
Citation: Zhu, W.; Zhang, Z.; Zhao,

X.; Fu, Y. Changed Detection Based

on Patch Robust Principal

Component Analysis. Appl. Sci. 2022,

12, 7713. https://doi.org/10.3390/

app12157713

Academic Editors: Atsushi Teramoto

and Tomoko Tateyama

Received: 16 June 2022

Accepted: 25 July 2022

Published: 31 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Changed Detection Based on Patch Robust Principal
Component Analysis
Wenqi Zhu 1,† , Zili Zhang 2,† , Xing Zhao 1 and Yinghua Fu 1,*

1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,
Shanghai 200093, China; 1935023630@st.usst.edu.cn (W.Z.); 202440454@st.usst.edu.cn (X.Z.)

2 School of Computer Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China; U201915148@hust.edu.cn

* Correspondence: fuyh@usst.edu.cn
† These authors contributed equally to this work.

Abstract: Change detection on retinal fundus image pairs mainly seeks to compare the important
differences between a pair of images obtained at two different time points such as in anatomical
structures or lesions. Illumination variation usually challenges the change detection methods in
many cases. Robust principal component analysis (RPCA) takes intensity normalization and linear
interpolation to greatly reduce the illumination variation between the continuous frames and then
decomposes the image matrix to obtain the robust background model. The matrix-RPCA can obtain
clear change regions, but when there are local bright spots on the image, the background model is
vulnerable to illumination, and the change detection results are inaccurate. In this paper, a patch-
based RPCA (P-RPCA) is proposed to detect the change of fundus image pairs, where a pair of fundus
images is normalized and linearly interpolated to expand a low-rank image sequence; then, images
are divided into many patches to obtain an image-patch matrix, and finally, the change regions are
obtained by the low-rank decomposition. The proposed method is validated on a set of large lesion
image pairs in clinical data. The area under curve (AUC) and mean average precision (mAP) of the
method proposed in this paper are 0.9832 and 0.8641, respectively. For a group of small lesion image
pairs with obvious local illumination changes in clinical data, the AUC and mAP obtained by the
P-RPCA method are 0.9893 and 0.9401, respectively. The results show that the P-RPCA method is
more robust to local illumination changes than the RPCA method, and has stronger performance in
change detection than the RPCA method.

Keywords: changed detection; P-RPCA; low-rank decomposition

1. Introduction

In recent decades, due to the development of digital image processing system technol-
ogy, fundus imaging technology has been improved [1]. Digital retinal imaging technology
can be used for the clinical diagnosis and management of retinal diseases [2–4]. Detecting
changes in a pair of images is one of the most commonly encountered low-level tasks in
medical image analysis by which the important change is to be identified between two
different time stages from the same scene [5]. The goal of change detection is to identify a
significant change and remove the unimportant one such as camera motion, illumination
variation and nonuniform attenuation. As the changes between different image pairs are
diverse and the important changes vary in different applications [6,7], it makes the change
detection methods relatively challenging. Important changes in a retinal fundus image
mainly include a change of retinal tissue, anatomical structure or lesions [8,9].

Change detection methods consist of preprocessing, producing and analyzing the
difference image [10,11]. The pair of images is registered in the location and adjusted in
the intensity to each other at the preprocessing step, then they are compared to generate
a difference image, finally the change features are segmented from the difference image.
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However, due to the different imaging conditions, it is difficult to remove the illumination
variations on image change detection only by preprocessing, which makes it necessary for
the detection algorithm to be robust to illumination. Recently, many researchers have used
supervised learning methods to detect changes, and although these methods are robust to
complex intensity, they requires a large amount of labelled data [12–14]. For medical image
pairs, it is impossible to use supervised methods because of the great variations of change
regions and a few available training samples.

In the past, most unsupervised change detection algorithms focused on comparing
the image pairs pixel wisely such as the method based on image difference or image quo-
tient [11,15,16]. However, nonuniform illumination is very common in retinal imaging [17],
and the pixel-by-pixel comparison method is frangible to the illumination variations be-
tween the images, which immensely challenges intensity normalization techniques. Many
researchers have put great efforts to designing various models to deal with illumination [5].
The iterative robust homomorphic surface fitting (IRHSF) was especially conceived to
model the illumination for the fundus image by calculating the curvature of the retinal
surface [11], which can correct the intensity of the image well, but the change regions are
still distracted obviously by the illumination variation.

Change detection methods based on background modeling have been proposed in
recent years [10,18] whose core idea stems from video surveillance [19]. For longitudinal
fundus images, the anatomic structures with the illumination together are modeled as the
background, and only the interested change regions are kept as the foreground [10,18].
For the fundus image pair, the normal anatomical structures evolve slowly and change
little over time, which can be regarded as the background model. In order to obtain an
invariant background, the illumination variations between the image pair are filtered as
the unimportant change after intensity normalization and linear interpolation, so that they
are removed from the background model and change regions as the reconstructed error by
low-rank decomposition.

