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Abstract: We propose a multiple-image reconstruction scheme of a fast periodic moving/state-
changed object with a slow bucket detector based on compressive ghost imaging, named MIPO-CSGI.
To obtain N frames of an object with fast periodic moving/state-changed, N random speckle patterns
are generated in each cycle of the object, which are then used to illuminate the object one by one.
The total energy reflected from the object is recorded by a slow bucket detector at each cycle time T.
Each group with N random speckle patterns is programmed as one row of a random matrix, and
each row of the matrix element corresponds to one measurement of the slow bucket detector. Finally,
the compressive sensing algorithm is applied to the constructed matrix and bucket detector signals,
resulting in the direct acquisition of multiple images of the object. The feasibility of our method has
been demonstrated in both numerical simulations and experiments. Hence, even with a slow bucket
detector, MIPO-CSGI can image a fast periodic moving/state-changed object effectively.

Keywords: ghost imaging; compressive sensing; multiple-image; periodic moving object; periodic
state-changed object

1. Introduction

Ghost imaging (GI), also known as correlated imaging (CI), has been extensively
researched as a novel imaging method in recent years [1–5]. GI acquires object information
by utilizing two spatially correlated optical beams. One beam known as the object beam
crosses an object, and the reflected (or transmitted) signal is detected by a single-pixel
bucket detector. The other beam, known as the reference beam, never interacts with the
object and is detected by a spatially resolving detector. By calculating the correlation
between the two beams, the image of the object can be recovered, and neither of them can
restore the image of the object alone [6,7]. The demonstration of GI using entangled photons
was explained as a quantum phenomenon firstly [8,9]. Subsequently, pseudothermal light
sources and thermal light sources used in GI have also been proven effective [10–12]. Then,
as a variant of the standard two-detector pseudothermal GI, computational ghost imaging
(CGI), which simplifies the double optical paths to a single optical path and precomputes
the reference patterns, further enhances the application of GI [13–16].

Recently, several papers have been devoted to studying GI in imaging moving objects.
The condition of GI to imaging a moving object was firstly given by the second-order
correlation function through quasistatic approximation [17]. Later, it was proven that
Fourier-transform ghost diffraction has the ability to overcome the influence of the sys-
tem’s shaking [18]. Then, the methods to overcome the decline of GI resolution caused by
the tangential or axial movement of moving objects relative to the imaging system were
discussed [19,20]. Meanwhile, background-subtracted images of moving targets were recon-
structed by using compressive sensing (CS) and complementary modulation techniques [21].
By tracking the target position or motion trajectory captured by the under-sampled image,
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the moving object’s deblurred image can be gradually obtained [22,23]. With the prior
knowledge of the motion, a method of setting the object as static and inversely transform-
ing the illumination mode to image a moving object was proposed [24]. To compensate
for the limited rate of structured illumination, structured illumination based on the light-
emitting diode (LED) was designed to capture images of moving objects [25,26]. As CGI
requires a certain number of measurements in one image, to reconstruct the image of a
moving object with high quality, the object is always assumed to be relatively static during
the measurement period. From the above works, we can see that there are two ways to
improve the performance of imaging the moving object in CGI. One method is to design an
optimization algorithm to reduce the number of measurements during the relative static
period of the object as much as possible. Another way is to improve the performance of
the devices in CGI to produce more speckle patterns and enable more detection in a small
period. However, these schemes all need a high sampling bucket detector that performs
the detection of the relatively static object in each measurement. In our previous work,
we proposed a new scheme that uses a slow bucket detector to image an object with fast
periodic moving/state-changed [27]. However, more speckle patterns and measurement
times are required, resulting in an excessively long sampling time.

Since traditional GI uses random speckle patterns, the number of measurements
required to obtain a good reconstruction of an N-pixel image is much greater than N [28].
Subsequently, compressive ghost imaging (CSGI) was proposed to obtain better imaging
performance from fewer than N measurements by exploiting the sparsity of the object, at
the expense of computational time for the reconstruction [29,30].

