finding, we demonstrated that repeated analyses
by FR8 can, in some cases, lead to the “stabilization” of datasets. Thirdly, the test–retest
differences did not influence the patterns of cross-emotion and cross-group effects and
interactions. Thus, our study does not question the validity of previous results gained
by AEFEA technology. Finally, no specific pattern of test–retest reliability emerged in the
group of children with ASD.

As a first exploration of the issue, our study leaves several key questions open about
generalizing our results across AEFEA systems, subject groups, emotions, and emotion
intensity patterns. Therefore, there are questions to be explored: whether imperfect test–retest
reliability and the occasional “stabilization” effect are specific to FR8, or whether other AEFEA
systems also show them; whether these phenomena are specific to our white/Caucasian
child-aged sample(s) or not; and whether they arise on inputs with other emotions and/or
emotion intensity patterns significantly different from those used in this study.

Although the test–retest emotion intensity differences were small, and the imperfect
test–retest reliability did not have an essential effect on group-level emotion intensity
differences, it may have methodological significance when shorter (sections of) data series
are analyzed, and when overall intensity patterns of emotions are different from those
found in this study.

It also remains to be determined whether first-test data series are less or more valid
than subsequent ones, and whether gaining “stabilized” datasets (i.e., reaching perfect
test–retest validity by repeated analyses) increases the validity.

Our results do not question the validity of previous results using AEFEA technol-
ogy. Instead, they suggest that it is necessary to further explore and understand this key
characteristic of AEFEA systems.

Finally, we ask the following question: which aspects of the functioning of FR8
account for the high but imperfect test–retest reliability and may be significant for the
further development of AEFEA technologies?
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University); a TÁMOP grant co-financed by the European Union and the government of Hungary
(TÁMOP 4.2.1./B-09/KMR—2010-0003); the ELTE University Thematic Excellence Program 2020,
supported by the National Research—Development and Innovation Office—TKP2020-IKA-05; the
Social Innovation Laboratory (TINLAB) Project at ELTE University; and a fundraising campaign by
the IndaGaléria (Budapest). The first, third, and fifth authors were supported via a research grant
from the Hungarian Academy of Sciences, within its Content Pedagogy Research Program (2016–2021
period). The Foundation for the Development of Special Education (GYFA; Budapest) contributed to
the funding of the research at several points.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Research Ethics Committee of the Bárczi Gusztáv



Appl. Sci. 2022, 12, 7759 15 of 22

Faculty of Special Needs Education, ELTE Eötvös Loránd University (protocol code KEB/2016/001
and date of approval: 3 February 2016).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. All participant children were explicitly informed about the aims and circumstances of the
measurements and on their right to withdraw from participation at any time, before each session.
They gave oral confirmation of their understanding and consent. The caregiver (parent) of each child
received both oral and written information about the aims and circumstances of the measurements,
the processing and handling of the data gained, as well as on their relevant rights. They gave written
consent on their own and their child’s behalf. At the beginning of each session, they were reminded
of their relevant rights and confirmed their written consent orally.

Data Availability Statement: The data presented in this study are openly available at OSF.io at DOI
10.17605/OSF.IO/27EQD. The authors kindly encourage anyone to explore the data but also ask to
contact us prior to any reproduction and/or further sharing of the data and/or making public any
result from their analysis by any means.

Acknowledgments: Authors thank all participating children and their parents/caretakers.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Table A1. Relevant FR8 analysis settings and their rationale.