In order to remove the distraction of intensity from the background model and change
regions, Fu et al. [10] combined the intra-image correction with the inter-image normal-
ization and linear interpolation to smooth the illumination variations between the fundus
image pair. By doing this, the local and global illumination variations were greatly reduced
and filtered by decomposing the image matrix. This matrix-RPCA approach can reduce
the illumination variations well and detect the clear change regions, but it is still sensitive
to the local intensity abruptness such as the random light spots or some local uneven
intensity. As the local intensity abruptness exists in the fundus image pair, the detection
result of the matrix-RPCA approach will be significantly distracted in many cases and
no further solution is mentioned in the literature. Inspired by patch-group-based tensor
RPCA (PG-TRPCA) [18,20], we develop a patch-based RPCA (P-RPCA) method to remove
the distraction of random light spots in the detection of the changes between a pair of
fundus images. The matrix-RPCA method converts each image into a column vector and
the entire image sequence into the image matrix. Compared with RPCA, the P-RPCA
method divides the spanned image sequence into many subsequences by turning the image
into patches after illumination correction and linear interpolation, and then concatenates
these subsequences and finally vectorizes the subsequences into the image matrix and
decomposes the image matrix to obtain the change regions.

The contributions of this paper can be summarized as follows. First, the P-RPCA is
proposed to detect the change regions and remove the random light spots. As the RPCA
based on the image matrix is robust to the global illumination variations but leaves the
local intensity intact, the P-RPCA can deal with the global and local illumination variations
at the same time. Second, the patch-based subsequences are concatenated together and
vectorized into an image matrix, which increases the rank of the image matrix and is useful
to obtain a more robust background and clear change regions.
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The rest of this paper is organized as follows. Section 2 gives the preprocessing
techniques which turn a pair of images into an image sequence. Section 3 presents the
proposed change detection method in detail. The experiment results and discussion are
given in Section 4. This paper will be concluded with some discussions of future work in
Section 5.

2. Preprocessing

For change detection, the illumination variations between image pairs distract the
change regions obtained by many methods. There are still a lot of illumination variations
between a pair of images after intensity normalization. Hence, the linear interpolation is
used to reduce the illumination variation further between the successive images, which
makes the sequence have more low-rank components at the same time.

2.1. Intensity Correction

Many studies have presented intensity correction techniques inside an image, such as
color normalization [21,22], contrast enhancement [11,23], and nonuniform illumination
correction [24]. As shown in Figure 1, the original image taken as the reference image was
that from DRIVE. DRIVE was established to enable comparative studies on the segmen-
tation of blood vessels in retinal images and acquired using a Canon CR5 non-mydriatic
3CCD camera with a 45-degree field of view (FOV) [25]. After correcting the intra-intensity
of each image, the image pair is adjusted into two different intensity levels as shown
in Figure 1a,b. The global illumination variation is still obvious, and hence we take the
intensity normalization to correct this kind of illumination variations for the image pair.

Suppose that there are two original images I1 and I2 denoting the reference image and
current image, respectively, which will be enhanced by some intensity correction techniques
such as IRHSF [11] and denoted by Ĩ1 and Ĩ2 separately. Then, Ĩ1 is adjusted to the intensity
of Ĩ2 to obtain the normalized images Î12, and Ĩ2 is adjusted to the intensity of Ĩ1 to obtain
the normalized image Î21 [10]. The formulas of Î12 and Î21 are given as follows:

Î12 =
σ2

σ1
{ Ĩ1 − µ1}+ µ2 (1)

and
Î21 =

σ1

σ2
{ Ĩ2 − µ2}+ µ1 (2)

where µi and σi are the mean value and standard deviation of Ĩi, i = 1, 2.
Figure 1 illustrates the result of intensity normalization for a pair of fundus images.

In Figure 1, (c) is closer to (b) than (a) for the intensity, and (d) is closer to (a) than (b) for
the intensity. The image pair showing in (a) and (b) is adjusted to two image pairs with
different intensity levels: a brighter image pair (a) and (d) and a darker image pair (b), (c).

Figure 1. Intensity normalization of the image pair. The original image taken as the reference image
is from DRIVE. A small noise patch is attached on the reference image and the intensity is adjusted
which is taken as the current image. (a,b) are the grayscale images of the reference image and current
image, and (c,d) are results of intensity normalization for (a,b).
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In fact, after intensity correction and normalization, the comparison of Ĩ1 and Ĩ2 is
converted into the comparison of two image pairs at two different intensity levels: the
image pair Î1, Î21 and the image pair Î2, Î12. In order to filter the distraction of illumination
variations and keep the background more robust, we take the linear interpolation to obtain
more comparisons of the image pair on different intensity levels.

