
Citation: Wang, C.-C.; Kuo, P.-H.;

Chen, G.-Y. Machine Learning

Prediction of Turning Precision Using

Optimized XGBoost Model. Appl. Sci.

2022, 12, 7739. https://doi.org/

10.3390/app12157739

Academic Editors: Charles Tijus,

Teen-Hang Meen and

Chun-Yen Chang

Received: 25 June 2022

Accepted: 25 July 2022

Published: 1 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Machine Learning Prediction of Turning Precision Using
Optimized XGBoost Model
Cheng-Chi Wang 1,* , Ping-Huan Kuo 2,3 and Guan-Ying Chen 2

1 Department of Intelligent Automation Engineering, National Chin Yi University of Technology,
Taichung City 41170, Taiwan

2 Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
phkuo@ccu.edu.tw (P.-H.K.); 0988563536b@gmail.com (G.-Y.C.)

3 Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI),
National Chung Cheng University, Chiayi 62102, Taiwan

* Correspondence: wcc@ncut.edu.tw; Tel.: +886-4-23924505 (ext. 5163)

Abstract: The present study proposes a machine learning approach for optimizing turning parameters
in such a way as to maximize the turning precision. The Taguchi method is first employed to optimize
the turning parameters, and the experimental results are then used to train three machine learning
models to predict the turning precision for any given values of the input parameters. The model
which shows the best prediction performance (XGBoost) is further improved through the use of a
synthetic minority over-sampling technique for regression with Gaussian noise (SMOGN) and four
different optimization algorithms, including center particle swarm optimization (CPSO). Finally,
the performances of the various models are evaluated and compared using the leave-one-out cross-
validation technique. The experimental results show that the XGBoost model, combined with SMOGN
and CPSO, provides the best performance, and is a useful tool for predicting the machining error
of turning. The method can also reduce the cost of obtaining the optimized turning parameters
corresponding with the predicted machining error.

Keywords: turning; machining error; machine learning; oversampling; center particle swarm optimization

1. Introduction

Advances in machine tool technology make possible the creation of parts with toler-
ances as fine as ±0.0025 mm. Thus, precision machining plays a key role in fabricating
many of the critical tight-tolerance components used in the military, electronics, aerospace,
and medical industries nowadays. However, the success of precision machining methods
still relies on the appropriate determination of the machining parameters. In the past, the
optimal processing parameters were determined mainly by operator experience, or through
a process of trial-and-error. However, such an approach is not only time-consuming,
expensive, and subjective, but also offers no guarantee of finding the optimal solution.
Furthermore, the knowledge learned in this way is not easily documented and shared with
others. Thus, to realize the goals of high efficiency, high precision, and low cost, precision
machining requires faster and more systematic approaches for identifying the optimal
processing parameters.

Computer numerical control (CNC) machines are widely used throughout the manu-
facturing industry. CNC turning machines have many advantages for mass production,
including a high speed, high precision, excellent repeatability, minimal manual intervention,
and good potential for automation.

The cutting behavior of turning is determined by two components: the toolpath
and the feed rate [1]. The “toolpath” is the trace on the workpiece that the cutter moves
along, while the “feed rate” is the speed at which the cutter moves over the surface of the
workpiece. When cutting metals, the machining quality is affected by two main types of

Appl. Sci. 2022, 12, 7739. https://doi.org/10.3390/app12157739 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12157739
https://doi.org/10.3390/app12157739
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3009-6571
https://orcid.org/0000-0001-5125-4420
https://doi.org/10.3390/app12157739
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12157739?type=check_update&version=1

Appl. Sci. 2022, 12, 7739 2 of 19

factors, namely human and environmental. In most cases, the environmental factors, e.g.,
the age and condition of the machine, the machining temperature, the workpiece-material
properties, and so on, are difficult to control. Accordingly, in attempting to improve
the quality of the CNC machining process, many studies have focused on the problem
of controlling the human factors, in particular, the settings assigned by the operator or
designer of the machining parameters, such as the machining depth, rotational speed,
feed rate, and cantilever cutting length. The machining depth has a direct effect on the
cutting force exerted on the cutter. An excessive force may cause vibration of the cutter,
which not only causes tool wear, but also significantly decreases the machining quality.
The rotational speed and feed rate govern the speed at which the cutter moves over the
workpiece. In general, a higher rotational speed and/or feed rate increases the rate at
which the material is removed from the workpiece. However, an excessive speed may
increase the cutting force, while a low speed increases the contact time between the cutter
and the workpiece, and may thus result in the production of scratches. Finally, an excessive
cantilever cutting length reduces the stability of the cutter at the contact point between the
tip and the workpiece, and may therefore degrade the precision of the machining process.
Hence, it is essential that all four machining parameters be optimized in order to ensure
the quality and precision of the turning process.

Su et al. [2] presented a multi-objective optimization framework based on the robust
Taguchi experimental design method, the grey relational analysis (GRA), and the response
surface methodology (RSM) for determining the optimal cutting parameters in the turning
of AISI 304 austenitic stainless steel. It was shown that, given the optimal settings of the
turning parameters, the surface roughness (Ra) was reduced by 66.90%, and the material
removal rate (MRR) was increased by 8.82%. Furthermore, the specific energy consumption
(SEC) of the turning process was reduced by 81.46%. Akkus and Yaka [3] conducted a
series of experiments to investigate the optimal cutting speed, feed rate, and depth of cut
for the turning of Ti6Al4V titanium alloy. The optimality of the turning parameters was
evaluated by examining their effects on surface roughness, vibration energy, and energy
consumption. In general, the results revealed that the quality of the machining outcome
was governed mainly by the feed rate. Zhou He et al. [4] proposed a genetic-gradient
boosting regression tree (GA-GBRT) model, and used cutting speed, feed rate, and depth
of cut as inputs to predict the surface roughness of milling, and then matched AISI 304
stainless steel for the cutting experiment. The results showed that the best processing
parameters with the highest efficiency and best quality could be obtained based on the
GA-GBRT model. Wu et al. [5] predicted the surface roughness when milling Inconel
718 through the Elman neural network according to the cutting conditions, vibration,
and current signals during cutting, and then took the maximum cutting efficiency as the
consideration and used the particle swarm optimization (PSO) algorithm to optimize
cutting parameters. Sivalingam et al. [6] conducted the turning of Hastelloy X materials
with PVD Ti-Al-N tools in different machining environments, and evaluated the cutting
performances according to the cutting force, surface roughness, and cutting temperature
caused by different cutting conditions. They found that the moth-flame optimization (MFO)
algorithm could be applied to match the multiple linear regression models (MLRM) model
to select the best processing parameters.

In response to the rise of artificial intelligence, this paper uses machine learning
methods to predict turning machining error. Before using the machine learning method, a
database of machining parameters and corresponding machining errors must be established
to train the model. Due to the huge number of permutations and combinations of processing
parameters, it is important to improve the efficiency of data collection. For this reason,
this paper uses the Taguchi method to design the experiment, which can collect the most
comprehensive data with the least number of experiments.

Machine learning [7] has proven effective in solving many problems which require
extensive experimentation to obtain reliable results, or which involve such massive volumes
of data that they cannot realistically be solved by manual analysis. Supervised machine