Analysis Parameter Applied Setting Rationale

Face model Children In accordance with subjects’ age

Calibration Continuous calibration
Aims to correct for person-specific biases in

facial expressions, thus not requiring an initial
input of a neutral face of each subject

Classification Smoothen classification
Raw classification data are smoothened in

relation to between-frame time gap (default
setting)

Image rotation No All faces were recorded in upright position

Video sample rate Every frame No recorded frame to be skipped

Contempt Treat contempt as an
emotional state To gain intensity values for “contempt”

Preset for face-finding
function Find all faces (slow)

The most robust setting in terms of size of
potential target face on the frame (minimum

face fraction = 0.08)

Preset for face-modeling
function Maximum accuracy (slow) Robust setting in terms of the maximum

number of iterations per frame to find face (12)

Engine Use deep face engine
Slower but more accurate analysis which

attempts to model the face even from partial
information

Maximum face model error 0.6 Measure of error for estimating if face model is
valid

Size of interest, maximum
face fraction 1 Maximum value, allows the face surface to be

the same as the entire image

Size of interest, face size
scaling factor 1.1

The default factor value for increasing face size
within minimum and maximum, for the

analysis
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Table A2. Descriptive statistics of test1–test2 emotion intensity differences averaged over total play
time (all data points), separately for each emotion. Group means were calculated from individual
means. Cases with identical test1–test2 data series are not included. Case numbers are too low for
normality test. Notation: *: p < 0.05; **: p < 0.01.

Group Emotion
Individual Test1–Test2 Emotion Intensity Differences

Mean SD Median Minimum Maximum Skewness Kurtosis

ASD
(n = 6)

Neutral 0.00123 0.003744 −0.0001 −0.0009 0.0088 2.387 * 5.767 **

Happy −0.00089 0.001878 0 −0.0047 0.0002 −2.286 * 5.303 **

Sad 0.000103 0.000201 0 0 0.0005 2.328 * 5.535 **

Angry −7.3 × 10−5 0.000197 0 −0.0005 0.0001 −2.280 * 5.347 **

Surprised −0.00322 0.007911 0 −0.0194 0.0001 −2.449 * 6.000 **

Scared 0.001027 0.002513 0 0 0.0062 2.449 * 5.998 **

Disgusted −0.00022 0.000389 −0.0001 −0.001 0.0001 −2.139 * 4.839 *

Contempt −5.9 × 10−5 0.000147 0 −0.0004 0 −2.448 * 5.996 **

NT
(n = 6)

Neutral 2.85 × 10−6 0.000327 0 −0.0004 0.0006 0.889 2.828

Happy −0.00017 0.000315 0 −0.0008 0 −2.211 * 4.956 *

Sad 2.02 × 10−5 5.2 × 10−5 0 0 0.0001 0 0

Angry 0.000255 0.000641 0 0 0.0016 2.447 * 5.991 **

Surprised −3.2 × 10−6 6.15 × 10−5 0 −0.0001 0.0001 0 0

Scared 0.000264 0.000681 0 0 0.0017 2.446 * 5.987 **

Disgusted −2.3 × 10−5 0.000252 0 −0.0004 0.0004 −0.065 2.171

Contempt −5.8 × 10−7 1.39 × 10−6 0 0 0 0 0

Table A3. Example distributions of test1–test2 differences, with corresponding means, separately for
the 8 emotions: subject #2 (ASD). Test2–test3 data for subject #2 were identical. Frequency distributions
include only data points with intensity values assigned in both test1 and test2 (therefore numerical
difference could be calculated); however, matching data points with zero difference were omitted.
Nonzero percent row shows the relative frequencies of mismatching data points for each emotion. As
emotion intensities are scaled from 0 to 1 by FR8, the difference between two corresponding data
points ranges between −1 and 1; in absolute value between 0 and 1.