2.2. Linear Interpolation

For statistical background modeling, to obtain a stable background model, sufficient
sampling frames are required [19]. If the sequence itself contains only a few frames of
images, it is usually difficult to generate a stable background model, as the intensity
abruptness in the sequence will significantly distract the model. In order to obtain more
background frames to produce a stable background model, linear interpolation is used in
two different intensity levels of the image pair to expand the short sequence into a long
sequence with slowly changing intensity [11].

For two images, I1 and I2, supposing the reference image I1 is taken in the early stage,
which can be regarded as the background image, then the current image I2 is used to
compare with the background to discriminate whether there was a change. Since I1 is
turned into Ĩ1 and Î21 after taking the illumination correction and normalization [10], the
low-rank background model is based on I1, so linear interpolation is performed between Ĩ1
and Î12. The formula is presented in (3):

Ī1k =
k
p1

Î12 + (1− k
p1

) Ĩ1, k = 1, 2, · · · , p1, (3)

where Ī1k is the k-th interpolated frame k = 1, 2, · · · , p1, and p1 is the number of interpolated
frames. Generally, the larger the p1, the smaller the intensity abruptness between the two
successive frames is, and the more stable the background model is.

Apart from the linear interpolation between the reference frames, it is also required
for the current frame. For the current frame I2, the linear interpolation between Ĩ2 and Î21
is shown in the formula (4):

Ī2k =
k
p2

Î21 + (1− k
p2

) Ĩ2, k = 1, 2, · · · , p2 (4)

where p2 is the number of interpolated frames of I2.
After the linear interpolation of the reference image and the current image at their

different brightness levels, the influence of illumination variations on the change regions
is further reduced. Then, it can be easily filtered out as a low-frequency component by
the detection algorithm [10]. Linear interpolation makes the comparison of the two image
pairs with different intensity levels extend to the comparison of multiple different intensity
levels, which enabled the abruptness between different intensity levels to decompose to the
small global illumination variations of two successive frames and be filtered as the small
disturbed errors of the background model by low-rank decomposition.

3. Methodology

Anatomic structures captured from the same eye generally evolve slowly as time
elapses, which can be regarded as the principal low-rank background component of the
longitudinal image serial [10]. Lesions often occupy only a few pixels in the image that
change with time, which corresponds to a temporal highpass filter. Therefore, longitudinal
fundus images are modeled as the low-rank sequence and change detection is obtained by
the low-rank decomposition. The background modeling approach takes the whole image
as the background and considers the more spatial neighborhood of anatomic structures
than the pixel-by-pixel method; hence, better detection results and clear change regions can
be obtained.
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3.1. Low-Rank Decomposition Modeling

Suppose the longitudinal fundus images have N frames, I1, I2, · · · , IN , and each frame
has the size m× n, N ≥ 2. Vectorizing each frame as a vector, these longitudinal fundus
images can be regarded as an image matrix with the size M × N denoted by D where
M = m× n and D = [I1, I2, · · · , IN ]. Each column of D indicates one frame of the sequence,
and hence D consists of the following two components in (5):

D = A + E. (5)

where A is the low-rank background component of D, E is the sparse change component of
D. Ai and Ei correspond to the background image and the change region image of Ii.

The change detection problem can be converted into how to obtain the sparse compo-
nent of D, which can be solved by low-rank decomposition as the following equation shows:

arg min
A,E

rank(A) + λ‖E‖0 s.t. D = A + E (6)

where rank(A) indicates the rank of matrix A, ‖·‖0 means the l0 norm which shows the
sparsity of the component, and λ is a hyperparameter and the equilibrium factor to trade
off the rank of the image matrix and sparsity of the foreground.

As solving the l0 norm in (6) is a non-deterministic polynomial (NP) problem [26],
according to restricted isotropic property (RIP) [27], the l0 norm can be estimated by the
l1 norm. The rank of the matrix is measured by the kernel norm of matrix, and (6) can be
reformulated to the form of (7), shown as follows [28]:

arg min
A,E
‖A‖∗ + λ‖E‖1 s.t. D = A + E, (7)

where ‖·‖∗ is the kernel norm, and ‖·‖1 is l1 norm.
Many studies [29,30] have given the solution of (7) . Since there are some noises

involved in the image for the general cases, (7) can be relaxed from the equality constraint
to the inequality constraint to allow some errors, which is shown in (8):

arg min
A,E
‖A‖∗ + λ‖E‖1 subj ‖D− A− E‖2

F < ε (8)

The augmented Lagrange multiplier (ALM) algorithm [31] gives a fast solution method
shown in (9):

arg min
A,E
‖A‖∗ + λ‖E‖1 +

µ

2
‖D− A− E‖2

F (9)

where ‖·‖F is the Frobenius norm of the matrix, and µ is a parameter used to balance the
reconstruction accuracy as well as the low-rank and sparsity of the image matrix.