Appl. Sci. 2022, 12, 7739 3 of 19

learning models use a labelled dataset to learn the mapping function which most accurately
describes the relationship between the input variables and the output (or outputs). Having
trained the model, it is tested using a testing dataset and predicts the output accordingly.
Such models have been widely applied for face detection, stock price prediction, spam
detection, risk assessment, and so on. They have also been used to solve various problems
in the field of smart manufacturing. For example, Lu et al. [8] studied the use of the
group method of data handling (GMDH) model to predict the surface roughness of micro-
milling LF21 antenna. The spindle speed and feed rate were used as model inputs, and
the surface roughness was the output. The prediction accuracy could reach an average
relative error of 13.92%, the maximum relative error was 21.22%, and finally, the best
cutting parameters were found through the prediction results. Chen et al. [9] used a
back-propagation neural network (BPNN) to predict the surface roughness of a milling
workpiece. The model inputs were the depth of cut, feed rate, spindle speed and milling
distance. The prediction accuracy was expressed by the root-mean-square-error (RMSE),
which could reach 0.008, and analyzed the influence of various parameters on the surface
roughness. The experimental results showed that the feed rate had the greatest influence
on the surface roughness. Benardos and Vosniakos, et al. [10] used an artificial neural
network (ANN) model based on the Levenberg–Marquardt (LM) training algorithm to
predict the surface roughness in CNC face milling. In the proposed approach, the training
and testing data were obtained using the Taguchi design of experiment (DoE) method
based on seven control factors, namely the depth of cut, the feed rate per tooth, the cutting
speed, the engagement and wear of the cutting tool, the cutting fluid, and the cutting
force. It was shown that the trained model achieved a mean square error (MSE) of just
1.86% for the surface roughness of the milled component. Cus and Zuperl [11] developed
an ANN for predicting the optimal cutting conditions subject to technological, economic,
and organizational constraints. Asiltürk and Çunkaş [12] combined an ANN model and a
regression analysis technique to predict the surface roughness of turned AISI 1040 steel.
The model was trained using three different algorithms, namely back-propagation, scaled
conjugate gradient (SCG), and Levenberg–Marquardt (LM). The results showed that the
ANN model trained with the SCG algorithm provided a significantly better prediction
accuracy than that obtained from a traditional, regression-based model. Pontes et al. [13]
used the Taguchi DOE method to optimize the parameters of a radial base function (RBF)
model for predicting the mean value of the surface roughness (Ra) of AISI 52,100 hardened
steel in hand-turning processes. In general, the results confirmed that the use of the DOE
approach to obtain the training data required to optimize the RBF model was far more
efficient than traditional trial-and-error methods. The above studies focus mainly on the
effects of the depth of cut, feed rate, and cutting speed on the surface roughness of machined
components. However, besides the surface roughness, the machining error of the machining
outcome is also extremely important, particularly for tight-tolerance components. The
application of machine learning to the optimization of the cutting parameters is generally
utilized by an ANN model [11,12]. However, such models, which have a simple structure
consisting of an input layer, one or more hidden layers, and an output layer, achieve
only a relatively poor prediction performance for machining precision. Accordingly, the
present study examines the performance of three different tree-based machine learning
(ML) models in predicting the precision of the turning process, namely random forest,
XGBoost, and decision tree. For each model, the data required for training purposes
are obtained using the Taguchi DOE method [14] based on four turning parameters: the
machining depth, the rotational speed, the feed rate, and the cantilever cutting length. The
model which shows the best prediction performance is further enhanced through the use
of an over-sampling technique and four different optimization algorithms, namely genetic
algorithm (GA), grey wolf (GW), PSO, and center particle swarm optimization (CPSO).
Finally, the performances of the various models are evaluated and compared using the
leave-one-out cross-validation technique.

Appl. Sci. 2022, 12, 7739 4 of 19

In response to the rapid development of present technology, the requirements for
product quality are also increasing, and the quality is closely related to the processing
parameters. At present, there is no systematic method for the optimization of processing
parameters in the industry, and most of them rely on empirical rules to overcome, but
the disadvantages are that they are time-consuming and difficult to inherit techniques.
In terms of research methods, in the past, it was necessary to rely on methods such as
analyzing the structural characteristics of the machine or analyzing the cutting behavior in
order to find suitable parameters more efficiently, but it was difficult and more expensive.
Therefore, this paper proposes a kind of parameter optimization method to improve this
problem. This method is to use the Taguchi method with the machine learning method for
parameter optimization. In this paper, the Taguchi method and oversampling techniques
are applied to improve the efficiency of data collection. Machine learning methods and
optimization algorithms are then used to estimate the turning accuracy. The remainder
of this paper is organized as follows: Section 2 briefly describes the setup of the Taguchi
DOE method employed in the present study; Section 3 introduces the details of each of the
major components of the proposed methodology, including the data preprocessing step,
the ML models, the oversampling technique, and the optimization algorithms; Section 4
presents and discusses the experimental results; and finally, Section 5 provides some brief
concluding remarks.

2. System Architecture

Figure 1 illustrates the four machining parameters considered in the present study,
namely the depth of machining, the rotational speed, the feed rate, and the length of
cantilever workpiece. The machining error is defined as the difference between the actual
size and ideal size of diameter of a machined workpiece. The parameters have both
individual and interactive effects on the precision of the machining process. Consequently,
determining their respective impacts on the machining precision is challenging when
using traditional trial-and-error methods. Accordingly, in the present study, the individual
and interactive effects of the four parameters are investigated using the Taguchi DOE
method, which allows for the optimal solution to be obtained with the minimal number of
experiments. In the Taguchi method, the experiments are arranged in an orthogonal array
(OA), where the configuration of this array depends on the number of control factors and
level settings to be considered in the optimization process. In the present study, the aim is
to investigate the effects of four machining parameters on the machining precision. Hence,
the Taguchi experiments involve four control factors. Furthermore, each control factor is
assigned three level settings, where these level settings are determined in accordance with
the capabilities of the CNC machine used in the DOE trials (see Table 1). Accordingly, the
experiments were configured in an L9 (34) OA containing nine experimental runs.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 20

Figure 1. Schematic illustration of turning parameters.

3. Proposed Method
In the present study, the effects of the four machining parameters on the turning pre-

cision were predicted using a supervised MK model. Most supervised-learning problems
can be categorized as either “classification” problems or “regression” problems. Classifi-
cation problems involve predicting a discrete valued output, such as a number or a certain
species. By contrast, regression problems involve predicting a continuous valued output,
such as stock market movement or the price of goods. The present study considered a
regression-type problem, in which the aim was to predict the machining error of the turn-
ing process, given a knowledge of the settings assigned to the four machining parameters.
The data required to train the ML model were obtained from the Taguchi DOE factorial
design described in the previous section, where the level settings for the four machining
parameters are listed in Table 2.

The machining error is calculated by the following equation: 𝐸𝑟𝑟𝑜𝑟 = 𝐷 − 𝐷 (1)

where Dtarget is the diameter of the turning target size and Dmeasured is the diameter of the
measured value after the turning process.

The turning experiments were performed on a Feeler turning machine (model: FTC-
10), as shown in Figure 2, using cylindrical S45C medium carbon steel specimens. The
specifications of the workpiece and cutting tool are shown in Table 3.

Table 2. Factor and standard. Experimental results by L9 orthogonal array.

Case
A. Depth of
Machining

(mm)

B. Rotational
Speed (rpm)

C. Feed Rate
(mm/rev)

D. Length of
Cantilever Work-

piece (mm)

Machining
Error (mm)

1 0.1 2000 0.15 40 0.013617

2 0.1 2300 0.2 60 0.0308

3 0.1 2500 0.25 80 0.02955

4 0.5 2000 0.2 80 0.03207

5 0.5 2300 0.25 40 0.0419

6 0.5 2500 0.15 60 0.01425

7 1 2000 0.25 60 0.00961

8 1 2300 0.15 80 0.0053

9 1 2500 0.2 40 0.01391

Figure 1. Schematic illustration of turning parameters.

Appl. Sci. 2022, 12, 7739 5 of 19

Table 1. Factor and standard.

Factor

Level
1 2 3

A. Depth of machining (mm) 0.1 0.5 1.0
B. Rotational speed (rpm) 2000 2300 2500
C. Feed rate (mm/rev) 0.15 0.2 0.25
D. Length of cantilever workpiece (mm) 40 60 80

3. Proposed Method

In the present study, the effects of the four machining parameters on the turning preci-
sion were predicted using a supervised MK model. Most supervised-learning problems
can be categorized as either “classification” problems or “regression” problems. Classifica-
tion problems involve predicting a discrete valued output, such as a number or a certain
species. By contrast, regression problems involve predicting a continuous valued output,
such as stock market movement or the price of goods. The present study considered a
regression-type problem, in which the aim was to predict the machining error of the turning
process, given a knowledge of the settings assigned to the four machining parameters.
The data required to train the ML model were obtained from the Taguchi DOE factorial
design described in the previous section, where the level settings for the four machining
parameters are listed in Table 2.

Table 2. Factor and standard. Experimental results by L9 orthogonal array.

Case A. Depth of
Machining (mm)

B. Rotational
Speed (rpm)

C. Feed Rate
(mm/rev)

D. Length of Cantilever
Workpiece (mm)

Machining Error
(mm)

1 0.1 2000 0.15 40 0.013617
2 0.1 2300 0.2 60 0.0308
3 0.1 2500 0.25 80 0.02955
4 0.5 2000 0.2 80 0.03207
5 0.5 2300 0.25 40 0.0419
6 0.5 2500 0.15 60 0.01425
7 1 2000 0.25 60 0.00961
8 1 2300 0.15 80 0.0053
9 1 2500 0.2 40 0.01391

The machining error is calculated by the following equation:

Error =
∣∣Dtarget − Dmeasured

∣∣ (1)

where Dtarget is the diameter of the turning target size and Dmeasured is the diameter of the
measured value after the turning process.

The turning experiments were performed on a Feeler turning machine (model: FTC-10),
as shown in Figure 2, using cylindrical S45C medium carbon steel specimens. The specifi-
cations of the workpiece and cutting tool are shown in Table 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 20

Figure 2. Feeler turning machine (Model: FTC-10) used in experiments.

Table 3. Specifications of workpiece and cutting tool.

