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Abstract: Image captioning is a popular topic in the domains of computer vision and natural language
processing (NLP). Recent advancements in deep learning (DL) models have enabled the improvement
of the overall performance of the image captioning approach. This study develops a metaheuristic
optimization with a deep learning-enabled automated image captioning technique (MODLE-AICT).
The proposed MODLE-AICT model focuses on the generation of effective captions to the input
images by using two processes involving encoding unit and decoding unit. Initially, at the encoding
part, the salp swarm algorithm (SSA), with a HybridNet model, is utilized to generate effectual
input image representation using fixed-length vectors, showing the novelty of the work. Moreover,
the decoding part includes a bidirectional gated recurrent unit (BiGRU) model used to generate
descriptive sentences. The inclusion of an SSA-based hyperparameter optimizer helps in attaining
effectual performance. For inspecting the enhanced performance of the MODLE-AICT model, a series
of simulations were carried out, and the results are examined under several aspects. The experimental
values suggested the betterment of the MODLE-AICT model over recent approaches.

Keywords: image captioning; natural language processing; deep learning; machine learning; metaheuristics

1. Introduction

Presently, a significant number of images have been produced from many origins
such as advertisements, the internet, document diagrams, and news articles. Such origins
have images which viewers should analyze themselves [1]. Many images do not contain
descriptions; however, human beings can mostly understand them without having any
detailed captions. However, machinery should make an interpretation in certain forms of
image captions whenever human beings require automated image captions from it. Image
captioning is considered significant on numerous grounds [2]. For instance, it is utilized
for automated image indexing. Image indexing plays a vital role in content-based image
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retrieval (CBIR), and thus is implemented in numerous areas involving digital libraries,
biomedicine, the military, education, web searching, and commerce. Mass media platforms
such as Twitter and Facebook could straight away produce descriptions from images [3].
The descriptions might involve places (e.g., beach, cafe), things that are worn, and, most
significantly, the activities that are taking place.

Image captioning basically involves natural language processing (NLP) and computer
vision. Computer vision is helpful in recognizing and understanding the situation in an
image [4]; NLP transforms semantic knowledge into a descriptive line. Retrieval of the
semantic matter of an image and communicating it in a structure which human beings
can understand becomes extremely complex. The complete image captioning method not
only gives information, but it also further reveals the connection among the substances [5].
Image captioning consists of numerous applications—for example, as an aid advanced
for guiding the person having visual disabilities while traveling alone [6]. This is made
possible by changing the scenario into text and transforming the text into voice messages.
Image captioning is also utilizes mass communication for the automatic generation of the
caption for an image which is posted or to explain a video [7,8]. Moreover, automated
image captioning might enhance the Google image search method by changing the image
to a caption and, after, by utilizing the keywords for additional related searches [9].

Image realization mostly relies on acquiring image features. The methods utilized
for understanding the image of two categories are deep machine learning (ML)-related
methods and old machine learning-related methods (2). In conventional ML, handcrafted
features, namely the histogram of oriented gradients (HOG), local binary patterns (LBPs),
and scale-invariant feature transform (SIFT), and a grouping of these features, were broadly
utilized. In such methods, features have been derived from the input unit [10]. They
were passed afterward to a classifier such as support vector machines (SVMs) for article
classification. Furthermore, real-world data such as video and images become complicated
and contain diverse semantic interpretations [11]. Conversely, in ML-related methods,
features were studied automatically from training data, and they could manage a big and
varied set of videos and images. For instance, convolutional neural networks (CNNs) were
broadly employed for feature learning, and a classifier such as Softmax can be utilized
for categorization. CNN can be usually tracked by recurrent neural networks (RNNs) for
generating captions [12].

This study develops a metaheuristic optimization with a deep learning-enabled auto-
mated image captioning technique (MODLE-AICT). The proposed MODLE-AICT model
aims for the generation of effective captions to the input images by using two processes
involving an encoding unit and a decoding unit. At the encoding part, the salp swarm
algorithm (SSA) with a HybridNet model is utilized to generate effectual input image
representation using fixed-length vectors. Then, the decoding part includes a bidirectional
gated recurrent unit (BiGRU) model to generate descriptive sentences. For examining the
enhanced performance of the MODLE-AICT model, a series of simulations were carried
out, and the results are examined under several aspects.

2. Prior Image Captioning Techniques

In Zhao et al. [13], a fine-grained, structured attention-related technique was suggested
when using the structural features of semantic matters in high-resolution distant sensing
images. The segmentation is mutually trained with captioning in a unified outline with no
need for pixel-wise annotations. Hoxha et al. [14] provide an RSIR technique which mainly
focuses on exploiting and producing written descriptions to precisely define the relations
among the matters and their features in RS images including captions (e.g., sentences).
The initial level focuses to encrypt the image’s visual characteristics and later convert the
encrypted features to a textual description which sums up the image content-containing
captions. The next level focuses on converting the produced textual descriptions as to
semantically useful feature vectors. Lastly, estimating the likeness among the textual
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descriptions’ vectors of query images with that of archive images restores images of high
likeness to the query image.