In this paper, we propose a method that uses a slow bucket detector to image objects
with fast periodic moving/state-changes based on CSGI, and we call it MIPO-CSGI. In
MIPO-CSGI, when we want to obtain the N frames of a fast periodic moving/state-changed
object, we modulate N random speckle patterns in each cycle T of the object (the object
has a known cycle time T). Then, using N speckle patterns as a group, we illuminate the
periodic moving/state-changed object and collect the total intensity value reflected from
the object as one measurement through a slow bucket detector at each cycle time T. We
program each group of the speckle patterns as one row of a random matrix. As the object
moves or changes periodically, we will obtain a series of bucket detector values and one
random matrix. Finally, N frames of the object can be obtained directly by applying the
compressive sensing algorithm to the bucket detector signals and the programmed random
matrix. The advantage of this scheme is that even if the slow bucket detector is used,
any number of high-quality frames of fast periodic moving/state-changed objects can be
captured with fewer measurements.

2. Theory and Methods

The MIPO-CSGI schematic diagram is illustrated in Figure 1, which has a part to
achieve differential detector signals, a part to generate a random matrix, and a part to
reconstruct the images. In the achieving differential detector signals part, the light field is
modulated by a digital micro-mirror device (DMD) to produce pairs of random speckle
patterns. Each speckle pattern pair includes a speckle pattern Ik

i (x, y) and its inverse
pattern Ĩk

i (x, y), where, x = 1, 2, · · · , Nx, y = 1, 2, · · · , Ny, i is the ith number of the groups,
k represents the kth number of the speckle patterns in each group, and the speckle patterns
are either white 1 or black −1 for each coordinate (x,y). According to the differential
acquisition method [21,31], we set Ik

i (x, y) = − Ĩk
i (x, y).
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Figure 1. A schematic diagram of the MIPO-CSGI.

In traditional CGI, the sampling rate of the bucket detector is high or equal to the
frequency of the state switching of the object. When a slow bucket detector is used to obtain
N frames of the periodic moving/state-changed object, we need to produce N random
speckle patterns Ik

i (x, y), k = 1, 2, · · · , N as one group according to the cycle time T of the
object and use them to illuminate the object {T(x, y, k)}N

k=1, which is then measured by the
slow bucket detector and recorded as Bi:

Bi = η
∫∫∫

Ik
i (x, y)T(x, y, k)dxdydk + n, (1)

where η is the bucket detector’s responsivity, and n is the noise generated by environmental
illuminations. Similarly, corresponding to Ĩk

i (x, y), k = 1, 2, · · · , N, we can obtain the
detection result B̃i expressed as:

B̃i = η
∫∫∫

Ĩk
i (x, y)T(x, y, k)dxdydk + n. (2)

Thus, the differential detector signal4Bi between the two corresponding detection
results Bi and B̃i can be expressed as:

4Bi = Bi − B̃i

= η
∫∫∫

(Ik
i (x, y)− Ĩk

i (x, y))T(x, y, k)dxdydk

= η
∫∫∫

4Ik
i (x, y)T(x, y, k)dxdydk,

(3)

where 4Ik
i (x, y) = Ik

i (x, y)− Ĩk
i (x, y). It can be seen that the environmental noise can be

efficiently removed.
With M measurements, we will obtain M groups of random speckle patterns {Ik

i (x, y)}M
i=1

(k = 1, 2, · · · , N) and their corresponding bucket detector signals {Bi}M
i=1. Meanwhile,

M groups’ inverse patterns { Ĩk
i (x, y)}M

i=1(k = 1, 2, · · · , N) also correspond to M bucket
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detector signals {B̃i}M
i=1 and will be obtained by other M measurements. Therefore, we

will obtain M groups of differential speckle patterns {4Ik
i (x, y)}M

i=1(k = 1, 2, · · · , N) and
their corresponding differential bucket detector signals {4Bi}M

i=1.
In the generating random matrix part, each speckle pattern4Ik

i (x, y) can be reshaped
as a row vector Ik

i with size 1× K, where K = Nx × Ny:

Ik
i =

[
4Ik

i (1, 1) · · · 4Ik
i (1, Ny) 4Ik

i (2, 1) · · ·
4Ik

i (2, Ny) · · · 4Ik
i (Nx, 1) · · · 4Ik

i (Nx, Ny)
]
.

(4)

Each group with N speckle patterns4Ik
i (x, y) (k = 1, 2, · · · , N) can form a row vector

Ai, with size 1× P, where P = N × K:

Ai =
[
I1

i I2
i · · · IN

i ]

=
[
4I1

i (1, 1) · · · 4I1
i (Nx, Ny) 4I2

i (1, 1) · · ·
4I2

i (Nx, Ny) · · · 4IN
i (1, 1) · · · 4IN

i (Nx, Ny)
]
.