3.2. Patch Low-Rank Decomposition Modeling

In (6), the whole frame is taken as one column of the image matrix, and the great similarity
of the columns makes the image sequence become a one-rank matrix. For the P-RPCA method,
the parameter t is set as the length of each square window which means that the window has
a size of t× t. For the image of size m× n, it is divided into many patches by the window of
size t× t, and the number of patches in each frame is given by (10).

T = [
m
t
]× [

n
t
] (10)

where T is the number of the patches and [·] indicates a rounded-up operation.
If the size of the image cannot be exactly divided, we should pad the boundary

with a gray value of 0 so that the size can be exactly divided. The size of the image
can also be adjusted by scaling the image. The segmented image patch sequences are
concatenated together successively in the time dimension. Figure 2 illustrates the division
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and concatenation. Hence, the original sequence with N frames is turned into an image
sequence with T × N frames.

Figure 2. Procedure of obtaining the image patches sequence. The image here is divided into four patches
with N frames. These images are concatenated to obtain a new image sequence with T×N frames.

Similarly, each frame of the new image sequence is vectorized as a column, and then
the sequence is converted into an image matrix denoted by D′ with a size of t2 × TN.
Then, the low-rank decomposition can be used to obtain the sparse change regions of the
sequence. The augmented Lagrange multiplier (ALM) algorithm [31] can also give the
solution method of the optimization problem in (11):

arg min
A′ ,E′

∥∥A′
∥∥
∗ + λ

∥∥E′
∥∥

1 +
µ

2

∥∥D′ − A′ − E′
∥∥2

F (11)

Once the low-rank component A′ and the sparse component E′ of D′ are obtained,
one can recover the background of the original image and sparse change regions according
to original stacking order. On the one hand, P-RPCA turns the local illumination variations
inside the image into that between the successive frames which can be filtered by the low-
rank decomposition into the reconstruction error. Hence, compared with RPCA, P-RPCA is
better at dealing with local illumination variations [10].

On the other hand, the rank of the image patch matrix becomes higher than the
original image matrix since the patches in the same image are strongly dissimilar, which
makes increases rank after division and concatenation. As the number of the consistent
background becomes at least the number of patches, the rank of the image matrix increased
to T from rank one. For the optimization of (11), the kernel norm, the first term on the right
side of the equation, becomes significantly bigger than before, which forces the second term
of sparsity and the third term of the reconstruction error to be smaller. Hence, P-RPCA
can reconstruct a more accurate background and clear change regions at the same time
than RPCA.

3.3. Algorithm and Flow Chart

This section illustrates the steps by Figure 3 and presents the basic algorithm procedure
of change detection proposed in this paper, as shown in Algorithm 1.
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Figure 3. Flow chart of P-RPCA.

Algorithm 1 Algorithm procedure of P-RPCA

Input: A registered pair of fundus image I1 and I2;

Output: Change detection of I2 according to I1

1: Correct the intra-image intensity of I1 and I2 to get Ĩ1 and Ĩ2;

2: Normalize the intensity of Ĩ1 and Ĩ2 according to (1) and (2) to obtain Î12 and Î21;

3: Interpolate p1 frame between Ĩ1 and Î12 according (3), interpolate p2 frame between Ĩ2

and Î21 according (4);

4: Vectorize Î1k and Î2l , k = 1, 2, · · · , p1, l = 1, 2, · · · , p2, divide the image sequence into

patch image sequences and concatenate them into D′;

5: Do low-rank decomposition on D′ to get low-rank background matrix A′ and sparse

foreground matrix E′;

6: Convert the columns of E′ back to images, and they are recovered to the size of the

original image according to the original stacking order, the final image sequence can be

represented as IE, IE = {IE1, IE2, · · · , IEN}, and take the frames from IE as the change

component.



Appl. Sci. 2022, 12, 7713 8 of 15

4. Experiments and Discussion

In this experiment, λ is the reciprocal of the size of a single image block after dividing,
µ is set to 1.25 times the reciprocal of the maximum singular value of D. The registration in
this paper is based on the local partial intensity invariant feature descriptor (PIIFD) [32]. In
the modeling of a low-rank image sequence, there are 20 interpolated background images
and 3 foreground images.

4.1. Data

The experiments validated the effectiveness of the proposed method from two pairs of
fundus images with different lesion sizes. Figure 4 shows these two pairs of fundus images.

Figure 4a,b are the fundus image pair from the public dataset DRIVE [25]. Figure 4a
is the original image taken as the reference image of the image pair, and Figure 4b is one
attached with the red noise patch regarded as small lesions on Figure 4a, which is seen as
the current image. Figure 4c,d are the images corrected by IRHSF and illumination models
are presented in Figure 4e,f separately.