Diameter of Workpiece (mm) 30
Length of Workpiece (mm) 175
Cutting Tool Length (mm) 125

Cutting Tool Weight (g) 430

Prior to constructing the ML model, the experimental data obtained from the Taguchi
experiments were pre-processed in order to accelerate the convergence of the training
process and improve the prediction accuracy. Data pre-processing was performed using
the min–max normalization [15] technique. In other words, the minimum and maximum
values of each variable in the dataset were mapped to 0 and 1, respectively, and all the
other values in between were scaled accordingly within the range of [0, 1]. In other words,
the normalization process was performed as 𝑋 = 𝑥 − 𝑥𝑥 − 𝑥 ∈ 0, 1 (2)

where 𝑋 is the value after normalization and xmax, xmin, and x are the maximum,
minimum, and original values, respectively. The normalization process is illustrated sche-
matically in Figure 3.

Figure 3. Conceptual representation of data normalization.

Following data processing, the model was trained and tested using the leave-one-out
cross-validation technique [16]. Briefly, one data sample in the dataset was taken as an
assessment set (i.e., a testing set), and all the other data samples were taken as a training
set. The process was repeated until every data sample in the dataset had been taken as the
assessment set once. As shown in Table 2, the Taguchi DOE design involved nine experi-
mental runs. In other words, the Taguchi experiments generated nine data samples, with
each sample consisting of the values assigned to the four machining parameters and the
corresponding machining precision. Accordingly, the leave-one-out procedure was re-
peated nine times, as shown in Figure 4, with the prediction accuracy calculated each time.

Figure 2. Feeler turning machine (Model: FTC-10) used in experiments.

Appl. Sci. 2022, 12, 7739 6 of 19

Table 3. Specifications of workpiece and cutting tool.

Diameter of Workpiece (mm) 30
Length of Workpiece (mm) 175
Cutting Tool Length (mm) 125

Cutting Tool Weight (g) 430

Prior to constructing the ML model, the experimental data obtained from the Taguchi
experiments were pre-processed in order to accelerate the convergence of the training
process and improve the prediction accuracy. Data pre-processing was performed using
the min–max normalization [15] technique. In other words, the minimum and maximum
values of each variable in the dataset were mapped to 0 and 1, respectively, and all the
other values in between were scaled accordingly within the range of [0, 1]. In other words,
the normalization process was performed as

Xnormalize =
x− xmin

xmax − xmin
∈ [0, 1] (2)

where Xnormalize is the value after normalization and xmax, xmin, and x are the maximum,
minimum, and original values, respectively. The normalization process is illustrated
schematically in Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 20

Figure 2. Feeler turning machine (Model: FTC-10) used in experiments.

Table 3. Specifications of workpiece and cutting tool.

Diameter of Workpiece (mm) 30
Length of Workpiece (mm) 175
Cutting Tool Length (mm) 125

Cutting Tool Weight (g) 430

Prior to constructing the ML model, the experimental data obtained from the Taguchi
experiments were pre-processed in order to accelerate the convergence of the training
process and improve the prediction accuracy. Data pre-processing was performed using
the min–max normalization [15] technique. In other words, the minimum and maximum
values of each variable in the dataset were mapped to 0 and 1, respectively, and all the
other values in between were scaled accordingly within the range of [0, 1]. In other words,
the normalization process was performed as 𝑋 = 𝑥 − 𝑥𝑥 − 𝑥 ∈ 0, 1 (2)

where 𝑋 is the value after normalization and xmax, xmin, and x are the maximum,
minimum, and original values, respectively. The normalization process is illustrated sche-
matically in Figure 3.

Figure 3. Conceptual representation of data normalization.

Following data processing, the model was trained and tested using the leave-one-out
cross-validation technique [16]. Briefly, one data sample in the dataset was taken as an
assessment set (i.e., a testing set), and all the other data samples were taken as a training
set. The process was repeated until every data sample in the dataset had been taken as the
assessment set once. As shown in Table 2, the Taguchi DOE design involved nine experi-
mental runs. In other words, the Taguchi experiments generated nine data samples, with
each sample consisting of the values assigned to the four machining parameters and the
corresponding machining precision. Accordingly, the leave-one-out procedure was re-
peated nine times, as shown in Figure 4, with the prediction accuracy calculated each time.

Figure 3. Conceptual representation of data normalization.

Following data processing, the model was trained and tested using the leave-one-out
cross-validation technique [16]. Briefly, one data sample in the dataset was taken as an
assessment set (i.e., a testing set), and all the other data samples were taken as a training
set. The process was repeated until every data sample in the dataset had been taken as the
assessment set once. As shown in Table 2, the Taguchi DOE design involved nine experimental
runs. In other words, the Taguchi experiments generated nine data samples, with each sample
consisting of the values assigned to the four machining parameters and the corresponding
machining precision. Accordingly, the leave-one-out procedure was repeated nine times, as
shown in Figure 4, with the prediction accuracy calculated each time.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 20

Figure 4. Conceptual representation of leave-one-out procedure.

The present study considered three ML models: random forest (RF), XGBoost (XGB),
and decision tree (DT). Having evaluated the prediction performance of all three models,
the model with the best performance was further improved using a synthetic minority
over-sampling technique for regression with Gaussian noise (SMOGN) and four different
optimization algorithms: genetic algorithm (GA), grey wolf (GW), particle swarm optimi-
zation (PSO), and center particle swarm optimization (CPSO). The prediction perfor-
mances of the various models were then evaluated and compared. The details of the ML
models, oversampling technique, and optimization algorithms are provided in the follow-
ing sections.

3.1. Random Forest
Random forest (RF) [17] combines the strengths of the bagging and decision tree al-

gorithms, as shown in Figure 5. Bagging is used first to generate randomly distributed
training data, and this data is then randomly assigned to multiple decision trees for train-
ing purposes. Since each decision tree uses different training data, each trained decision
tree is different from the others. The weight of each decision tree is thus obtained via ma-
jority voting. As the training and testing process proceeds, the weaker decision trees are
gradually combined to construct a stronger model with a better prediction performance.

Figure 5. Conceptual representation of random forest algorithm.

3.2. XGBoost
Extreme gradient boosting (XGBoost or XGB) [18] combines the strengths of bagging

and boosting, as shown in Figure 6. In particular, an additive model is first constructed,
consisting of multiple base models. A new tree is then added to the model in order to

Figure 4. Conceptual representation of leave-one-out procedure.

Appl. Sci. 2022, 12, 7739 7 of 19

The present study considered three ML models: random forest (RF), XGBoost (XGB),
and decision tree (DT). Having evaluated the prediction performance of all three models,
the model with the best performance was further improved using a synthetic minority
over-sampling technique for regression with Gaussian noise (SMOGN) and four differ-
ent optimization algorithms: genetic algorithm (GA), grey wolf (GW), particle swarm
optimization (PSO), and center particle swarm optimization (CPSO). The prediction per-
formances of the various models were then evaluated and compared. The details of the
ML models, oversampling technique, and optimization algorithms are provided in the
following sections.

3.1. Random Forest

Random forest (RF) [17] combines the strengths of the bagging and decision tree
algorithms, as shown in Figure 5. Bagging is used first to generate randomly distributed
training data, and this data is then randomly assigned to multiple decision trees for training
purposes. Since each decision tree uses different training data, each trained decision tree is
different from the others. The weight of each decision tree is thus obtained via majority
voting. As the training and testing process proceeds, the weaker decision trees are gradually
combined to construct a stronger model with a better prediction performance.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 20

Figure 4. Conceptual representation of leave-one-out procedure.

The present study considered three ML models: random forest (RF), XGBoost (XGB),
and decision tree (DT). Having evaluated the prediction performance of all three models,
the model with the best performance was further improved using a synthetic minority
over-sampling technique for regression with Gaussian noise (SMOGN) and four different
optimization algorithms: genetic algorithm (GA), grey wolf (GW), particle swarm optimi-
zation (PSO), and center particle swarm optimization (CPSO). The prediction perfor-
mances of the various models were then evaluated and compared. The details of the ML
models, oversampling technique, and optimization algorithms are provided in the follow-
ing sections.

3.1. Random Forest
Random forest (RF) [17] combines the strengths of the bagging and decision tree al-

gorithms, as shown in Figure 5. Bagging is used first to generate randomly distributed
training data, and this data is then randomly assigned to multiple decision trees for train-
ing purposes. Since each decision tree uses different training data, each trained decision
tree is different from the others. The weight of each decision tree is thus obtained via ma-
jority voting. As the training and testing process proceeds, the weaker decision trees are
gradually combined to construct a stronger model with a better prediction performance.

Figure 5. Conceptual representation of random forest algorithm.

3.2. XGBoost
Extreme gradient boosting (XGBoost or XGB) [18] combines the strengths of bagging

and boosting, as shown in Figure 6. In particular, an additive model is first constructed,
consisting of multiple base models. A new tree is then added to the model in order to

Figure 5. Conceptual representation of random forest algorithm.