(5)

M groups’ differential speckle patterns {4Ik
i (x, y)}M

i=1(k = 1, 2, · · · , N) can construct
an M× P matrix R as:

R =


A1
A2
...

AM



=


4I1

1 (1, 1) 4I1
1 (1, 2) · · · 4IN

1 (Nx, Ny)
4I1

2 (1, 1) 4I1
2 (1, 2) · · · 4IN

2 (Nx, Ny)
...

...
. . .

...
4I1

M(1, 1) 4I1
M(1, 2) · · · 4IN

M(Nx, Ny)

.

(6)

Equation (3) can be expressed in a matrix form:
4B1
4B2

...
4BM

 = η


4I1

1 (1, 1) 4I1
1 (1, 2) · · · 4IN

1 (Nx, Ny)
4I1

2 (1, 1) 4I1
2 (1, 2) · · · 4IN

2 (Nx, Ny)
...

...
. . .

...
4I1

M(1, 1) 4I1
M(1, 2) · · · 4IN

M(Nx, Ny)




T(1, 1, 1)
T(1, 2, 1)

...
T(Nx, Ny, N)

, (7)

where TN =
[
T(1, 1, 1) T(1, 2, 1) · · · T(Nx, Ny, N)

]T is a P× 1 column vector repre-
senting the object’s transmission coefficient {T(x, y, k)}N

k=1.
In reconstructing the images part, to reduce the number of measurements, the CS

algorithm is used to reconstruct {T(x, y, k)}N
k=1. Here, we use the TVAL3 algorithm [32],

which has the advantage of reconstructing high-quality images with fewer measurements.
Therefore, the object’s N images {T̂(x, y, k)}N

k=1 can be reconstructed by:

min ∑
j
‖DjTN‖1 +

µ

2
‖B−RTN‖2

2, (8)

where B is a M × 1 column vector consisting of the M differential bucket detector sig-
nals {4Bi}M

i=1. DjTN denotes the discrete gradient of TN at element j(j = 1, 2, · · · , P),
∑j ‖DjTN‖ is the discrete total variation of TN , ‖ · ‖1 and ‖ · ‖2 stand for the l1 norm and l2
norm, respectively, µ is a coefficient used to balance data fidelity and regularization, and
here we set µ equal 212.
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3. Numerical Verification

In this section, numerical simulations are used to validate the effectiveness of MIPO-
CSGI. The image resolution of each target is set to 64 × 64. The simulations are carried out
on Matlab R2018a on the Windows 11 operating system. The hardware system is a laptop
with a 3.20 GHz central processor unit (AMD Ryzen 7 5800H) and 16.0 GB of random
access memory. Additionally, we use the peak signal-to-noise ratio (PSNR) as an objective
evaluation, as defined by the following definition [29,33]:

PSNR = 10 log10

 2552

1
Nx ·Ny

∑x,y(T̂(x, y)− T(x, y))2

, (9)

where T(x, y) and T̂(x, y) are the original and recovered image intensity values, respectively.
Nx and Ny represent the object’s horizontal and vertical dimensions. In general, the
higher the PSNR value, the higher the quality of the reconstructed image. Meanwhile, we
characterize the compressive sampling ratio by the parameter β = M/P, which is defined
as a ratio of the number of measurements M to the total pixels P of the multiple images.