Figure 4g,h are the fundus image pair from Xinhua Hospital in Shanghai. The original
image pair is of high resolution and is under-sampled to 403× 384. Figure 4g is the reference
image with a slight random spot on the low-right corner. Figure 4h is the current image
involved with a big bright lesion. The image pair is also enhanced and corrected by IRHSF.
Their corrected images are presented in Figure 4i,j separately, and their illumination models
are shown in Figure 4k,l, respectively.

Figure 4. Fundus image pairs with a different size of lesions. (a) Reference image from DRIVE;
(b) current image attached with the small noise patch; (c) corrected images of (a) by IRHSF; (d) cor-
rected images of (b) by IRHSF; (e) illumination model of (a); (f) illumination model of (b). (g,h) are
from Xinhua Hospital in Shanghai. (g) Reference image, (h) current image, (i) corrected images of
(g) by IRHSF, (j) corrected images of (h) by IRHSF, (k) illumination model of (g), (l) illumination
model of (h).

4.2. Validation Measurement

The proposed method was validated by ROC curve and PR curve. The AUC designed
to evaluate the comprehensive performance of the classifier is calculated through the ROC
curve where TPR and FPR denote the vertical and horizontal coordinates separately. MAP
is used to calculate the average accuracy value through the PR curve where precision and
recall denote the vertical and horizontal coordinates, respectively. The four indexes are
given by the following formulas:

TPR =
TP

TP + FN
(12)

FPR =
FP

TN + FP
(13)

Precision =
TP

TP + FP
(14)
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Recall =
TP

TP + FN
(15)

where TP, FP, TN, and FN indicate true positive, false positive, true negative, and false
negative, respectively.

4.3. Results with P-RPCA Method

For P-RPCA, strictly dividing the image may not be applicable for change regions of
different sizes. Hence, a sliding window with overlap is a more flexible technique than
the strict division for the change detection. The P-RPCA with a sliding window is taken
to improve the performance of the proposed method. After the size and stride of the
sliding window are set, the slide window sweeps across the first frame of the sequence
and produces many overlap subsequences with the same size. By concatenating all the
subsequences together and vectorizing them, an patch image matrix is obtained. By the
sliding window, the content of many patches may be redundant, which is useful to produce
a consistent low-rank background and filter the local light spots well [18].

The algorithm is practiced on two groups of data shown in Figure 4. The image pair
with small lesions has a resolution of 604× 584 as shown in Figure 4a,b. Figure 1 presents
the registered and normalized image pairs. Figure 5 gives the detection result of the low-
rank decomposition by RPCA and P-RPCA after normalization and linear interpolation.
Figure 5c,d are the reconstructed low-rank background by RPCA and P-RPCA, respectively,
and Figure 5e,f are their sparse change regions given by RPCA and P-RPCA, respectively.
The red circle in Figure 5e marks the local flare distraction.

Figure 5. The result of the image with small lesions by RPCA method. (a) Normalized reference image;
(b) normalized current image; (c) reconstructed low-rank background by RPCA; (d) reconstructed
low-rank background by P-RPCA; (e) sparse change regions by RPCA; and (f) sparse change regions
by P-RPCA. The red circle marks the distraction of flare in the current image for the RPCA method.

For the image pair with small lesions, as shown in Figure 5, P-RPCA with a sliding
window is used to detect the change regions. Through several attempts to choose different
sizes of equal intervals for the experiments, the appropriate size of the sliding window
was set to be 200 and the stride was set to be 50. It can be seen that compared with the
detected change features in Figure 5e,f, these are less distracted by the local light spot and
the detected change features are clearer. The red mark in Figure 5e is caused by the local
flare. Furthermore, in Figure 5f, this distraction is greatly reduced. The change regions
obtained by P-RPCA method obtain less distractions by the local flare and are clearer and
cleaner than those by RPCA.

The image pair with a big lesion has a resolution of 403× 384. In Figure 6, (a) and (b)
are the normalized reference image and the current image, respectively, after registration,
and (c) and (d) are the reconstructed background image by RPCA and P-RPCA, respectively.
Figure 6e is the result obtained by the image matrix and low-rank decomposition after
linear interpolation. The image pair from Figure 4g,h is corrected by IRHSF and normalized
to each other, and then it is expanded to a sequence. For the reference image, the number of
interpolated frames is 20 in order to obtain a stable background, and for the current image,
the number of interpolated frames is 3. The image sequence after interpolation includes
23 frames and each image frame has a size of 403× 384. The concatenated image matrix D
has a size of 154752× 23. It can be seen that the features of the isolated large lesions are
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obvious, but the light spot in the reference image significantly distracts the change region
as the red circle marks.