Magnitude Range Neutral Happy Sad Angry Surprised Scared Disgusted Contempt

diff = −1 0 0 0 0 0 0 0 0

−1 < diff ≤ −0.9 0 0 0 0 0 0 0 0

−0.9 <diff ≤ −0.8 0 0 0 0 0 0 0 0

−0.8 < diff ≤ −0.7 0 0 0 0 0 0 0 0

−0.7 < diff ≤ −0.6 0 0 0 0 0 0 0 0

−0.6 < diff ≤ −0.5 0 0 0 0 0 0 0 0

−0.5 < diff ≤ −0.4 0 0 0 0 0 0 0 0

−0.4 < diff ≤ −0.3 0 0 0 0 0 0 0 0

−0.3 < diff ≤ −0.2 0 0 0 0 0 0 0 0

−0.2 < diff ≤ −0.1 0 0 0 0 168 0 0 0

−0.1 < diff ≤ 0 5638 7493 5920 10,405 9736 397 9593 9680

0 < diff ≤ 0.1 11,661 511 9113 15 5661 11,322 1676 1

0.1 < diff ≤ 0.2 0 0 0 0 242 0 0 0

0.2 < diff ≤ 0.3 0 0 0 0 0 0 0 0

0.3 < diff ≤ 0.4 0 0 0 0 0 0 0 0

0.4 < diff ≤ 0.5 0 0 0 0 0 0 0 0
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Table A3. Cont.

Magnitude Range Neutral Happy Sad Angry Surprised Scared Disgusted Contempt

0.5 < diff ≤ 0.6 0 0 0 0 0 0 0 0

0.6 < diff ≤ 0.7 0 0 0 0 0 0 0 0

0.7 < diff ≤ 0.8 0 0 0 0 0 0 0 0

0.8 < diff ≤ 0.9 0 0 0 0 0 0 0 0

0.9 < diff ≤ 1 0 0 0 0 0 0 0 0

Mean 0.008829 −0.00466 0.000509 −0.00047 −0.01937 0.006156 −0.0002 −0.00036

Nonzero percent 0.395333 0.182915 0.343549 0.238128 0.361237 0.267814 0.25753 0.22124

Total frames 43,758

Table A4. Example distributions of test1–test2 differences, with corresponding means, separately for
the 8 emotions: subject #65 (ASD). Frequency distributions include only data points with intensity
values assigned in both test1 and test2 (therefore numerical difference could be calculated); however,
matching data points with zero difference were omitted. Nonzero percent row shows the relative
frequencies of mismatching data points for each emotion. As emotion intensities are scaled from
0 to 1 by FR8, the difference between two corresponding data points ranges between −1 and 1; in
absolute value between 0 and 1.

Magnitude Range Neutral Happy Sad Angry Surprised Scared Disgusted Contempt

diff = −1 0 0 0 0 0 0 0 0

−1 < diff ≤ −0.9 0 0 0 0 0 0 0 0

−0.9 < diff ≤ −0.8 0 0 0 0 0 0 0 0

−0.8 < diff ≤ −0.7 0 0 0 0 0 0 0 0

−0.7 < diff ≤ −0.6 0 0 0 0 0 0 0 0

−0.6 < diff ≤ −0.5 1 0 0 0 0 0 0 0

−0.5 < diff ≤ −0.4 0 0 0 0 0 0 0 0

−0.4 < diff ≤ −0.3 0 0 0 0 0 0 0 0

−0.3 < diff ≤ −0.2 0 0 0 0 0 0 1 0

−0.2 < diff ≤ −0.1 0 0 0 0 0 0 0 0

−0.1 < diff ≤ 0 205 1 635 312 479 44 83 516

0 < diff ≤ 0.1 535 262 0 72 0 281 268 0

0.1 < diff ≤ 0.2 0 0 0 0 0 0 0 0

0.2 < diff ≤ 0.3 0 0 0 0 0 0 0 0

0.3 < diff ≤ 0.4 0 0 0 0 0 0 0 0

0.4 < diff ≤ 0.5 0 0 0 0 0 0 0 0

0.5 < diff ≤ 0.6 0 0 0 0 0 0 0 0

0.6 < diff ≤ 0.7 0 0 0 0 0 0 0 0

0.7 < diff ≤ 0.8 0 0 0 0 0 0 0 0

0.8 < diff ≤ 0.9 0 0 0 0 0 0 0 0

0.9 < diff ≤ 1 0 0 0 0 0 0 0 0

Mean −0.00092 −4.1 × 10−5 −8.8 × 10−6 2.23 × 10−5 −2.5 × 10−6 −3.2 × 10−5 −0.00099 −6.19 × 10−8

Nonzero percent 0.031993 0.011355 0.027417 0.01658 0.020681 0.014032 0.015198 0.022279

Total frames 23,161
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Table A5. Distributions of emotion intensity differences for Subject #65 (ASD) from test2–test3

comparison. Subject #65 was the only participant whose number of differing data points increased
from test1–test2 to test2–test3 comparison. Still, the corresponding distribution means are quite low
in both comparisons (cf. Appendix A Table A4).