3.2. XGBoost

Extreme gradient boosting (XGBoost or XGB) [18] combines the strengths of bagging
and boosting, as shown in Figure 6. In particular, an additive model is first constructed,
consisting of multiple base models. A new tree is then added to the model in order to
correct the error produced by the previous tree, thereby improving the overall strength of
the model. The process proceeds iteratively in this way until either no further improvement
is obtained over a specified number of epochs, or the number of trees in the XGBoost
structure reaches the maximum prescribed number.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 20

correct the error produced by the previous tree, thereby improving the overall strength of
the model. The process proceeds iteratively in this way until either no further improve-
ment is obtained over a specified number of epochs, or the number of trees in the XGBoost
structure reaches the maximum prescribed number.

In the present study, the maximum depth of the tree structure was set as 500, the
number of samples was set as 1000, the learning rate was set as 0.3, and the booster was
set as “gbtree”.

Figure 6. Conceptual representation of the XGBoost algorithm.

3.3. Decision Tree
The decision tree (DT) model [19] can be used to solve both classification and regres-

sion problems. In the present study, the model was used to solve the regression problem
of predicting the turning precision based on the values of the four machining parameters.
As shown in Figure 7, the DT structure consisted of three types of nodes: a root node,
multiple interior nodes, and several output nodes. The root node represented the entire
sample, while the interior nodes represented the features of the data set and the leaf nodes
represented the regression outputs. Moreover, the branches between the nodes repre-
sented the decision rules (formulated as True or False). Briefly, each data point in the da-
taset was run through the tree until it reached an output node. The final prediction result
was then obtained by computing the average value of the dependent variable at each
node.

In this study, the depth of the DT structure was set as 10, the parameter controlling
the randomness of the estimator was set as 0, and the feature split randomness criterion
was set as “best” (meaning that the DT chose the split preferably based on the most im-
portant feature).

Figure 7. Conceptual representation of decision tree.

Figure 6. Conceptual representation of the XGBoost algorithm.

Appl. Sci. 2022, 12, 7739 8 of 19

In the present study, the maximum depth of the tree structure was set as 500, the
number of samples was set as 1000, the learning rate was set as 0.3, and the booster was set
as “gbtree”.

3.3. Decision Tree

The decision tree (DT) model [19] can be used to solve both classification and regression
problems. In the present study, the model was used to solve the regression problem of
predicting the turning precision based on the values of the four machining parameters.
As shown in Figure 7, the DT structure consisted of three types of nodes: a root node,
multiple interior nodes, and several output nodes. The root node represented the entire
sample, while the interior nodes represented the features of the data set and the leaf nodes
represented the regression outputs. Moreover, the branches between the nodes represented
the decision rules (formulated as True or False). Briefly, each data point in the dataset was
run through the tree until it reached an output node. The final prediction result was then
obtained by computing the average value of the dependent variable at each node.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 20

correct the error produced by the previous tree, thereby improving the overall strength of
the model. The process proceeds iteratively in this way until either no further improve-
ment is obtained over a specified number of epochs, or the number of trees in the XGBoost
structure reaches the maximum prescribed number.

In the present study, the maximum depth of the tree structure was set as 500, the
number of samples was set as 1000, the learning rate was set as 0.3, and the booster was
set as “gbtree”.

Figure 6. Conceptual representation of the XGBoost algorithm.

3.3. Decision Tree
The decision tree (DT) model [19] can be used to solve both classification and regres-

sion problems. In the present study, the model was used to solve the regression problem
of predicting the turning precision based on the values of the four machining parameters.
As shown in Figure 7, the DT structure consisted of three types of nodes: a root node,
multiple interior nodes, and several output nodes. The root node represented the entire
sample, while the interior nodes represented the features of the data set and the leaf nodes
represented the regression outputs. Moreover, the branches between the nodes repre-
sented the decision rules (formulated as True or False). Briefly, each data point in the da-
taset was run through the tree until it reached an output node. The final prediction result
was then obtained by computing the average value of the dependent variable at each
node.

In this study, the depth of the DT structure was set as 10, the parameter controlling
the randomness of the estimator was set as 0, and the feature split randomness criterion
was set as “best” (meaning that the DT chose the split preferably based on the most im-
portant feature).

Figure 7. Conceptual representation of decision tree. Figure 7. Conceptual representation of decision tree.

In this study, the depth of the DT structure was set as 10, the parameter controlling
the randomness of the estimator was set as 0, and the feature split randomness criterion
was set as “best” (meaning that the DT chose the split preferably based on the most
important feature).

3.4. Oversampling

As described above, each of the three models was trained and tested using the leave-
one-out cross-validation method. The best model was then further improved using the syn-
thetic minority over-sampling technique for regression with Gaussian noise (SMOGN) [20].
In general, the purpose of oversampling is to overcome the problem of data imbalance in
the dataset and/or insufficient available data. To preserve the original data features in the
dataset, the data instances with few but important features are first identified. Synthetic
data with similar features are then created, such that the final dataset contains a balanced
number of features. In implementing the oversampling method, the sampling factor is set
in accordance with the imbalance proportion of the data. In addition, the k-NN algorithm
is applied to each sample X in the minority class. In particular, the distances between the
sample and all the other samples in the same minority class are calculated in order to find
the k minority class samples that are the closest to X. One of the minority class examples is
then randomly selected and inserted into the following equation:

Xnew = Xi +
(
X̂i − Xi

)
× δ (3)

where δ is a random factor with a value in the interval of [0, 1] and X̂i is the minority class
example selected (see Figure 8).

Appl. Sci. 2022, 12, 7739 9 of 19

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 20

3.4. Oversampling
As described above, each of the three models was trained and tested using the leave-

one-out cross-validation method. The best model was then further improved using the
synthetic minority over-sampling technique for regression with Gaussian noise (SMOGN)
[20]. In general, the purpose of oversampling is to overcome the problem of data imbal-
ance in the dataset and/or insufficient available data. To preserve the original data features
in the dataset, the data instances with few but important features are first identified. Syn-
thetic data with similar features are then created, such that the final dataset contains a
balanced number of features. In implementing the oversampling method, the sampling
factor is set in accordance with the imbalance proportion of the data. In addition, the k-
NN algorithm is applied to each sample X in the minority class. In particular, the distances
between the sample and all the other samples in the same minority class are calculated in
order to find the k minority class samples that are the closest to X. One of the minority
class examples is then randomly selected and inserted into the following equation: 𝑋 = 𝑋 + 𝑋 − 𝑋 × 𝛿 (3)

where 𝛿 is a random factor with a value in the interval of [0, 1] and 𝑋 is the minority
class example selected (see Figure 8).

Figure 8. Conceptual representation of the SMOGN algorithm.

3.5. Model Optimization
Following the over-sampling process, optimization algorithms [21] were applied to

further tune the parameters of the ML model. Four algorithms were considered, namely
GA, GW, PSO and CPSO. The details of each algorithm are described in the following.

The genetic algorithm (GA) optimizer [22] was a randomized search algorithm which
imitated the processes of selection and reproduction in nature. The algorithm commenced
by constructing an initial population of potential candidate solutions, where each candi-
date was encoded in the form of a string. A set of these candidates was then selected as
the initial guessed values, and selection, crossover, and mutation operations were per-
formed based on the fitness of these guessed values in order to create a new population
of improved candidate solutions. The algorithm iterated in this way until the specified
termination criteria were satisfied, at which point the candidate with the best fit was de-
coded and taken as the optimal solution. Figure 9 illustrates the basic workflow of the GA
algorithm.

Figure 8. Conceptual representation of the SMOGN algorithm.

3.5. Model Optimization

Following the over-sampling process, optimization algorithms [21] were applied to
further tune the parameters of the ML model. Four algorithms were considered, namely
GA, GW, PSO and CPSO. The details of each algorithm are described in the following.

The genetic algorithm (GA) optimizer [22] was a randomized search algorithm which
imitated the processes of selection and reproduction in nature. The algorithm commenced
by constructing an initial population of potential candidate solutions, where each candidate
was encoded in the form of a string. A set of these candidates was then selected as the initial
guessed values, and selection, crossover, and mutation operations were performed based
on the fitness of these guessed values in order to create a new population of improved
candidate solutions. The algorithm iterated in this way until the specified termination
criteria were satisfied, at which point the candidate with the best fit was decoded and taken
as the optimal solution. Figure 9 illustrates the basic workflow of the GA algorithm.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 20

Figure 9. Conceptual representation of the GA algorithm.