For the image pair with large lesions, padding the boundary of the image to let the
size be 600× 400 and linearly interpolating the image pair to be of 23 frames. Then, the size
of patch is set to be 200 and divide the image into six patches. The image sequence is turned
into 138 frames, and the concatenated image matrix D′ is of size 40,000 × 138. Figure 6
presents the results of a low-rank decomposition on D′. Compared with the detected
change features in Figure 6, the result in Figure 6 obtained by P-RPCA is clearer and cleaner,
which reduces the distraction of illumination change and camera position movement.

Figure 6. The result of the image with large lesions by RPCA method. (a) Normalized reference image;
(b) normalized current image; (c) reconstructed low-rank background by RPCA; (d) reconstructed
low-rank background by P-RPCA; (e) sparse change region by RPCA; and (f) sparse change region
by P-RPCA. The red circle marks the distraction of the light spot in the reference image for the
RPCA method.

4.4. Discussion

The proposed method is validated from the quantitative evaluation on the ROC curve
and PR curve in this section. The ground truth of the change detection is given in Figure 7.
The ground truth is artificially marked. The result of the P-RPCA method in the following
curves is obtained with the appropriate size by experiments.

Figure 7. Ground truth of the image pair with small lesions and big lesions. (a) Big lesions; and
(b) small lesions.

The curves from the image pair with small lesions and a big lesion are given in
Figures 8 and 9 separately. The four indexes are calculated through statistical analysis of
each pixel in the image. Among them, true positive means detecting the correct positive
sample, and false positive means the false detection is a true negative sample, and so on.
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Figure 8. ROC and PR curve results of the image pair with small lesions. (a) PR curve; and
(b) ROC curve.

Figure 9. ROC and PR curve results of the image pair with a large lesion. (a) PR curve; and
(b) ROC curve.

For the image pair with small lesions, four change detection techniques are used to
prove the performance of the proposed methods, as illustrated in Figure 8: RPCA, IRG-
McS [33], NPSG [34], and P-RPCA. The RPCA method performs poorly in the face of local
flare and the result is significantly distracted, whilst the AUC and mAP are 0.9213 and
0.0077, respectively, which is far lower than 0.9989 and 0.9614 for P-RPCA. In Figure 8, both
the ROC and PR of P-RPCA are over the curves of the other three methods, which means
that P-RPCA is significantly better than the other methods.

For the image pair with the large lesion, five change detection techniques from the
remote sensing are introduced here: IRHSF difference [11]; mean difference [16]; logarithmic
quotient [16]; wavelet fusion [16]; IRG-McS [33]; and NPSG [34]. As shown in Figure 9,
the AUC and mAP are 0.9832 and 0.8641, respectively, for RPCA, while 0.9893 and 0.9401
for P-RPCA. As can be seen from the curve in Figure 9, the performance of the P-RPCA
method exceeds RPCA method on almost all thresholds, and far exceeds other algorithms.

Figure 10 presents the detection results of the different method under the image pair
with small lesions shown in Figure 4. For RPCA, the local flare significantly distracts the
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change regions and so does IRG-McS as shown in Figure 10b,d. IRG-McS presents the
obvious change regions as the red rectangle marks but is very sensitive to the other facts
such as the intensity of the optic disc. P-RPCA is obviously better than the other three
methods as Figure 10 illustrates.

Figure 11 presents the detection results of a different method for the image pair with
the large lesion shown in Figure 4. Compared with Figure 11e–g, Figure 11a,b are more
robust to the local illumination variations and less affected by the vascular tissue. In
Figure 11d, the result is evidently significantly distracted by the boundary . The result in
Figure 11a is clearer and cleaner than in Figure 11b and less distracted by the light spot in
the reference image.

Figure 10. Detected change region for the image pair with small lesions in Figure 4. (a) P-RPCA;
(b) RPCA; (c) NPSG; and (d) IRG-McS. The red rectangle marks the small change regions.

Figure 11. Detected change region for the image pair with the big lesion in Figure 4. (a) P-RPCA;
(b) RPCA; (c) NPSG; (d) IRG-McS; (e) logarithmic quotient; (f) mean difference; (g) wavelet fusion;
and (h) IRHSF difference.

Figure 12 shows the influence of IRHSF on AUC and mAP values. The dataset
used in the experiment is the image pair with small lesions. When intensity correction
methods are not used, the AUC and mAP are 0.9981 and 0.957, respectively. After using
intensity correction methods, such as IRHSF, the AUC and mAP are 0.9989 and 0.9614,
respectively. This shows that after using the intensity correction method to correct global
illumination variations for the image pair, change regions detected by P-RPCA method are
more accurate.
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Figure 12. Influence of IRHSF on AUC and mAP values. (a) PR curve, (b) ROC curve.