Magnitude Range Neutral Happy Sad Angry Surprised Scared Disgusted Contempt

diff = −1 0 0 0 0 0 0 0 0

−1 < diff ≤ −0.9 0 0 0 0 0 0 0 0

−0.9 < diff ≤ −0.8 0 0 0 0 0 0 0 0

−0.8 < diff ≤ −0.7 0 0 0 0 0 0 0 0

−0.7 < diff ≤ −0.6 0 0 0 0 0 0 0 0

−0.6 < diff ≤ −0.5 0 0 0 0 0 0 0 0

−0.5 < diff ≤ −0.4 0 0 0 0 0 0 0 0

−0.4 < diff ≤ −0.3 0 0 0 0 0 0 0 0

−0.3 < diff ≤ −0.2 0 0 0 0 0 0 0 0

−0.2 < diff ≤ −0.1 0 0 0 0 0 0 0 0

−0.1 < diff ≤ 0 2506 561 6427 139 46 4813 780 4570

0 < diff ≤ 0.1 5588 1 600 3043 4132 85 83 506

0.1 < diff ≤ 0.2 0 0 0 0 0 0 0 0

0.2 < diff ≤ 0.3 0 0 0 0 0 0 1 0

0.3 < diff ≤ 0.4 0 0 0 0 0 0 0 0

0.4 < diff ≤ 0.5 0 0 0 0 0 0 0 0

0.5 < diff ≤ 0.6 1 0 0 0 0 0 0 0

0.6 < diff ≤ 0.7 0 0 0 0 0 0 0 0

0.7 < diff < = 0.8 0 0 0 0 0 0 0 0

0.8 < diff ≤ 0.9 0 0 0 0 0 0 0 0

0.9 < diff ≤ 1 0 0 0 0 0 0 0 0

Mean 9 × 10−5 2 × 10−5 4 × 10−5 −3 × 10−6 −5.7 × 10−5 3 × 10−6 0.000403 −2.29 × 10−8

Nonzero percent 0.3495 0.0243 0.3034 0.1374 0.180389 0.2115 0.037304 0.2191615

Total frames: 23,161

Table A6. Residual differences between test2 and test3 intensity data for the 7 cases which did not
“stabilize” for the test2–test3 comparison. All maxima are absolute values. Frequencies of differing
data points are shown relative to (i) the number of all data points: “rel. freq. in all data”, and to (ii)
the number of “valid” data points with numerical intensity values (thus excluding data points with
FIT_FAILED or FIND_FAILED error signals): “rel. freq. in valid data”.

Emotion Means, Maxima, and Relative Frequencies of Differing Data Points

Subject Neutral Happy Sad Angry Surprised Scared Disgusted Contempt

#27

Mean −2.3 × 10−6 3.37 × 10−6 1.2 × 10−6 7.29 × 10−7 −2.4 × 10−5 1.13 × 10−6 4.27 × 10−5 4.46 × 10−8

maximum 0.001467 0.001972 3.79 × 10−6 0.000158 0.011318 2.54 × 10−6 0.007265 1.49 × 10−7

rel. freq. in all data 0.084117 0.027527 0.056829 0.026808 0.08287 0.045943 0.025993 0.032611

rel. freq. in valid data 0.10206 0.033399 0.068951 0.032526 0.100547 0.055743 0.031537 0.039567