The grey wolf (GW) optimizer [23] is an intelligent optimization algorithm that mim-
ics the group hunting behavior of grey wolves, and involves three main steps, namely,
establishing hierarchy, encircling, and attacking. As shown in Figure 10, three solutions
(alpha, beta, and delta) are first selected as the best solutions among the initial population.
In each iteration, the position of the prey (i.e., the optimal solution) is updated according
to the positions of these wolves, based on 𝐷 = 𝐶 ⋅ 𝑋 𝑡 − 𝑋 𝑡 (4) 𝑋 𝑡 + 1 = 𝑋 𝑡 − 𝐴 ⋅ 𝐷 (5) 𝐴 = 2𝛼 ⋅ 𝑟 − 𝛼 (6) 𝐶 = 2𝑟 (7)

where t is the current iteration; A and C are the auxiliary coefficient vectors; 𝑋 𝑡 is the
position vector of the prey; and 𝑋 𝑡 is the current position vector of the wolves. 𝛼 drops
from 2 to 0 as the iteration process proceeds, and 𝑟 and 𝑟 are random vectors in the
interval of [0, 1]. In the hunting process, when 𝐴 > 1, the wolves diverge. By contrast,
when 𝐴 < 1, they converge, and search a more localized area in order to pinpoint the
prey.

Figure 9. Conceptual representation of the GA algorithm.

Appl. Sci. 2022, 12, 7739 10 of 19

The grey wolf (GW) optimizer [23] is an intelligent optimization algorithm that mim-
ics the group hunting behavior of grey wolves, and involves three main steps, namely,
establishing hierarchy, encircling, and attacking. As shown in Figure 10, three solutions
(alpha, beta, and delta) are first selected as the best solutions among the initial population.
In each iteration, the position of the prey (i.e., the optimal solution) is updated according to
the positions of these wolves, based on

D = C · Xp(t)− X(t) (4)

X(t + 1) = Xp(t)− A · D (5)

A = 2α · r1 − α (6)

C = 2r2 (7)

where t is the current iteration; A and C are the auxiliary coefficient vectors; Xp(t) is the
position vector of the prey; and X(t) is the current position vector of the wolves. α drops
from 2 to 0 as the iteration process proceeds, and r1 and r2 are random vectors in the

interval of [0, 1]. In the hunting process, when
∣∣∣∣→A∣∣∣∣ > 1, the wolves diverge. By contrast,

when
∣∣∣∣→A∣∣∣∣ < 1, they converge, and search a more localized area in order to pinpoint the prey.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 20

Figure 10. Conceptual representation of the GWO algorithm.

The particle swarm optimization (PSO) algorithm [24] encodes each candidate solu-
tion as a particle within the feasible search space, and gradually converges toward the
optimal solution based on the individual and collective experiences of all the members of
the swarm. As shown in Figure 11, the optimization process involves three iterative steps:
(one) assigning the initial positions of all the particles and recording the position of the
best solution among them, (two) calculating the acceleration vector for each particle and
moving the particle to a new position, and (three) updating the personal best solutions of
the individual particles and the global best solution. The related PSO equations are ex-
pressed as follows: 𝑋 = 𝑋 + 𝑉 (8) 𝑉 = 𝜔𝑉 + 𝑐 𝑟 × 𝑃𝑏𝑒𝑠𝑡 − 𝑋 + 𝑐 𝑟 × 𝐺𝑏𝑒𝑠𝑡 − 𝑋 (9)

where 𝑉 is the velocity of individual i in the k-th iteration, 𝜔 is the weight, 𝑐 and 𝑐
are the acceleration constants, and 𝑟 and 𝑟 are random values in the interval [0, 1]. In
addition, 𝑋 is the position of individual i in the k-th iteration, 𝑃𝑏e𝑠𝑡 is the best posi-
tion of individual i in each iteration, and 𝐺𝑏e𝑠𝑡 is the best solution in the entire domain.

Figure 10. Conceptual representation of the GWO algorithm.

The particle swarm optimization (PSO) algorithm [24] encodes each candidate solution
as a particle within the feasible search space, and gradually converges toward the optimal
solution based on the individual and collective experiences of all the members of the
swarm. As shown in Figure 11, the optimization process involves three iterative steps:
(one) assigning the initial positions of all the particles and recording the position of the
best solution among them, (two) calculating the acceleration vector for each particle and
moving the particle to a new position, and (three) updating the personal best solutions
of the individual particles and the global best solution. The related PSO equations are
expressed as follows:

Xk+1
i = Xk

i + Vk+1
i (8)

Vk+1
i = ωVk

i + c1r1 ×
(

Pbestk
i − Xk

i

)
+ c2r2 ×

(
Gbestk − Xk

i

)
(9)

Appl. Sci. 2022, 12, 7739 11 of 19

where Vk
i is the velocity of individual i in the k-th iteration, ω is the weight, c1 and c2

are the acceleration constants, and r1 and r2 are random values in the interval [0, 1]. In
addition, Xk

i is the position of individual i in the k-th iteration, Pbestk
i is the best position of

individual i in each iteration, and Gbestk is the best solution in the entire domain.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20

Figure 11. Conceptual representation of the PSO algorithm.

Center particle swarm optimization (CPSO) [25] is an extension of the PSO algorithm,
and aims to reach the optimal solution more rapidly through the introduction of a center
particle located in the middle of all the particles in the swarm (see Figure 12). The rationale
for this approach lies in the fact that the center of the personal best solutions of all the
particles is located closer to the best solution than the global best solution. Thus, in the
CPSO algorithm, the position of the center particle is taken in place of the global best po-
sition in the original PSO algorithm in order to improve the convergence speed. The po-
sition of the center particle is computed as

𝑋 = 1𝑁 − 1 𝑋 (10)

where 𝑋 is the center position in the (k + 1)-th iteration, N is the number of particles
in the swarm, and 𝑋 is the position of the i-th particle in the (k + 1)-th iteration.

Figure 11. Conceptual representation of the PSO algorithm.

Center particle swarm optimization (CPSO) [25] is an extension of the PSO algorithm,
and aims to reach the optimal solution more rapidly through the introduction of a center
particle located in the middle of all the particles in the swarm (see Figure 12). The rationale
for this approach lies in the fact that the center of the personal best solutions of all the
particles is located closer to the best solution than the global best solution. Thus, in the
CPSO algorithm, the position of the center particle is taken in place of the global best
position in the original PSO algorithm in order to improve the convergence speed. The
position of the center particle is computed as

X(k+1)
cd =

1
N − 1

N−1

∑
i=1

X(k+1)
i (10)

where X(k+1)
cd is the center position in the (k + 1)-th iteration, N is the number of particles in

the swarm, and Xk
i is the position of the i-th particle in the (k + 1)-th iteration.

Figures 13 and 14 show the training procedures for the single RF, XGBoost, and DT
models, and the optimized models, respectively. As shown in Figure 13, the training
process for the single models involves the following steps: (one) loading the data, (two)
data normalization, (three) cross validation (separating the training set and test set), (four)
model training, (five) prediction, and (six) prediction accuracy evaluation. Similarly, the
main steps in the training process for the optimized models include: (one) loading the
data, (two) data normalization, (three) cross validation, (four) oversampling, (five) model

Appl. Sci. 2022, 12, 7739 12 of 19

optimization, (six) model training using the optimized parameters, (seen) prediction, and
(eight) prediction accuracy evaluation (see Figure 14).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 20

Figure 12. Conceptual representation of the CPSO algorithm.

Figures 13 and 14 show the training procedures for the single RF, XGBoost, and DT
models, and the optimized models, respectively. As shown in Figure 13, the training pro-
cess for the single models involves the following steps: (one) loading the data, (two) data
normalization, (three) cross validation (separating the training set and test set), (four)
model training, (five) prediction, and (six) prediction accuracy evaluation. Similarly, the
main steps in the training process for the optimized models include: (one) loading the
data, (two) data normalization, (three) cross validation, (four) oversampling, (five) model
optimization, (six) model training using the optimized parameters, (seen) prediction, and
(eight) prediction accuracy evaluation (see Figure 14).

Figure 12. Conceptual representation of the CPSO algorithm.
Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 20

Figure 13. Single model training flowchart.

Figure 14. Optimized model training flowchart.

4. Experimental Results
4.1. Performances of Different ML Models

As described in Section III, the ML models were trained and tested using the leave-
one-out cross-validation technique with nine data samples. For each testing process, the
prediction performance of the model was evaluated using three different metrics: the root
mean square error (RMSE), the mean absolute error (MAE), and the coefficient of deter-
mination (𝑅).

The RMSE computes the square root of the ratio of the square of the errors between
the predicted values and the actual values over the number of data instances. The square
relationship in the RMSE formula renders the metric sensitive to very large or very small
errors. A larger RMSE indicates a poorer prediction performance, and vice versa. The
mean absolute error (MAE) computes the sum of the absolute values of the differences
between the actual values of the machining error and the predicted values. In other words,
a smaller MAE indicates a better prediction accuracy, and vice versa.