Wang et al. [15] suggested an end wise trainable deep bidirectional LSTM (Bi-LSTM)
method for addressing the issue. With the combination of two separate LSTM networks and a
deep CNN (DCNN), this methodology can learn long-term visual–language interactions with
the help of future and historical context data at a high level semantic area. In Chang et al. [16],
an advanced image captioning method—with image captioning, object detection, and color
analysis—was suggested for the automated generation of the textual descriptions of images.
In an encrypted–decrypted method for image captioning, VGG16 can be utilized as an
encoder and an LSTM network and can be employed as a decoder.

Xiong et al. [17] recommend a hierarchical transformer-related medical imaging report
generation technique. This presented technique has two parts: one is ann image encoder
that extracts heuristic visual features through a bottom-up attention algorithm; the other
is a non-recurrent captioning decoding technique that enhances computational efficacy
through parallel computation. Wang et al. [18] suggested an original methodology to
indirectly design the association between areas of interest in an image by a graph NN
along with the original context-aware attention system for guiding attention selection by
completely memorizing formerly attended visual contents.

In Al-Malla et al. [19], the authors introduced a new method to apply the Generative
Adversarial Network into sequence generation. The greedy decoding method is utilized for
generating an effective baseline reward for self-critical training. The visual and semantic
relationship of diverse objects are combined into local-relation attention. The authors in [20]
developed an attention-based encoder–decoder deep model which utilizes convolutional
features derived from a CNN model that is pre-trained on ImageNet (Xception) along
with the object features derived by the YOLOv4 model, pre-trained on MS COCO. The
authors also introduced a novel positional encoding scheme for object features, termed the
“importance factor”.

3. The Proposed Model

In this study, a new MODLE-AICT technique has been developed for the generation
of effective captions to the input images by using two processes involving an encoding
unit and a decoding unit. Primarily, at the encoding part, the SSA with a HybridNet model
is utilized to generate effectual input image representation using fixed-length vectors. In
addition, the decoding part includes a BiGRU model that is used to generate descriptive
sentences. Figure 1 show cases of the block diagram of the MODLE-AICT algorithm.

3.1. Data Pre-Processing

At the preliminary level, data pre-processing is performed in different stages as given
below.

• Lower case conversion;
• Removal of punctuation marks to decrease complexity;
• Removal of numeric values;
• Tokenization;
• Vectorization (to turn the original strings into integer sequences where each integer

represents the index of a word in a vocabulary).

3.2. Feature Extraction: HybridNet Model

In this work, the HybridNet model is utilized for generating visual features of the input
images. Generally, classification requires intra-class, in-variant features, while reconstruc-
tion requires the preservation of each dataset. In order to overcome these shortcomings,
HybridNet includes the unsupervised path (Eu and Du) and the discriminative path (Ec
and Dc). These two Eu and Ec encoders take an x input image and generate hc and hu
representations, whereas decoders Dc and Du take hc and hu, respectively, as an input to
generate x̂ and x̂ partial reconstructions. At last, the C classifier produces a class prediction
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by means of a discriminative feature: ŷ = C(hc). Although both paths may have analogous
architecture, they have to perform complementary and different roles. The discriminative
path needs to extract hc discriminative feature that must be ultimately well crafted to
effectively execute a classifier task and produce a x̂c partial reconstruction that should not
be accurate; meanwhile, retaining each dataset is not a behavior that we want to inspire [21].
As a result, the role of unsupervised paths is complementary to the discriminative path
through p in hu the data lost in hc. Consequently, it produces x̂ complementary reconstruc-
tion, while, integrating x̂ and x, the last reconstruction x̂ is closer to x. The architecture of
HybridNet is formulated by using the below expression:

hc = Ec(x) x̂c = Dc(hc) ŷ = C(hc)

hu = Eu(x) x̂u = Du(hu) x̂ = x̂c + x̂u
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It should be noted that the ultimate role of reconstruction is to regularize for the
discriminative encoding. The major contribution and challenge of the study is to establish
a method to guarantee that both paths would actually perform in such way.

The two major problems that we address are the discriminative path to emphasize
discriminative features and the fact that we need these two paths to contribute and co-
operate to the reconstruction. In fact, with this framework, we might create two paths
that work individually: a reconstruction path x̂ = x̂u = D(E(x)) and a classification path
ŷ = C(E(x)) and x̂c = 0. We resolve the issue by using the encoder and decoder architecture
along with a proper training and loss function. The HybridNet model has two data paths,
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with one generating a class prediction and both generating partial reconstruction that needs
to be integrated. In these subsections, we resolve the problem of training this structural
design proficiently. It encompasses terms for stability with Ωstability; classification with Lcls;
last reconstruction with Lrec; and intermediate reconstruction with Lrec−interb,l (for layer l
and branch b).