We first perform numerical simulations by imaging the periodic moving object to
verify the feasibility of MIPO-CSGI. The MIPO-CSGI reconstruction results are compared to
those of CSGI using a fast bucket detector (F-CSGI) and CSGI using a slow bucket detector
(S-CSGI). In F-CSGI, the sampling rate of the fast bucket detector is high or equal to the
frequency of the state switching of the object, and each bucket detector value corresponds to
one speckle pattern acting on each state of the object. The sampling rate of the slow bucket
detectors in S-CSGI and MIPO-CSGI is slower, so they can only record the total energy of
each group of the speckle patterns acting on the object at each cycle time T. Assume the
original objects are two two-grayscale objects such as a jumping “square”, a moving “T”,
and an eight-grayscale moving “spacecraft”. Taking the jumping “square” as an example,
in order to obtain four frames of the object, we use the computer to simulate DMD to
produce four 64 × 64-resolution random speckle patterns in each cycle. The sampling
rate of the bucket detector used in F-CSGI is four times that in MIPO-CSGI and S-CSGI,
which also means that to get the same number of the bucket detector signals, the number
of speckle patterns and the optical measurements time in MIPO-CSGI and S-CSGI is four
times that of F-CSGI. Then, one by one, each speckle pattern is used to illuminate each
state of the periodic moving object. When β is set to 60.01%, each scheme will obtain 9,832
differential bucket detector signals. We will obtain a 9832 × 16,384-resolution random
matrix in MIPO-CSGI. As the reconstruction results are shown in Figure 2, four frames of
the “square” reconstructed by MIPO-CSGI and F-CSGI both have a high PSNR. Because
the fast bucket detector is fast at making enough measurements of each state of the moving
object, F-CSGI can reconstruct the images of the object with high quality. Although the slow
bucket detector cannot capture each state of the moving object, MIPO-CSGI programmed a
random matrix, constructed from four speckle patterns used in each cycle time T. MIPO-
CSGI makes the total energy value detected by the slow bucket detector in one cycle time
T equivalent to one measurement of the effect of a large speckle pattern composed of a
row of the constructed matrix on a large static image composed of each state of a moving
object. With a certain amount of measurements, MIPO-CSGI can also reconstruct a large
image with each state of the object of high quality. Although the PSNR of F-CSGI is almost
the same as the MIPO-CSGI, the sampling rate of the bucket detector in F-CSGI is four
times that in MIPO-CSGI. For S-CSGI, each detector value of the slow detector of each
cycle T is equivalent to one state of the object detected by the bucket detector, and noise
composed of other state detections is added. So, with the same slow bucket detector, the
PSNR value of MIPO-CSGI is better than that of S-CSGI. For the moving “T”, we just
need to perform the same operation as imaging the jumping “square”. From Figure 2,
we can see that MIPO-CSGI reconstructs four frames of the “T”, as well as the jumping
“square”. We can also image each state of the moving “spacecraft”, although its operation
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trajectory is more complex. The reconstruction results of the “spacecraft” further confirm
the MIPO-CSGI’s effectiveness.
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Figure 2. The numerical simulation results of different periodic moving objects using F-CSGI, S-CSGI,
and MIPO-CSGI, where PSNR is presented together.

To further compare the performance of F-CSGI, S-CSGI, and MIPO-CSGI, we take
the jumping “square” as the target to simulate these schemes with varying compressive
sampling ratios β. Due to the randomness of the reconstruction results of random speckle
patterns in CGI, we present the average PSNR values of the reconstructed images using
F-CSGI, S-CSGI, and MIPO-CSGI schemes at 10 times. The results are presented in Figure 3.
From Figure 3, it can be seen that the PSNR of S-CSGI under different compression rates
β is almost unchanged. The PSNRs of F-CSGI and MIPO-CSGI under different compres-
sive sampling ratios β are almost the same, and both increase with the increase in the
compressive sampling ratios. Under the same imaging quality, the sampling rate of the
bucket detector in F-CSGI is four times that of MIPO-CSGI, and the PSNR of MIPO-CSGI is
significantly higher than that of S-CSGI under the same sampling rate of the bucket detector.
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Figure 3. PSNR curves with varying compressive sampling ratios β using F-CSGI, S-CSGI,
and MIPO-CSGI.
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In addition, numerical simulations for the periodic state-changed object with MIPO-
CSGI, F-CSGI, and S-CSGI are performed in Figure 4. The original objects are 64 × 64-
resolution two-grayscale “running man” and 64 × 64-resolution eight-grayscale “flying
bird”. Taking the “running man” as an example, five 64 × 64-resolution random speckle
patterns with their inverse speckle patterns are modulated in each cycle to obtain five
frames of the object. Meanwhile, the bucket detector’s sampling rate in F-CSGI is five
times that in MIPO-CSGI, and the bucket detector’s sampling rate in MIPO-CSGI is the
same as that in S-CSGI. With a 60.01% compressive sampling ratio, all schemes will obtain
12,290 differential bucket detector signals. One 12,290 × 20,480-resolution random matrix
will be programmed in MIPO-CSGI. Figure 4 shows that the PSNR of MIPO-CSGI is
almost the same as that of F-CSGI and more than twice that of S-CSGI. According to the
reconstruction result of MIPO-CSGI and F-CSGI, we can easily obtain the motion state of
the object. The reconstructed “flying bird” also verifies that MIPO-CSGI can image eight-
grayscale objects with fast periodic state-changes, which further proves the effectiveness
of MIPO-CSGI.
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MIPO-CSGI

S-CSGI

F-CSGI

“Running man” logo “Flying bird”  logo

Different 
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Figure 4. The numerical simulation results of different periodic state-changed objects using F-CSGI,
S-CSGI, and MIPO-CSGI, where PSNR is presented together.