Finally, the coefficient of determination (𝑅 or the 𝑅 score) is a statistical measure
representing the proportion of variance in the dependent variable. In other words, it pro-
vides an indication of how well (or otherwise) the prediction model fits the actual data.
The 𝑅 score has a value in the interval of [0, 1], where a value closer to 1 indicates a
better fit of the prediction model.

The leave-one-out cross-validation process revealed that all of the trained single
models (RF, XGBoost, and DT) had a poor prediction performance. However, among the

Figure 13. Single model training flowchart.

Appl. Sci. 2022, 12, 7739 13 of 19

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 20

Figure 13. Single model training flowchart.

Figure 14. Optimized model training flowchart.

4. Experimental Results
4.1. Performances of Different ML Models

As described in Section III, the ML models were trained and tested using the leave-
one-out cross-validation technique with nine data samples. For each testing process, the
prediction performance of the model was evaluated using three different metrics: the root
mean square error (RMSE), the mean absolute error (MAE), and the coefficient of deter-
mination (𝑅).

The RMSE computes the square root of the ratio of the square of the errors between
the predicted values and the actual values over the number of data instances. The square
relationship in the RMSE formula renders the metric sensitive to very large or very small
errors. A larger RMSE indicates a poorer prediction performance, and vice versa. The
mean absolute error (MAE) computes the sum of the absolute values of the differences
between the actual values of the machining error and the predicted values. In other words,
a smaller MAE indicates a better prediction accuracy, and vice versa.

Finally, the coefficient of determination (𝑅 or the 𝑅 score) is a statistical measure
representing the proportion of variance in the dependent variable. In other words, it pro-
vides an indication of how well (or otherwise) the prediction model fits the actual data.
The 𝑅 score has a value in the interval of [0, 1], where a value closer to 1 indicates a
better fit of the prediction model.

The leave-one-out cross-validation process revealed that all of the trained single
models (RF, XGBoost, and DT) had a poor prediction performance. However, among the

Figure 14. Optimized model training flowchart.

4. Experimental Results
4.1. Performances of Different ML Models

As described in Section 3, the ML models were trained and tested using the leave-
one-out cross-validation technique with nine data samples. For each testing process, the
prediction performance of the model was evaluated using three different metrics: the
root mean square error (RMSE), the mean absolute error (MAE), and the coefficient of
determination (R2).

The RMSE computes the square root of the ratio of the square of the errors between
the predicted values and the actual values over the number of data instances. The square
relationship in the RMSE formula renders the metric sensitive to very large or very small
errors. A larger RMSE indicates a poorer prediction performance, and vice versa. The mean
absolute error (MAE) computes the sum of the absolute values of the differences between
the actual values of the machining error and the predicted values. In other words, a smaller
MAE indicates a better prediction accuracy, and vice versa.

Finally, the coefficient of determination (R2 or the R2 score) is a statistical measure
representing the proportion of variance in the dependent variable. In other words, it
provides an indication of how well (or otherwise) the prediction model fits the actual data.
The R2 score has a value in the interval of [0, 1], where a value closer to 1 indicates a better
fit of the prediction model.

The leave-one-out cross-validation process revealed that all of the trained single
models (RF, XGBoost, and DT) had a poor prediction performance. However, among the
three models, the best performance was obtained by the XGBoost model, with a RMSE
of 0.007887, a MAE of 0.0067, and an R2 score of 0.554. Accordingly, the XGBoost model
was selected for further improvement using the SMOGN over-sampling method and four
optimization algorithms.

Figure 15 shows the learning curves of the four optimizers. Note that in compiling
the results, the RMSE values of the optimizers were taken as the fitness value, and once
a better fitness value was found in the model optimization process, it was used in place
of the best fitness value. In other words, a lower learning curve in Figure 15 indicates an
improved optimization performance, and shows that the CPSO optimizer yields the best
learning performance.

Appl. Sci. 2022, 12, 7739 14 of 19

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 20

three models, the best performance was obtained by the XGBoost model, with a RMSE of
0.007887, a MAE of 0.0067, and an 𝑅 score of 0.554. Accordingly, the XGBoost model
was selected for further improvement using the SMOGN over-sampling method and four
optimization algorithms.

Figure 15 shows the learning curves of the four optimizers. Note that in compiling
the results, the RMSE values of the optimizers were taken as the fitness value, and once a
better fitness value was found in the model optimization process, it was used in place of
the best fitness value. In other words, a lower learning curve in Figure 15 indicates an
improved optimization performance, and shows that the CPSO optimizer yields the best
learning performance.

Figures 16–22 show the prediction results obtained for the seven ML models (i.e., the
three single models and the four over-sampled and optimized XGBoost models). For each
model, the figures show both a direct comparison of the actual and predicted machining
errors and the corresponding residual plot.

Figure 15. Learning curves of different optimizers.

For ease of visualization and comparison, the prediction errors with a value greater
than 0.008 in Figures 16–22 are shown in orange, while those with a value between 0.003
and 0.008 are shown in green, and those with a value less than 0.003 are shown in blue.
Thus, the prediction accuracy of each model can be crudely evaluated by the number of
points of each color in the respective plots. A more quantitative evaluation of the perfor-
mance of each model can be obtained from the corresponding RMSE, MAE, and 𝑅 val-
ues.

(a) (b)

Figure 16. RF prediction results: (a) comparison of actual and predicted precision values, and (b)
residual plot.

Figure 15. Learning curves of different optimizers.

Figures 16–22 show the prediction results obtained for the seven ML models (i.e., the
three single models and the four over-sampled and optimized XGBoost models). For each
model, the figures show both a direct comparison of the actual and predicted machining
errors and the corresponding residual plot.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 20

three models, the best performance was obtained by the XGBoost model, with a RMSE of
0.007887, a MAE of 0.0067, and an 𝑅 score of 0.554. Accordingly, the XGBoost model
was selected for further improvement using the SMOGN over-sampling method and four
optimization algorithms.

Figure 15 shows the learning curves of the four optimizers. Note that in compiling
the results, the RMSE values of the optimizers were taken as the fitness value, and once a
better fitness value was found in the model optimization process, it was used in place of
the best fitness value. In other words, a lower learning curve in Figure 15 indicates an
improved optimization performance, and shows that the CPSO optimizer yields the best
learning performance.

Figures 16–22 show the prediction results obtained for the seven ML models (i.e., the
three single models and the four over-sampled and optimized XGBoost models). For each
model, the figures show both a direct comparison of the actual and predicted machining
errors and the corresponding residual plot.

Figure 15. Learning curves of different optimizers.

For ease of visualization and comparison, the prediction errors with a value greater
than 0.008 in Figures 16–22 are shown in orange, while those with a value between 0.003
and 0.008 are shown in green, and those with a value less than 0.003 are shown in blue.
Thus, the prediction accuracy of each model can be crudely evaluated by the number of
points of each color in the respective plots. A more quantitative evaluation of the perfor-
mance of each model can be obtained from the corresponding RMSE, MAE, and 𝑅 val-
ues.

(a) (b)

Figure 16. RF prediction results: (a) comparison of actual and predicted precision values, and (b)
residual plot.

Figure 16. RF prediction results: (a) comparison of actual and predicted precision values, and
(b) residual plot.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 20

(a) (b)

Figure 17. DT prediction results: (a) comparison of actual and predicted precision values, and (b)
residual plot.

(a) (b)

Figure 18. XGBoost prediction results: (a) comparison of actual and predicted precision values, and
(b) residual plot.

(a) (b)

Figure 19. SMOGN-GA-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

Figure 17. DT prediction results: (a) comparison of actual and predicted precision values, and
(b) residual plot.

Appl. Sci. 2022, 12, 7739 15 of 19

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 20

(a) (b)

Figure 17. DT prediction results: (a) comparison of actual and predicted precision values, and (b)
residual plot.

(a) (b)

Figure 18. XGBoost prediction results: (a) comparison of actual and predicted precision values, and
(b) residual plot.

(a) (b)

Figure 19. SMOGN-GA-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

Figure 18. XGBoost prediction results: (a) comparison of actual and predicted precision values, and
(b) residual plot.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 20

(a) (b)

Figure 17. DT prediction results: (a) comparison of actual and predicted precision values, and (b)
residual plot.

(a) (b)

Figure 18. XGBoost prediction results: (a) comparison of actual and predicted precision values, and
(b) residual plot.

(a) (b)

Figure 19. SMOGN-GA-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

Figure 19. SMOGN-GA-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 20

(a) (b)

Figure 20. SMOGN-GW-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

(a) (b)

Figure 21. SMOGN-PSO-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

(a) (b)

Figure 22. SMOGN-CPSO-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

Figure 23 compares the predicted machining errors of the seven models with the ac-
tual machining error for each of the nine runs in the Taguchi OA. Overall, the results show
that the SMOGN-CPSO-XGB model and SMOGN-GWO-XGB model yield the best fits
with the actual prediction error in each run. By contrast, the RF model yields the poorest
fit with the experimental data.