Moreover, it is followed by a branch complementarity training model. All the terms
are weighted through a λ variable, respectively:

L = λcLcls + λrLrec + ∑
bε{c,u},l

λrb,lLrec−interb,l + λsΩstability (1)

HybridNet architecture is trained on partially labelled data comprised of unlabeled
images Dunsup =

{
x(k)

}
k=1..Nu

and labelled pairs D sup =
{(

x(k), y(k)
)}

k=1..Ns
. All the

batches are comprised of n instances, separated into unlabeled images nu from Dunsup
and labelled images ns from D sup . The classification term is a regular cross-entropy term
employed only on the ns-labelled instance, as follows:

`cls = `CE(ŷ, y) = −∑
i

yilog ŷ,Lcls =
1
ns

∑
k
`cls

(
ŷ(k), y(k)

)
(2)

3.3. Hyperparameter Optimization

In order to effectually tune the hyperparameters related to the HybirdNet model,
the SSA is exploited. To resolve optimization problems, motion behavior of SSA can be
mathematically modelled [22]. Salps are sea creatures that have barrel-shaped, jelly-like
bodies and move from place to place by driving water through their bodies from one
side to the other sides. They exist as colonies and travel together like chains. Leader and
follower are the two most important classes of salps. Leaders lead the chain in a forwarding
direction, while followers follow the leader synchronously and in harmony. Similar to a
swarm intelligent model, SSA begins with an arbitrary initialization of the swarm of N
salps. Variable n is considered to be measured, x symbolizes the position of salp, and y
defines the food source-specifying objective of swarm in searching region. Leader salp
describes their position by the subsequent formula:

xi1 =

{
yi + r1((ubi − lbi)r2 + lbi), r3 ≥ 0,
yi − r1((ubi − lbi)r2 + lbi), r3 < 0,

(3)

In Equation (3), in i-th parameter, xi1 —position of initial salp; yi—position of food. ubi
and lbi—upper and lower bounds, and r1,r2,r3—arbitrary number.

Among three arbitrary numbers, r1 inhabits the lead position because it balances
exploitation and exploration at the time of searching process. It can be formulated as
follows:

r1 = 2e(
4I
L
)

2
(4)

In Equation (4), l shows existing iteration; L—the formerly determined amount of
iterations; r2,r3—arbitrary integer lies within [0, 1]. To update the location according to
Newton’s law of motion, the following mathematical expressions are utilized for followers:

X j
l = 0.5λt2 + δ0t (5)

where ≥ 2,xj
l—position of j-th salp in i-th parameter, t—time, δ0—initial speed.

λ =
δ f ιnal

δ0
, where δ =

x− x0

r
(6)
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Assume that δ0 = 0, t—iteration in an optimization issue; the abovementioned formula
is transformed into succeeding expression:

xj
l = 0.5

(
xj

l + xj−1
l

)
(7)

In Equation (7), j ≥ 2. This equation demonstrates that follower salps describe the
position according to the preceding salps and their own position. When some salps escape
from the restricted searching space, they are carried back within the limitation as follows:

X j
l =


l j i f xj

ι ≤ l j

uj i f
X j

l
≥ uj

χ
j
l otherwise

(8)

The abovementioned expression is repeatedly executed until the ending condition is
met. Note that the food source is sometimes upgraded by exploring and exploiting space
around an existing solution, which might determine the best solution. Salp chains, during
optimization, have the capacity to move toward global optimum solutions as illustrated in
Algorithm 1.

Algorithm 1 Pseudocode of SSA

1: Input: maximum iterations L, population size m, ub, lb, l = I
2: Initialization of salp position {u1, u2, u3, . . . . . . . . . , um}
3: While (stopping criteria is not fulfilled)
4: Determine fitness of all salps
5: Arrange salp position based on fitness value
6: Define F as optimal place for present population
7: Upgrade Cl
8: For every salp position (ui)
9: If (i ≤ m/2) upgrades the position of leading salps
10: Else upgrade the position of follower salp
11: end
12: end
13: Change the salp which crosses higher and lower limits
14: end
15: Display optimum output

3.4. Image Captioning

In this study, the decoding part includes the BiGRU model to generate descriptive
sentences. A recurrent neural network (RNN) has been successfully used to handle data
sequences in different areas [23]. In RNN, the input sequence = (x1, . . . , xT), hidden vector
sequence h = (h1, . . . , hT), and output vector sequence y = (y1, . . . , yT) are derived by
the given equations:

hτ = Φ(Uxt + WWhτ−1 + b) (9)

yt = Vht + c (10)