Figure 13 shows the influence of patch size on AUC and mAP values in the P-RPCA
method. The dataset used in the experiment is the image pair with small lesions. The blue
line, the orange line, the green line, and the red line indicate that the size of the patch is
taken as 50, 100, 200, and 300, respectively. When the size of the patch is taken as 200,
the AUC and mAP obtain the maximum value, which is 0.9989 and 0.9614, respectively.
Figure 14a–d show the change detection results of the image pair when the patch size in the
P-RPCA method is 50, 100, 200, and 300, respectively, and the detection results are shown
in red circles. Hence, for the image pair with small lesions, the size of the patch selected by
the P-RPCA method is 200.

As the size of the sliding window will affect the result of change detection, we repeat
the experiment by changing the size to obtain the best value for different image pairs. If
the sliding window is too small, it is difficult for the method to detect the change regions.
If the sliding window is too big, the method will only weakly reduce the distraction due to
local illumination variations.

Figure 13. Influence of patch size on AUC and mAP values in the P-RPCA method. (a) PR curve,
(b) ROC curve.
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Figure 14. Influence of patch size on detection results in the P-RPCA method for the image pair with
small lesions. (a) Patch size = 50; (b) patch size = 100; (c) patch size = 200; and (d) patch size = 300.

Generally, when there are fewer frames in the sequence, the background of the se-
quence is more susceptible to illumination variations since the single background frame is
complicated to correct to the variable illumination variations of the current frames. Linear
interpolation reduces the global illumination variation between the successive frames and
makes the intensity slowly change in the sequence. The global illumination variation
becomes smooth so that it can be filtered as the reconstruction error when the sequence is
decomposed into a low-rank component and the sparse component, which is the advantage
of RPCA. P-RPCA further reduces the distraction of illumination variation by dividing the
sequence into several subsequences and decomposes the concatenated subsequences which
is more robust than RPCA.

5. Conclusions

For the change detection of the retinal fundus image pair, the method based on P-RPCA
is proposed in this paper which is the improved version to matrix RPCA. Decomposing
the image matrix by patches can deal with both the global and local illumination and
is more robust for the distraction of the illumination variations than RPCA and obtains
clearer change regions. The main advantage of P-RPCA lies in that P-RPCA can reduce
the distraction of the local flare or random light spot to a certain extent further. Choosing
the appropriate size of patches to divide the sequence is an important factor to determine
the performance of change detection. How to choose the patch size and stride is the next
research work in the future.

Author Contributions: Conceptualization, Y.F.; Data curation, X.Z.; Formal analysis, Z.Z.; Funding
acquisition, Y.F.; Methodology, Y.F.; Project administration, Y.F.; Software, W.Z.; Validation, W.Z. and
X.Z.; Visualization, Z.Z.; Writing—original draft, W.Z.; Writing—review & editing, Z.Z., X.Z. and Y.F.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Open Project Foundation of Intelligent Information Processing
Key Laboratory of Shanxi Province OF funder grant number CICIP2021003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Acharya, U.R.; Lim, C.M.; Ng, E.Y.K. Computer-based detection of diabetes retinopathy stages using digital fundus images. Proc.

Inst. Mech. Eng. 2009, 223, 545–553 [CrossRef] [PubMed]
2. Mookiah, M.R.K.; Acharya, U.R.; Chua, C.K.; Lim, C.M.; Ng, E.Y.K.; Laude, A. Computer-aided diagnosis of diabetic retinopathy:

A review. Comput. Biol. Med. 2013, 43, 2136–2155. [CrossRef] [PubMed]
3. Faust, O.; Rajendra, A.U.; Ng, E.Y.K.; Ng, K.H.; Suri, J.S. Algorithms for the Automated Detection of Diabetic Retinopathy Using

Digital Fundus Images: A Review. J. Med. Syst. 2012, 36, 145–157. [CrossRef] [PubMed]
4. Winder, R.J.; Morrow, P.J.; McRitchie, I.N.; Bailie, J.R.; Hart, P.M. Algorithms for digital image processing in diabetic retinopathy.

Comput. Med. Imaging Graph. 2009, 33, 608–622. [CrossRef]

http://doi.org/10.1243/09544119JEIM486
http://www.ncbi.nlm.nih.gov/pubmed/19623908
http://dx.doi.org/10.1016/j.compbiomed.2013.10.007
http://www.ncbi.nlm.nih.gov/pubmed/24290931
http://dx.doi.org/10.1007/s10916-010-9454-7
http://www.ncbi.nlm.nih.gov/pubmed/20703740
http://dx.doi.org/10.1016/j.compmedimag.2009.06.003


Appl. Sci. 2022, 12, 7713 15 of 15

5. Radke, R.J.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image
Process. 2005, 14, 294–307. [CrossRef]

6. Goyette, N.; Jodoin, P.M.; Porikli, F.; Konrad, J.; Ishwar, P. A novel video dataset for change detection benchmarking. IEEE Trans.
Image Process. 2014, 23, 4663–4679. [CrossRef] [PubMed]