Figure 20. SMOGN-GW-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

Appl. Sci. 2022, 12, 7739 16 of 19

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 20

(a) (b)

Figure 20. SMOGN-GW-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

(a) (b)

Figure 21. SMOGN-PSO-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

(a) (b)

Figure 22. SMOGN-CPSO-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

Figure 23 compares the predicted machining errors of the seven models with the ac-
tual machining error for each of the nine runs in the Taguchi OA. Overall, the results show
that the SMOGN-CPSO-XGB model and SMOGN-GWO-XGB model yield the best fits
with the actual prediction error in each run. By contrast, the RF model yields the poorest
fit with the experimental data.

Figure 21. SMOGN-PSO-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 20

(a) (b)

Figure 20. SMOGN-GW-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

(a) (b)

Figure 21. SMOGN-PSO-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

(a) (b)

Figure 22. SMOGN-CPSO-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

Figure 23 compares the predicted machining errors of the seven models with the ac-
tual machining error for each of the nine runs in the Taguchi OA. Overall, the results show
that the SMOGN-CPSO-XGB model and SMOGN-GWO-XGB model yield the best fits
with the actual prediction error in each run. By contrast, the RF model yields the poorest
fit with the experimental data.

Figure 22. SMOGN-CPSO-XGB prediction results: (a) comparison of actual and predicted precision
values, and (b) residual plot.

For ease of visualization and comparison, the prediction errors with a value greater
than 0.008 in Figures 16–22 are shown in orange, while those with a value between 0.003 and
0.008 are shown in green, and those with a value less than 0.003 are shown in blue. Thus,
the prediction accuracy of each model can be crudely evaluated by the number of points of
each color in the respective plots. A more quantitative evaluation of the performance of
each model can be obtained from the corresponding RMSE, MAE, and R2 values.

Figure 23 compares the predicted machining errors of the seven models with the actual
machining error for each of the nine runs in the Taguchi OA. Overall, the results show that
the SMOGN-CPSO-XGB model and SMOGN-GWO-XGB model yield the best fits with the
actual prediction error in each run. By contrast, the RF model yields the poorest fit with the
experimental data.

Table 4 lists the MAE, RMSE, and R2 values of the seven models. In general, the
results confirm the effectiveness of the SMOGN technique and optimization algorithms in
improving the prediction performance, compared with that of the single models. Moreover,
the results confirm that, among all of the models, the XGBoost model optimized with
SMOGN and CPSO achieves the lowest MAE and RMSE values and the highest R2 score.

The values of R2 for SMOGN-CPSO-XGB and SMOGN-GWO-XGB are 0.661 and
0.64, respectively. It can be seen that SMOGN-CPSO-XGB and SMOGN-GWO-XGB have
better prediction effects than the others and perform a good performance, as shown in
Table 4. If the two models of SMOGN-CPSO-XGB and SMOGN-GWO-XGB are compared
by evaluating the three indicators of MAE, RMSE, and R2, the performances of MAE and
R2 for SMOGN-CPSO-XGB model are significantly better than the SMOGN-GWO-XGB
model. Accordingly, the SMOGN-CPSO-XGB model has the best predictive ability and
effect for turning process. It is also shown that from the R2 value, the prediction effect of
SMOGN-CPSO-XGB model is significantly higher than that of the decision tree model by

Appl. Sci. 2022, 12, 7739 17 of 19

23%. In other words, the SMOGN-CPSO-XGB model is the best fitted model among the
considered alternatives.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 20

Figure 23. Prediction performance of different models.

Table 4 lists the MAE, RMSE, and R values of the seven models. In general, the re-
sults confirm the effectiveness of the SMOGN technique and optimization algorithms in
improving the prediction performance, compared with that of the single models. Moreo-
ver, the results confirm that, among all of the models, the XGBoost model optimized with
SMOGN and CPSO achieves the lowest MAE and RMSE values and the highest 𝑅 score.

The values of R2 for SMOGN-CPSO-XGB and SMOGN-GWO-XGB are 0.661 and 0.64,
respectively. It can be seen that SMOGN-CPSO-XGB and SMOGN-GWO-XGB have better
prediction effects than the others and perform a good performance, as shown in Table 4.
If the two models of SMOGN-CPSO-XGB and SMOGN-GWO-XGB are compared by eval-
uating the three indicators of MAE, RMSE, and R2, the performances of MAE and R2 for
SMOGN-CPSO-XGB model are significantly better than the SMOGN-GWO-XGB model.
Accordingly, the SMOGN-CPSO-XGB model has the best predictive ability and effect for
turning process. It is also shown that from the R2 value, the prediction effect of SMOGN-
CPSO-XGB model is significantly higher than that of the decision tree model by 23%. In
other words, the SMOGN-CPSO-XGB model is the best fitted model among the consid-
ered alternatives.

Table 4. Performance metrics of various models.

Model MAE RMSE 𝑹𝟐
Random Forest 0.0107 0.012336 −0.092
Decision Tree 0.0068 0.008034 0.537

XGBoost 0.0067 0.007887 0.554
SMOGN-GA-XGB 0.0064 0.007411 0.606

SMOGN-GWO-XGB 0.0061 0.007081 0.64
SMOGN-PSO-XGB 0.0062 0.007213 0.627

SMOGN-CPSO-XGB 0.0059 0.006878 0.661

From Figure 23 and Table 4, it can be seen that the SMOGN-CPSO-XGB model can
accurately predict the surface accuracy of the workpiece after the turning process.

4.2. Confirmation Experiments for the Prediction of the SMOGN-CPSO-XGB Model
In Table 2, the optimized combination of parameters is A3B1C1D2, which means the

depth of machining, rotational speed, feed rate, and length of cantilever workpiece are 1.0
mm, 2000 rpm, 0.15 mm/rev, and 60 mm, respectively. This set of parameters is then ap-
plied to be the input of the SMOGN-CPSO-XGB model, and the obtained predicted value
of machining error is 0.005163 mm within 0.002 s. The result is the best of all values of

Figure 23. Prediction performance of different models.

Table 4. Performance metrics of various models.

Model MAE RMSE R2

Random Forest 0.0107 0.012336 −0.092
Decision Tree 0.0068 0.008034 0.537

XGBoost 0.0067 0.007887 0.554
SMOGN-GA-XGB 0.0064 0.007411 0.606

SMOGN-GWO-XGB 0.0061 0.007081 0.64
SMOGN-PSO-XGB 0.0062 0.007213 0.627

SMOGN-CPSO-XGB 0.0059 0.006878 0.661

From Figure 23 and Table 4, it can be seen that the SMOGN-CPSO-XGB model can
accurately predict the surface accuracy of the workpiece after the turning process.

4.2. Confirmation Experiments for the Prediction of the SMOGN-CPSO-XGB Model

In Table 2, the optimized combination of parameters is A3B1C1D2, which means the
depth of machining, rotational speed, feed rate, and length of cantilever workpiece are
1.0 mm, 2000 rpm, 0.15 mm/rev, and 60 mm, respectively. This set of parameters is then
applied to be the input of the SMOGN-CPSO-XGB model, and the obtained predicted value
of machining error is 0.005163 mm within 0.002 s. The result is the best of all values of
machining error in Table 2. It is confirmed that the SMOGN-CPSO-XGB model is suitable
for the prediction in the turning process.

If a set of experimental factors and levels designed by the Taguchi method are input
arbitrarily, the predicted machining error of the workpiece can be accurately obtained
through the SMOGN-CPSO-XGB model. For the industry, it is very important that when
a certain processing parameter changes, the machining error change of the workpiece
needs to be quickly understood, which can be used as a reference for parameter adjust-
ment. It can also instantly understand the impact of machining parameter changes on the
workpiece accuracy.

5. Conclusions

This study has proposed a machine learning approach for predicting the machining
precision of the turning process based on the values assigned to the machining depth,
rotational speed, feed rate, and cantilever cutting length, respectively. Based on the experi-
mental results obtained from the Taguchi factorial design experiment, the contributions of
this study are summarized as follows.

Appl. Sci. 2022, 12, 7739 18 of 19

(1). The XGBoost model yields a better prediction performance than the random forest
model or decision tree model. It has further been shown that the prediction perfor-
mance of the XGBoost model can be enhanced through the use of a synthetic minority
over-sampling technique for regression with Gaussian noise (SMOGN) and a center
particle swarm optimization (CPSO) algorithm.

(2). According to the index of R2, it can be observed that the values of R2 for the SMOGN-
CPSO-XGB and SMOGN-GWO-XGB models are 0.661 and 0.64, respectively. It reveals
that the SMOGN-CPSO-XGB and SMOGN-GWO-XGB models have better prediction
effects than the others and perform well.