Let Φ be the activation function, and the popular activation function is generally an
element-wise application of the sigmoid function. U refers to the input-hidden weight
matrixes, W stands for the hidden-hidden weight matrixes, and, in Equation (10), b denotes
the hidden bias vector, V signifies the hidden-output weight matrixes, and c denotes the
output bias vector. It is nearly impossible to capture the long-term dependency of RNN,
as the gradient tends to explode or vanish. Therefore, some research workers have made
every effort to develop a more complex activation function to resolve the shortcomings.
For instance, the LSTM unit is initially proposed for capturing the long-term dependency.
In recent years, other variants of the recurrent unit, such as GRU, is also devised, which are
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easier to calculate and have good performance of generalization compared to that of the
LSTM unit. Figure 2 depicts the framework of GRU.
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LSTM makes use of an output gate for controlling the exposure of the quantity of
memory content.

ht = ottanh(ct) (11)

In Equation (11), the output gate is represented as ot and is calculated as follows:

0t = σ(W0 · [ht−1, xt, cl ] + b0) (12)

In Equation (12), the logistic function is indicated as σ. The memory cell ct is preserved
by adding some new memories and eliminating (forgetting) current memories:

ct = ftct−1 + iτ c̃ + bc (13)

The c̃t new memories are given by:

c̃ = tanh(Wc · [ht−1, xt]) (14)

The extent to add and remove memories can be controlled by the input gate it and the
forget gate ft. The forget gate can be calculated by the following equation:

ft = σ
(

W f · [ht−1, xt, ct−1] + b f

)
(15)

and it is calculated as follows:

it = σ(Wi · [ht−1, xt, ct−1] + bi) (16)

From the equation, the corresponding bias vector is indicated as b. As with the LSTM
unit, GRU uses the gate for controlling the data stream inside a unit; however, there is no
memory cell. The hr hidden state is a linear integration of new hidden states h̃t and the
preceding hidden state ht−1:

ht = (1− zt)ht−1 + zt h̃t (17)

In Equation (17), the update gate zt controls how much its new activation is upgraded.
It is calculated as follows:

zt = σ(Wz · [ht−1, xt]) (18)

The h̃t new activation is calculated as follows:
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h̃ = tanh(Wh · [rt � ht−1, xt]) (19)

In Equation (19), the forget gate rt is the same as the update unit in LSTM:

rl = σ(Wr · [ht−1, xt]) (20)

While typical RNN exploits the preceding data, the bi-directional RNN (BRNN) pro-
cesses information in two directions. The y output of BRNN is attained by measuring the
→
hr forward hidden sequence and

←
ht backward sequence as follows:

→
h t = Φ

(
WW

χ
→
h

xt + W→
h
→
h

→
h t−1 + b→

h

)
(21)

←
ht = Φ

(
W

x
←
h

xtxh + W←
h
←
h

←
h t−1 + b←

h

)
(22)

yt = W→
h y

→
h t + W←

h y

←
h t−1 + by (23)

Integrating BRNN with GRU provides BIGRU that is utilized for accessing the long-
term data sequence in two directions. As a fault, a diagnoses issue can be generally regarded
as a classification issue, and cross entropy is adapted as the loss function. The weighted
cross entropy is represented as:

f (θ) = −
N

∑
n=1

wn

M

∑
i=1

yi1og(ŷi) (24)

In Equation (24), θ indicates the neural network parameter, N represents the sample
count, the number of faults is represented as M, and the true label can be indicated as yi
and the predicted probability is represented as ŷi.

4. Performance Validation

The experimental validation of the MODLE-AICT model is tested using the Flick8K
dataset (https://www.kaggle.com/adityajn105/flickr8k/activity, accessed on 13 March
2022) and MS-COCO 2014 dataset [24]. A comparison study is also made with recent
models [25–31]. A few sample images are depicted in Table 1. It contains 8000 images that
are each paired with five different captions which provide clear descriptions of the salient
entities and events.

4.1. Performance Measures

To validate the performance of the presented model, a set of four metrices are utilized,
such as BLEU, Meter, CIDEr, and Rouge-L. BLEU [25], a commonly utilized metric for
estimating the quality of the produced text. For an effectual image captioning outcome,
BLEU values are required to be high, and it is defined using Equation (25):

BP = min
(

1, e1− r
c

)
BLEUN = BP× e

1
N

N
∑

n=1
logpn

(25)

where BP denotes penalty factor, r and c represent length of the reference and generated
sentences, respectively. METEOR metric relies on word recall rate and single precision
weighted harmonic mean. It computes the reconciliation mean of accuracy and recalls
amongst the optimum candidate and reference translations. It is defined as follows:

METEOR = (1− Pen)Fmean (26)

where α, γ, and θ denotes default parameters.

https://www.kaggle.com/adityajn105/flickr8k/activity
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Table 1. Sample Images and its captions.