4. Experimental Verification

Next, MIPO-CSGI is verified experimentally. The experimental setup of MIPO-CSGI
is shown in Figure 5. Computer-1 controls DMD-1 (TI DLPC350), modulates the light
emitted by an LED, and generates a series of speckle patterns pairs, Ik

i (x, y) and Ĩk
i (x, y).

Then, a projector lens projects the speckle patterns onto DMD-2 (TI DLPC350). Computer-2
controls DMD-2 to repeatedly display the object with a cycle time T. A lens (focal length
is 50 mm) collects the light reflected from the object, which is detected by a slow bucket
detector (Thorlabs PDA100A2), and the paired detection results Bi and B̃i are generated
in turn. With the operation repeated 2×M times, we will obtain M differential signals
{4Bi}M

i=1 by Bi − B̃i(i = 1, 2, . . . , M). Meanwhile, computer-1 will program matrix R based
on the M groups’ differential speckle patterns {4Ik

i (x, y)}M
i=1(k = 1, 2, · · · , N). Finally, we

use the compressive sensing algorithm to obtain multiple images of the target based on
matrix R and {4Bi}M

i=1 generated by computer-1.
Four frames of the jumping “square” chosen from Figure 2 are selected as the experi-

mental target to validate MIPO-CSGI’s reconstruction ability. In the experiment, DMD-2
displays four frames of 1024 × 768-resolution jumping “square” with a cycle time T of
12.8 ms. Then, each random speckle pattern is modulated by DMD-1 to 8 × 8-resolution.
We set four speckle patterns in each cycle to obtain four frames of the object. The compres-
sive sampling ratio of MIPO-CSGI, F-CSGI, and S-CSGI is set up to 70.31%, which means
there will be 180 differential bucket detector signals obtained in each scheme. We will
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program a 180× 256-resolution random matrix in MIPO-CSGI, and the sampling rate of the
bucket detector in F-CSGI will be four times that of MIPO-CSGI and S-CSGI. Meanwhile,
the total optical measurement time used in MIPO-CSGI and S-CSGI is four times that in
F-CSGI. Figure 6 shows the results of two sets of experiments using MIPO-CSGI, F-CSGI,
and S-CSGI. The experimental results-1 of MIPO-CSGI, F-CSGI, and S-CSGI are similar to
the simulation results in Figure 2. Because the detection results are inevitably influenced by
background and detector noise, even when the compression ratio is high, the reconstructed
image quality of the experimental results in Figure 6 will be lower than the numerical
simulation results in Figure 2. The bucket detector has a slow sampling rate and a long
sampling time, which means that more environmental noise is introduced. Therefore,
there is a certain attenuation in the imaging quality of MIPO-CSGI compared with F-CSGI
in the experiment. It is known that DMD requires a certain amount of time to refresh
and display different objects. During the experiment, we may obtain the intermediate
states displayed by the DMD-2 switching between two frames, as shown in experimental
results-2. As illustrated in Figure 6, although F-CSGI has a better reconstruction ability
than MIPO-CSGI, it is hard to obtain information about the object when a slow bucket
detector is used in S-CSGI. To obtain eight frames of the object, eight 8× 8-resolution
speckle patterns with their inverse speckle patterns are generated in each cycle time T.
With a 70.31% compressive sampling ratio, a 360 × 512-resolution random matrix will be
recorded by computer-1 in MIPO-CSGI. All of these schemes will record 360 differential
bucket detector signals. Meanwhile, the bucket detector’s sampling rate in F-CSGI is set
to be eight times that in MIPO-CSGI and S-CSGI. As can be seen from Figure 7, we can
see that F-CSGI and MIPO-CSGI will produce eight frames of the object as experimental
results-1 or produce four frames and four intermediate states of the object as experimental
results-2. S-CSGI still cannot obtain any information about the jumping “square”.