7. Tian, F.P.; Feng, W.; Zhang, Q.; Wang, X.; Sun, J.Z.; Loia, V.; Liu, Z.Q. Active Camera Relocalization from a Single Reference Image
without Hand-Eye Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2791–2806 . [CrossRef]

8. Abràmoff, M.D.; Garvin, M.K.; Sonka, M. Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208. [CrossRef]
9. Patton, N.; Aslam, T.M.; MacGillivray, T.; Deary, I.J.; Dhillon, B.; Eikelboom, R.H.; Yogesan, K.; Constable, I.J. Retinal image

analysis: Concepts, applications and potential. Prog. Retin. Eye Res. 2006, 1, 99–127. [CrossRef] [PubMed]
10. Fu, Y.; Wang, C.; Wang, Y.; Chen, B.; Peng, Q.; Wang, L. Automatic Detection of Longitudinal Changes for Retinal Fundus Images

Based on Low-Rank Decomposition. J. Med. Imaging Health Inform. 2018, 8, 284–294. [CrossRef]
11. Narasimha-Iyer, H.; Can, A.; Roysam, B.; Stewart, V.; Tanenbaum, H.L.; Majerovics, A.; Singh, H. Robust detection and

classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy. IEEE Trans. Biomed. Eng.
2006, 53, 1084–1098. [CrossRef] [PubMed]

12. Gong, M.; Zhao, J.; Liu, J.; Miao, Q.; Jiao, L. Change Detection in Synthetic Aperture Radar Images Based on Deep Neural
Networks. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 125–138. doi: 10.1109/TNNLS.2015.2435783. [CrossRef] [PubMed]

13. Chen, H.; Qi, Z.; Shi, Z. Remote Sensing Image Change Detection With Transformers. IEEE Trans. Geosci. Remote Sens. 2022,
60, 1–14. doi: 10.1109/TGRS.2021.3095166. [CrossRef]

14. Zhang, C.; Wang, L.; Cheng, S.; Li, Y. SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection. IEEE
Trans. Geosci. Remote Sens. 2022, 60, 1–13. doi: 10.1109/TGRS.2022.3160007. [CrossRef]

15. Gong, M.; Li, Y.; Jiao, L.; Jia, M.; Su, L. SAR change detection based on intensity and texture changes. ISPRS J. Photogramm.
Remote Sens. 2014, 93, 123–135. [CrossRef]

16. Gong, M.; Zhou, Z.; Ma, J. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering.
IEEE Trans. Image Process. 2012, 21, 2141–2151. [CrossRef]

17. Soomro, T.A.; Gao, J.; Khan, T.; Hani, A.F.M.; Khan, M.A.; Paul, M. Computerised approaches for the detection of diabetic
retinopathy using retinal fundus images: A survey. Pattern Anal. Appl. 2017, 20, 927–961. [CrossRef]

18. Fu, Y.; Wang, Y.; Zhong, Y.; Fu, D.; Peng, Q. Change detection based on tensor RPCA for longitudinal retinal fundus images.
Neurocomputing 2020, 387, 1–12. [CrossRef]

19. Guyon, C.; Bouwmans, T.; Zahzah, E.H. Robust Principal Component Analysis for Background Subtraction: Systematic Evaluation
and Comparative Analysis. Princ. Compon. Anal. 2012, 10, 223–238. .

20. Cao, W.; Wang, Y.; Sun, J.; Meng, D.; Yang, C.; Cichocki, A.; Xu, Z. Total Variation Regularized Tensor RPCA for Background
Subtraction From Compressive Measurements. IEEE Trans. Image Process. 2016, 25, 4075–4090. [CrossRef]

21. Sopharak, A.; Nwe, K.T.; Moe, Y.A.; Dailey, M.N.; Uyyanonvara, B. Automatic Exudate Detection with a Naive Bayes Classifier.
Imaging in the Eye, IV; 2008 . Available online: https://www.semanticscholar.org/paper/Automatic-Exudate-Detection-with-a-
Naive-Bayes-Sopharak-Nwe/ac76ccce144112e819dd5f9a6601a25888bfd871 (accessed on 15 June 2022).

22. Aquino, A.; Gegundez-Arias, M.E.; Marin, D. Detecting the optic disc boundary in digital fundus images using morphological,
edge detection, and feature extraction techniques. IEEE Trans. Med. Imaging 2010, 29, 1860–1869. [CrossRef] [PubMed]

23. Usher, D.; Dumskyj, M.; Himaga, M.; Williamson, T.H.; Nussey, S.; Boyce, J. Automated detection of diabetic retinopathy in
digital retinal images: A tool for diabetic retinopathy screening. Diabet. Med. 2004, 21, 84–90. [CrossRef] [PubMed]
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