Sample Image Different Captions
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The CIDEr index assumes each sentence as a “document” and represents in the form
of a TF-IDF vector. It computes the cosine similarity amongst the created caption

(
sij
)

and
original caption by the use of a score value.

CIDErn(ci, Si) =
1
m ∑

j

gn(ci)
T gn(sij

)
‖gn(ci)‖ × ‖gn

(
sij
)
‖

(27)

ROUGE is another similarity measurement model that is mainly based on the recall
rate. It determines the co-occurrence probability of N-gram in the reference translation and
the translation to be investigated. It is defined using Equation (28).

ROUGE− N =
∑S∈{Re f erencesSummaries} ∑gramn∈S Countmatch(gramn)

∑S∈{Re f erencesSummaries} ∑gramn∈S Count(gramn)
(28)

4.2. Result Analysis

Table 2 and Figure 3 inspect a detailed result analysis of the MODLE-AICT model
on the test Flickr8K dataset [23–28]. The results implied that the MODLE-AICT model
has gained effectual outcomes over other models. For instance, based on BLEU-1, the
MODLE-AICT model obtained a higher BLEU-1 of 69.06, whereas the M-RNN, G-NICG,
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L-Bilinear, DVS, ResNet50, VGA-16, and HPTDL models attained a lower BLEU-1 of 59.18,
64.13, 65.96, 58.35, 62.65, 67.69, and 68.26, respectively. At the same time, based on BLEU-4,
the MODLE-AICT technique has attained a higher BLEU-4 of 27.80, whereas the M-RNN,
G-NICG, L-Bilinear, DVS, ResNet50, VGA-16, and HPTDL methods have acquired a lower
BLEU-4 of 14.19, 16.12, 18.49, 17.08, 26.16, 23.25, and 26.71, correspondingly.

Table 2. Result analysis of MODLE-AICT algorithm with approaches on Flickr8K dataset.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4

M-RNN Model [24] 59.18 29.09 24.17 14.19
G-NICG Model [26] 64.13 42.64 27.11 16.12
L-Bilinear Model [27] 65.96 43.29 28.63 18.49
DVS Model [28] 58.35 37.98 25.54 17.08
ResNet50 Model [23] 62.65 46.28 37.26 26.16
VGA-16 Model [23] 67.69 44.34 33.99 23.25
HPTDL Model [25] 68.26 46.16 37.81 26.71
MODLE-AICT 69.06 47.26 38.78 27.80

Table 3 and Figure 4 examine a detailed classification analysis of the MODLE-AICT
system on the test Flickr8K dataset. The results implied that the MODLE-AICT technique
has attained effectual outcomes over other models. For example, based on METEOR,
the MODLE-AICT approach has gained higher METEOR of 30, whereas the SCST-IN,
SCST-ALL, G-NIC, A-NIC, DenseNet, and HPTDL methodologies have obtained a lower
METEOR of 20, 23, 19, 21, 25, and 28, correspondingly. Meanwhile, based on Rouge-L, the
MODLE-AICT approach has received a higher Rouge-L of 53, whereas the SCST-IN, SCST-
ALL, G-NIC, A-NIC, DenseNet, and HPTDL algorithms have attained a lower Rouge-L of
49, 42, 43, 48, 43, and 46, correspondingly.

Table 3. Classification analysis of MODLE-AICT algorithm with approaches on Flickr8K dataset.

Methods METEOR CIDEr Rouge-L

SCST-IN Model [29] 20.00 161.00 49.00
SCST-ALL Model [29] 23.00 154.00 42.00
G-NIC Model [26] 19.00 153.00 43.00
A-NIC Model [26] 21.00 160.00 48.00
DenseNet Model [24] 25.00 173.00 43.00
HPTDL Model [25] 28.00 175.00 46.00
MODLE-AICT 30.00 179.00 53.00

A comparison study of the MODLE-AICT model with recent models on the Flickr8K
dataset is shown in Figure 5. The figure implied that the SCST-IN and SCST-ALL models
have obtained lower performance than other models. This was followed by the G-NIC,
A-NIC, and DenseNet models, which attained moderately closer results. Along with that,
the HPTDL model accomplished a reasonable performance. However, the MODLE-AICT
model has shown enhanced performance over other models on the test Flickr8K dataset.

The training accuracy (TA) and validation accuracy (VA) attained by the MODLE-
AICT approach on the Flickr8K dataset is demonstrated in Figure 6. The experimental
outcome implied that the MODLE-AICT technique has gained maximum values of TA and
VA. Specifically, the VA seemed to be higher than TA.

The training loss (TL) and validation loss (VL) achieved by the MODLE-AICT method-
ology on the Flickr8K dataset are established in Figure 7. The experimental outcome
inferred that the MODLE-AICT system accomplished the lowest values of TL and VL.
Specifically, the VL seemed to be lower than TL.