(3). For the comparison of performance for the SMOGN-CPSO-XGB and SMOGN-GWO-
XGB models, it is evaluated by MAE, RMSE, and R2 to show that the performance of
the SMOGN-CPSO-XGB model can achieve a MAE of 0.0059, and an R2 score of 0.661
is significantly better than the SMOGN-GWO-XGB model. Accordingly, the SMOGN-
CPSO-XGB model has the best predictive ability and effect for turning process.

(4). This study provides a rapid and reliable means of predicting the turning quality,
optimizing the turning parameters or machining error in industrial settings without
the need for time-consuming and expensive trial-and-error experiments.

Author Contributions: Conceptualization, C.-C.W.; methodology, C.-C.W.; software, P.-H.K.; val-
idation, C.-C.W., P.-H.K. and G.-Y.C.; formal analysis, P.-H.K. and G.-Y.C.; investigation, C.-C.W.;
writing—original draft preparation, C.-C.W., P.-H.K. and G.-Y.C.; writing—review and editing,
C.-C.W.; visualization, C.-C.W.; supervision, C.-C.W.; project administration, C.-C.W.; funding acqui-
sition, C.-C.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Ministry of Science and Technology in Taiwan, grant number
MOST 110-2221-E-167-019.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stephenson, D.A.; Agapiou, J.S. Metal Cutting Theory and Practice; CRC Press: Boca Raton, FL, USA, 2018.
2. Su, Y.; Zhao, G.; Zhao, Y.; Meng, J.; Li, C. Multi-objective optimization of cutting parameters in turning AISI 304 austenitic

stainless steel. Metals 2020, 10, 217. [CrossRef]
3. Akkuş, H.; Yaka, H. Experimental and statistical investigation of the effect of cutting parameters on surface roughness, vibration

and energy consumption in machining of titanium 6Al-4V ELI (grade 5) alloy. Measurement 2021, 167, 108465. [CrossRef]
4. Zhou, T.; He, L.; Wu, J.; Du, F.; Zou, Z. Prediction of surface roughness of 304 stainless steel and multi-objective optimization of

cutting parameters based on GA-GBRT. Appl. Sci. 2019, 9, 3684. [CrossRef]
5. Wu, T.Y.; Lin, C.C. Optimization of machining parameters in milling process of inconel 718 under surface roughness constraints.

Appl. Sci. 2021, 11, 2137. [CrossRef]
6. Sivalingam, V.; Sun, J.; Mahalingam, S.K.; Nagarajan, L.; Natarajan, Y.; Salunkhe, S.; Nasr, E.A.; Davim, J.P.; Hussein, H.M.A.M.

Optimization of process parameters for turning Hastelloy x under different machining environments using evolutionary
algorithms: A comparative study. Appl. Sci. 2021, 11, 9725. [CrossRef]

7. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
[PubMed]

8. Lu, X.; Hou, P.; Luan, Y.; Sun, X.; Qiao, J.; Zhou, Y. Study on surface roughness of sidewall when micro-milling LF21 waveguide
slits. Appl. Sci. 2022, 12, 5415. [CrossRef]

9. Chen, C.H.; Jeng, S.Y.; Lin, C.J. Prediction and analysis of the surface roughness in CNC end milling using neural networks. Appl.
Sci. 2022, 12, 393. [CrossRef]

10. Benardos, P.; Vosniakos, G. Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of
experiments. Robot. Comput. Integr. Manuf. 2002, 18, 343–354. [CrossRef]

11. Cus, F.; Zuperl, U. Approach to optimization of cutting conditions by using artificial neural networks. J. Mater. Process. Technol.
2006, 173, 281–290. [CrossRef]

12. Asiltürk, İ.; Çunkaş, M. Modeling and prediction of surface roughness in turning operations using artificial neural network and
multiple regression method. Expert Syst. Appl. 2011, 38, 5826–5832. [CrossRef]

13. Pontes, F.J.; de Paiva, A.P.; Balestrassi, P.P.; Ferreira, J.R.; da Silva, M.B. Optimization of radial basis function neural network
employed for prediction of surface roughness in hard turning process using Taguchi’s orthogonal arrays. Expert Syst. Appl. 2012,
39, 7776–7787. [CrossRef]

http://doi.org/10.3390/met10020217
http://doi.org/10.1016/j.measurement.2020.108465
http://doi.org/10.3390/app9183684
http://doi.org/10.3390/app11052137
http://doi.org/10.3390/app11209725
http://doi.org/10.1126/science.aaa8415
http://www.ncbi.nlm.nih.gov/pubmed/26185243
http://doi.org/10.3390/app12115415
http://doi.org/10.3390/app12010393
http://doi.org/10.1016/S0736-5845(02)00005-4
http://doi.org/10.1016/j.jmatprotec.2005.04.123
http://doi.org/10.1016/j.eswa.2010.11.041
http://doi.org/10.1016/j.eswa.2012.01.058

Appl. Sci. 2022, 12, 7739 19 of 19

14. Moganapriya, C.; Rajasekar, R.; Ponappa, K.; Venkatesh, R.; Jerome, S. Influence of coating material and cutting parameters on
surface roughness and material removal rate in turning process using Taguchi method. Mater. Today Proc. 2018, 5, 8532–8538.
[CrossRef]

15. Kolarik, M.; Burget, R.; Riha, K. Comparing normalization methods for limited batch size segmentation neural networks. In
Proceedings of the 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), Milan, Italy, 7–9
July 2020. [CrossRef]

16. Ko, A.H.R.; Cavalin, P.R.; Sabourin, R.; de Souza Britto, A. Leave-one-out-training and leave-one-out-testing hidden Markov
models for a handwritten numeral recognizer: The implications of a single classifier and multiple classifications. IEEE Trans.
Pattern Anal. Mach. Intell. 2009, 31, 2168–2178. [CrossRef] [PubMed]

17. Prihatno, A.T.; Nurcahyanto, H.; Jang, Y.M. Predictive maintenance of relative humidity using random forest method. In Pro-
ceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island,
Korea, 13–16 April 2021. [CrossRef]

18. Zhang, K.; Gu, C.; Zhu, Y.; Chen, S.; Dai, B.; Li, Y.; Shu, X. A novel seepage behavior prediction and lag process identification
method for concrete dams using HGWO-XGBoost model. IEEE Access 2021, 9, 23311–23325. [CrossRef]

19. Patil, S.; Kulkarni, U. Accuracy prediction for distributed decision tree using machine learning approach. In Proceedings of
the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019.
[CrossRef]

20. Branco, P.; Torgo, L.; Ribeiro, R.P. SMOGN: A pre-processing approach for imbalanced regression. In Proceedings of the First
International Workshop on Learning with Imbalanced Domains: Theory and Applications, Skopje, Macedonia, 22 September 2017.

21. Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Deventer, W.V.; Horan, B.; Stojcevski, A. Forecasting of
photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [CrossRef]

22. Shin, Y.; Kim, Z.; Yu, J.; Kim, G.; Hwang, S. Development of NOx reduction system utilizing artificial neural network (ANN) and
genetic algorithm (GA). J. Clean. Prod. 2019, 232, 1418–1429. [CrossRef]

23. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst.
Appl. 2012, 166, 113917. [CrossRef]

24. Sharif, M.; Amin, J.; Raza, M.; Yasmin, M.; Satapathy, S.C. An integrated design of particle swarm optimization (PSO) with fusion
of features for detection of brain tumor. Pattern Recognit. Lett. 2020, 129, 150–157. [CrossRef]

25. Yang, X.; Jiao, Q.; Liu, X. Center particle swarm optimization algorithm. In Proceedings of the 2019 IEEE 3rd Information
Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 March 2019. [CrossRef]

http://doi.org/10.1016/j.matpr.2017.11.550
http://doi.org/10.1109/TSP49548.2020.9163397
http://doi.org/10.1109/TPAMI.2008.254
http://www.ncbi.nlm.nih.gov/pubmed/19834139
http://doi.org/10.1109/ICAIIC51459.2021.9415213
http://doi.org/10.1109/ACCESS.2021.3056588
http://doi.org/10.1109/ICOEI.2019.8862580
http://doi.org/10.1016/j.rser.2017.08.017
http://doi.org/10.1016/j.jclepro.2019.05.276
http://doi.org/10.1016/j.eswa.2020.113917
http://doi.org/10.1016/j.patrec.2019.11.017
http://doi.org/10.1109/ITNEC.2019.8729510

	Introduction
	System Architecture
	Proposed Method
	Random Forest
	XGBoost
	Decision Tree
	Oversampling
	Model Optimization

	Experimental Results
	Performances of Different ML Models
	Confirmation Experiments for the Prediction of the SMOGN-CPSO-XGB Model

	Conclusions
	References