#43

Mean −6.7 × 10−6 9.14 × 10−8 8.03 × 10−6 −6.7 × 10−7 −1.1 × 10−6 −4.1 × 10−7 −4.6 × 10−8 −2.4 × 10−8

maximum 0.005283 5.29 × 10−5 0.002069 1.79 × 10−6 1.39 × 10−5 9.04 × 10−7 1.1 × 10−7 1 × 10−7

rel. freq. in all data 0.216552 0.101549 0.109482 0.105168 0.159352 0.175821 0.040314 0.166868

rel. freq. in valid data 0.263016 0.123338 0.132973 0.127733 0.193543 0.213545 0.048963 0.202671

#46

Mean 3.72 × 10−6 −9 × 10−6 −1.6 × 10−7 −2.8 × 10−8 −1.3 × 10−5 1.31 × 10−7 −2.2 × 10−8 1.32 × 10−7

maximum 0.004441 0.003993 6 × 10−7 1.32 × 10−7 0.003331 3.86 × 10−5 1.67 × 10−6 5.37 × 10−7

rel. freq. in all data 0.297395 0.215251 0.133531 0.218219 0.261457 0.24436 0.104281 0.203288

rel. freq. in valid data 0.310698 0.224879 0.139504 0.22798 0.273152 0.25529 0.108946 0.212381
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Table A6. Cont.

Emotion Means, Maxima, and Relative Frequencies of Differing Data Points

Subject Neutral Happy Sad Angry Surprised Scared Disgusted Contempt

#55

Mean −1.5 × 10−5 4.36 × 10−7 −1.6 × 10−6 −0.0014 −9.3 × 10−6 −0.00147 −0.00033 −1.6 × 10−8

maximum 0.007317 5.29 × 10−5 4.08 × 10−6 0.114174 1.99 × 10−5 0.143154 0.026798 4 × 10−8

rel. freq. in all data 0.059224 0.033343 0.031944 0.033762 0.052043 0.035208 0.029565 0.036794

rel. freq. in valid data 0.063602 0.035807 0.034305 0.036258 0.055889 0.03781 0.031751 0.039513

#65

Mean 2.13 × 10−5 −1.5 × 10−5 3.97 × 10−5 −3.5 × 10−6 −5.7 × 10−5 1.49 × 10−6 0.000171 −2.3 × 10−8

maximum 0.012913 0.001319 0.030275 0.003676 0.024688 0.001189 0.02302 2 × 10−7

rel. freq. in all data 0.34951 0.024265 0.303398 0.137343 0.180346 0.211476 0.037304 0.219118

rel. freq. in valid data 0.500309 0.034734 0.434302 0.196601 0.258158 0.302719 0.053399 0.313659

#70

Mean −3.8 × 10−6 −1 × 10−6 8.16 × 10−6 −1.2 × 10−7 −7.7 × 10−7 −1.7 × 10−8 −6.7 × 10−8 −9.5 × 10−8

maximum 0.003799 3.25 × 10−6 0.007671 7.72 × 10−5 3.09 × 10−6 1 × 10−7 2 × 10−7 3.53 × 10−7

rel. freq. in all data 0.08696 0.020023 0.088946 0.073142 0.038888 0.016465 0.030159 0.067433

rel. freq. in valid data 0.125643 0.02893 0.128512 0.105678 0.056186 0.02379 0.043574 0.09743

#94

Mean −2.2 × 10−5 2.63 × 10−5 9.85 × 10−7 2.78 × 10−6 −5.8 × 10−6 −5.3 × 10−7 −4 × 10−6 −4.9 × 10−7

maximum 0.020348 0.069351 0.02824 0.005737 3.15 × 10−5 1.81 × 10−6 0.050832 0.000802

rel. freq. in all data 0.514396 0.25565 0.28763 0.33138 0.331426 0.278346 0.264607 0.322986

rel. freq. in valid data 0.801959 0.398567 0.448425 0.516631 0.516704 0.43395 0.41253 0.503546
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