Table 4 and Figure 8 depict the detailed results of the analysis of the MODLE-AICT
system on the test MS-COCO 2014 dataset. The results implied that the MODLE-AICT
approach obtained effectual outcomes over other models. For instance, based on BLEU-1,
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the MODLE-AICT method gained a higher BLEU-1 of 75.12, whereas the M-RNN, G-NICG,
L-Bilinear, DVS, ResNet50, VGA-16, and HPTDL methodologies received a lower BLEU-1
of 49.60, 67.92, 71.75, 63.86, 73.57, 70.30, and 74.28, correspondingly. Nonetheless, based on
BLEU-4, the MODLE-AICT technique has gained a higher BLEU-4 of 34.75, whereas the M-
RNN, G-NICG, L-Bilinear, DVS, ResNet50, VGA-16, and HPTDL methodologies acquired a
lower BLEU-4 of 10.95, 24.94, 24.35, 23.29, 32.52, 30.06, and 33.96, correspondingly.
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Table 4. Result analysis of MODLE-AICT algorithm with approaches on MS-COCO 2014 dataset.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4

KNN Model [25] 49.60 28.60 17.00 10.95
G-NICG Model [26] 67.92 46.23 34.03 24.94
L-Bilinear Model [27] 71.75 49.22 34.65 24.35
DVS Model [28] 63.86 44.98 32.58 23.29
ResNet50 Model [23] 73.57 57.21 42.05 32.52
VGA16 Model 70.30 53.72 40.45 30.06
VGA-16 Model [23] 74.28 59.39 43.33 33.96
HPTDL Model [25] 75.12 60.21 44.22 34.75

Table 5 and Figure 9 review a detailed classification analysis of the MODLE-AICT
system on the test MS-COCO 2014 dataset. The results implied that the MODLE-AICT
methodology acquired effectual outcomes over other models. For instance, based on ME-
TEOR, the MODLE-AICT methods have obtained a higher METEOR score of 37, whereas
the SCST-IN, SCST-ALL, G-NIC, A-NIC, DenseNet, and HPTDL approaches have attained
a lower METEOR score of 22, 25, 21, 24, 24, and 34, correspondingly. Meanwhile, based
on Rouge-L, the MODLE-AICT technique acquired a higher Rouge-L of 63, whereas the
SCST-IN, SCST-ALL, G-NIC, A-NIC, DenseNet, and HPTDL algorithms acquired a lower
Rouge-L of 51, 59, 51, 58, 57, and 60, correspondingly.

A comparison study of the MODLE-AICT technique with recent models on the MS-
COCO 2014 dataset is shown in Figure 10. The figure implied that the SCST-IN and SCST-
ALL methodologies acquired a lower performance than the other models. Then, the G-NIC,
A-NIC, and DenseNet approaches have gained moderately closer results. Moreover, the
HPTDL approach has tried to accomplish reasonable performance. However, the MODLE-
AICT system has shown an enhanced performance over other models on the test MS-COCO
2014 dataset.
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The TA and VA attained by the MODLE-AICT technique on the MS-COCO 2014
dataset are demonstrated in Figure 11. The experimental outcome implied that the MODLE-
AICT method has gained maximum values of TA and VA. Specifically, the VA seemed to be
higher than TA.

Table 5. Classification analysis of MODLE-AICT algorithm with approaches to MS-COCO 2014
dataset.

Methods METEOR CIDEr Rouge-L

SCST-IN Model [29] 22.00 109.00 51.00
SCST-ALL Model [29] 25.00 114.00 59.00
G-NIC Model [26] 21.00 111.00 51.00
A-NIC Model [26] 24.00 110.00 58.00
DenseNet Model [24] 24.00 122.00 57.00
HPTDL Model [25] 34.00 125.00 60.00
MODLE-AICT 37.00 129.00 63.00
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The TL and VL achieved by the MODLE-AICT approach on the MS-COCO 2014
dataset are established in Figure 12. The experimental outcome inferred that the MODLE-
AICT methodology has accomplished least values of TL and VL. Specifically, the VL seemed
to be lower than TL. From the detailed results and discussion, it is assured that the proposed
model has shown effective outcomes on the image captioning process.
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5. Conclusions

In this study, a novel MODLE-AICT technique was developed for the generation
of effective captions to inputted images using two processes involving an encoding unit
and a decoding unit. Primarily, at the encoding part, the SSA with a HybridNet model
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is utilized to generate effectual input image representation using fixed-length vectors.
In addition, the decoding part includes a BiGRU model used to generate descriptive
sentences. The inclusion of an SSA-based hyperparameter optimizer helps in attaining
effectual performance. For inspecting the enhanced performance of the MODLE-AICT
model, a series of simulations are carried out, and the results are examined under several
aspects. The experimental values implied the betterment of the MODLE-AICT model over
recent approaches. Thus, the presented MODLE-AICT technique can be exploited as an
effectual approach for image captioning. In future, ensemble DL-based fusion models can
be designed to enhance the performance.