LED

Spatial filter

Projecting lens

Collecting lens

DMD-1

DMD-2

Computer-1 Computer-2

Slow bucket detector

Periodic moving/state-changed object

Computer-2

Figure 5. The experimental setup of the MIPO-CSGI.
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Figure 6. Experimental results of reconstructing four frames of a jumping “square” using F-CSGI,
S-CSGI, and MIPO-CSGI.
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Figure 7. Experimental results of reconstructing eight frames of a jumping “square”using F-CSGI,
S-CSGI, and MIPO-CSGI.

The experiments are then carried out on different cycle times T of the two middle
frames “T” chosen from Figure 2 to investigate the effectiveness of MIPO-CSGI. DMD-2
displays two frames of the moving “T” at 1,024 × 768-resolution under different cycle
times T as 0.8 ms, 2.4 ms, and 6.4 ms, respectively. Here, each random speckle pattern is
modulated by DMD-1 to 16 × 16-resolution. To obtain two frames of the “T”, we must
modulate two 16 × 16-resolution speckle patterns in each cycle time T. With β set to
69.92%, we will obtain a 358 × 512-resolution random matrix in MIPO-CSGI, and the
bucket detector’s sampling rate in F-CSGI is set to twice that in MIPO-CSGI and S-CSGI.
Figure 8 depicts the experimental results of MIPO-CSGI, F-CSGI, and S-CSGI. Both MIPO-
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CSGI and F-CSGI can image the object “T” into two frames as experimental results-1 or
two intermediate states as experimental results-2. The longer the cycle time T of the object,
that is, the longer the DMD-2 displays each state of the moving object, as shown in Figure 8,
the better the imaging quality of MIPO-CSGI. We cannot obtain the motion information of
the moving “T” from the reconstruction results of S-CSGI. Furthermore, we compare the
experimental results of MIPO-CSGI, F-CSGI, and S-CSGI for obtaining four frames of the
“T” under different cycle times T as 0.8 ms, 2.4 ms, and 6.4 ms, respectively. Figure 9 shows
that both MIPO-CSGI and F-CSGI can image the “T” into four frames, as in experimental
result-1, or into two frames and two intermediate states, as in experimental result-2. Due to
the use of a slow bucket detector, S-CSGI is consistently unable to image moving objects.
Therefore, the effectiveness of the MIPO-CSGI is further validated.

Experiment-1

Experiment-2

T=2.4 ms T=6.4 ms

6.43.20

time(ms)

Experiment-1

Experiment-2

Experiment-2

Experiment-1

F-CSGI 

S-CSGI 

MIPO-CSGI
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Figure 8. Experimental results of reconstructing two frames of the “T” under different cycle times T
using F-CSGI, S-CSGI, and MIPO-CSGI.
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Figure 9. Experimental results of reconstructing four frames of the “T” under different cycle times T
using F-CSGI, S-CSGI, and MIPO-CSGI.

5. Conclusions

In conclusion, we have proposed MIPO-CSGI, which employs a slow bucket detector
to image a fast periodically moving/state-changed object using compressive ghost imaging.
The proposed scheme constructed a random matrix based on the speckle patterns which
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acted on the object in each cycle T and establish a one-to-one correspondence between
each row of the matrix and the measurement of the slow bucket detector. The multi-frame
imaging of a periodically moving/state-changed object is converted into the imaging of
a static large image composed of each state of the moving object to compensate for the
sampling rate of the bucket detector. Finally, compressive sensing is used to reconstruct
multiple images based on the random matrix with fewer bucket detector measurements.
To further prove the feasibility of MIPO-CSGI, simulations and experiments are taken to
compare with traditional F-CSGI, which uses a fast bucket detector, and S-CSGI, which
uses a slow bucket detector. Through the simulations, we can see the imaging quality of
MIPO-CSGI is almost the same as that of F-CSGI and better than that of S-CSGI. In the
experiments, the noise introduced by the long response time of the slow detector makes the
imaging quality of MPIO-CSGI slightly lower than that of F-CSGI, but it is always better
than that of S-CSGI. Therefore, MIPO-CSGI provides more application flexibility for GI to
use a slow bucket detector to image objects with fast periodic moving/state-changes.
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