Author Contributions: Conceptualization, M.A.D. and H.A.M.; methodology, S.A.; software, R.M.;
validation, J.S.A., H.M. and F.A.; formal analysis, A.S.S.; investigation, R.M.; resources, M.A.D.;
data curation, R.M.; writing—original draft preparation, H.A.M., S.A. and J.S.A.; writing—review
and editing, M.A.D. and R.M.; visualization, F.A.; supervision, M.A.D.; project administration,
S.A.; funding acquisition, H.A.M. All authors have read and agreed to the published version of the
manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at King Khalid
University for funding this work through Large Groups Project under grant number (46/43). Princess
Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R114),
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors would like to
thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by
Grant Code: (22UQU4340237DSR33).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable to this article as no datasets were generated
during the current study.

Conflicts of Interest: The authors declare that they have no conflict of interest. The manuscript was
written through contributions of all authors. All authors have given approval to the final version of
the manuscript.

References
1. Hossain, M.Z.; Sohel, F.; Shiratuddin, M.F.; Laga, H. A comprehensive survey of deep learning for image captioning. ACM

Comput. Surv. (CsUR) 2019, 51, 1–36. [CrossRef]
2. Sharma, H.; Agrahari, M.; Singh, S.K.; Firoj, M.; Mishra, R.K. Image captioning: A comprehensive survey. In Proceedings of the

2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura,
India, 28–29 February 2020; pp. 325–328.

3. Stefanini, M.; Cornia, M.; Baraldi, L.; Cascianelli, S.; Fiameni, G.; Cucchiara, R. From show to tell: A survey on deep learning-based
image captioning. IEEE Trans. Pattern Anal. Mach. Intell. 2022. [CrossRef] [PubMed]

4. Oluwasammi, A.; Aftab, M.U.; Qin, Z.; Ngo, S.T.; Doan, T.V.; Nguyen, S.B.; Nguyen, S.H.; Nguyen, G.H. Features to text:
A comprehensive survey of deep learning on semantic segmentation and image captioning. Complexity 2021, 2021, 5538927.
[CrossRef]

5. Wan, B.; Jiang, W.; Fang, Y.M.; Zhu, M.; Li, Q.; Liu, Y. Revisiting image captioning via maximum discrepancy competition. Pattern
Recognit. 2022, 122, 108358. [CrossRef]

6. Anwer, H.; Hadeel, A.; Fahd, N.; Mohamed, K.; Abdelwahed, M.; Ani, K.; Ishfaq, Y.; Abu Sarwar, Z. Fuzzy cognitive maps with
bird swarm intelligence optimization-based remote sensing image classification. Comput. Intell. Neurosci. 2022, 2022, 4063354.

7. Yao, T.; Pan, Y.; Li, Y.; Mei, T. Exploring visual relationship for image captioning. In Proceedings of the European Conference on
Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 684–699.

8. Abunadi, I.; Althobaiti, M.M.; Al-Wesabi, F.N.; Hilal, A.M.; Medani, M.; Hamza, M.A.; Rizwanullah, M.; Zamani, A.S. Federated
learning with blockchain assisted image classification for clustered UAV networks. Comput. Mater. Contin. 2022, 72, 1195–1212.
[CrossRef]

9. Huang, W.; Wang, Q.; Li, X. Denoising-based multiscale feature fusion for remote sensing image captioning. IEEE Geosci. Remote
Sens. Lett. 2020, 18, 436–440. [CrossRef]

10. Chohan, M.; Khan, A.; Mahar, M.S.; Hassan, S.; Ghafoor, A.; Khan, M. Image captioning using deep learning: A systematic
literature review. Int. J. Adv. Comput. Sci. Appl. 2020, 11. [CrossRef]

http://doi.org/10.1145/3295748
http://doi.org/10.1109/TPAMI.2022.3148210
http://www.ncbi.nlm.nih.gov/pubmed/35130142
http://doi.org/10.1155/2021/5538927
http://doi.org/10.1016/j.patcog.2021.108358
http://doi.org/10.32604/cmc.2022.025473
http://doi.org/10.1109/LGRS.2020.2980933
http://doi.org/10.14569/IJACSA.2020.0110537


Appl. Sci. 2022, 12, 7724 18 of 18

11. Xu, N.; Zhang, H.; Liu, A.A.; Nie, W.; Su, Y.; Nie, J.; Zhang, Y. Multi-level policy and reward-based deep reinforcement learning
framework for image captioning. IEEE Trans. Multimed. 2019, 22, 1372–1383. [CrossRef]

12. Lakshminarasimhan Srinivasan, D.S.; Amutha, A.L. Image captioning—A deep learning approach. Int. J. Appl. Eng. Res. 2018, 13,
7239–7242.

13. Zhao, R.; Shi, Z.; Zou, Z. High-resolution remote sensing image captioning based on structured attention. IEEE Trans. Geosci.
Remote Sens. 2021, 60, 1–14. [CrossRef]

14. Hoxha, G.; Melgani, F.; Demir, B. Toward remote sensing image retrieval under a deep image captioning perspective. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4462–4475. [CrossRef]

15. Wang, C.; Yang, H.; Meinel, C. Image captioning with deep bidirectional LSTMs and multi-task learning. ACM Trans. Multimed.
Comput. Commun. Appl. (TOMM) 2018, 14, 1–20. [CrossRef]

16. Chang, Y.H.; Chen, Y.J.; Huang, R.H.; Yu, Y.T. Enhanced Image Captioning with Color Recognition Using Deep Learning Methods.
Appl. Sci. 2021, 12, 209. [CrossRef]

17. Xiong, Y.; Du, B.; Yan, P. Reinforced transformer for medical image captioning. In International Workshop on Machine Learning in
Medical Imaging; Springer: Cham, Switzerland, 2019; pp. 673–680.

18. Chen, T.; Li, Z.; Wu, J.; Ma, H.; Su, B. Improving image captioning with Pyramid Attention and SC-GAN. Image Vis. Comput. 2022,
117, 104340. [CrossRef]

19. Al-Malla, M.A.; Jafar, A.; Ghneim, N. Image captioning model using attention and object features to mimic human image
understanding. J. Big Data 2022, 9, 1–16. [CrossRef]

20. Wang, S.; Ye, X.; Gu, Y.; Wang, J.; Meng, Y.; Tian, J.; Hou, B.; Jiao, L. Multi-label semantic feature fusion for remote sensing image
captioning. ISPRS J. Photogramm. Remote Sens. 2022, 184, 1–18. [CrossRef]

21. Robert, T.; Thome, N.; Cord, M. Hybridnet: Classification and reconstruction cooperation for semi-supervised learning. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 153–169.

22. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer
for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]

23. Liu, J.; Yang, Y.; Lv, S.; Wang, J.; Chen, H. Attention-based BiGRU-CNN for Chinese question classification. J. Ambient. Intell.
Humaniz. Comput. 2019, 1–12. [CrossRef]

24. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: Lessons learned from the 2015 MSCOCO image captioning challenge.
IEEE Trans. Pattern Anal. Mach. Int. 2017, 39, 652–663. [CrossRef]

25. Chu, Y.; Yue, X.; Yu, L.; Sergei, M.; Wang, Z. Automatic image captioning based on ResNet50 and LSTM with soft attention.
Wireless Communications and Mobile Computing. Wirel. Commun. Mob. Comput. 2020, 2020, 8909458. [CrossRef]

26. Wang, E.K.; Zhang, X.; Wang, F.; Wu, T.Y.; Chen, C.M. Multilayer dense attention model for image caption. IEEE Access 2019, 7,
66358–66368. [CrossRef]

27. Omri, M.; Abdel-Khalek, S.; Khalil, E.M.; Bouslimi, J.; Joshi, G.P. Modeling of Hyperparameter Tuned Deep Learning Model for
Automated Image Captioning. Mathematics 2022, 10, 288. [CrossRef]

28. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2–7.

29. Mnih, A.; Hinton, G. Three new graphical models for statistical language modelling. In Proceedings of the ICML ’07.: 24th
International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 641–648.

30. Karpathy, A.; Li, F. Deep Visual-Semantic Alignments for Generating Image Descriptions; Stanford University: Palo Alto, CA, USA,
2015.

31. Bujimalla, S.; Subedar, M.; Tickoo, O. B-SCST: Bayesian self-critical sequence training for image captioning. arXiv 2020,
arXiv:2004.02435.

http://doi.org/10.1109/TMM.2019.2941820
http://doi.org/10.1109/TGRS.2020.3042202
http://doi.org/10.1109/JSTARS.2020.3013818
http://doi.org/10.1145/3115432
http://doi.org/10.3390/app12010209
http://doi.org/10.1016/j.imavis.2021.104340
http://doi.org/10.1186/s40537-022-00571-w
http://doi.org/10.1016/j.isprsjprs.2021.11.020
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1007/s12652-019-01344-9
http://doi.org/10.1109/TPAMI.2016.2587640
http://doi.org/10.1155/2020/8909458
http://doi.org/10.1109/ACCESS.2019.2917771
http://doi.org/10.3390/math10030288

	Introduction 
	Prior Image Captioning Techniques 
	The Proposed Model 
	Data Pre-Processing 
	Feature Extraction: HybridNet Model 
	Hyperparameter Optimization 
	Image Captioning 

	Performance Validation 
	Performance Measures 
	Result Analysis 

	Conclusions 
	References

