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Abstract: Coronary artery disease (CAD) is one of the most common causes of heart ailments; many
patients with CAD do not exhibit initial symptoms. An electrocardiogram (ECG) is a diagnostic
tool widely used to capture the abnormal activity of the heart and help with diagnoses. Assessing
ECG signals may be challenging and time-consuming. Identifying abnormal ECG morphologies,
especially in low amplitude curves, may be prone to error. Hence, a system that can automatically
detect and assess the ECG and treadmill test ECG (TMT-ECG) signals will be helpful to the medical
industry in detecting CAD. In the present work, we developed an intelligent system that can predict
CAD, based on ECG and TMT signals more accurately than any other system developed thus far.
The distinct convolutional neural network (CNN) architecture deals with single-lead and multi-lead
(12-lead) ECG and TMT-ECG data effectively. While most artificial intelligence-based systems rely on
the universal dataset, the current work used clinical lab data collected from a renowned hospital in
the neighborhood. ECG and TMT-ECG graphs of normal and CAD patients were collected in the
form of scanned reports. One-dimensional ECG data with all possible features were extracted from
the scanned report with the help of a modified image processing method. This feature extraction
procedure was integrated with the optimized architecture of the CNN model leading to a novel
prediction system for CAD. The automated computer-assisted system helps in the detection and
medication of CAD with a high prediction accuracy of 99%.

Keywords: coronary artery disease (CAD); ECG; TMT-ECG; digitization; convolutional neural
network (CNN)

1. Introduction

Electrocardiogram (ECG) signals provide detailed information related to the abnormal
behavior of the heart [1]. An expert cardiologist analyzes [2] these signal patterns during
diagnosis. In the last two decades, a good number of intelligent systems have been devel-
oped to analyze ECG and TMT-ECG signals of the heart, to assist health care experts. These
systems are primarily based on single-lead [3,4] (Figure 1a) and 12-lead ECG signals [5–9]
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(Figure 1b). Coronary artery disease (CAD) pertains to constriction or blocking of the coro-
nary arteries caused by plaque formation. There are few literature studies related to CAD
due to the lack of data and its complexity [10]. CAD is commonly identified and diagnosed
based on different tests, such as ECG, treadmill ECG, echocardiogram (ECHO), and angiog-
raphy. The intelligent systems use different neural architectures, such as the convolutional
neural network CNN [11], recurrent neural network (RNN) [12], CNN with RNN [13,14],
deep belief network (DBN) [3,15], and the fully-connected neural network (FC) [11] to
predict electrocardiogram (ECG)-related issues, such as arrhythmia [16–20], atrial fibril-
lation (AF) [21–23], myocardial infarction (MI) [24,25], ST elevation [21], CAD [10,26–28],
etc. Tan, J.H.; Hagiwara, Y. et al. [10] implemented a long short-term memory (LSTM)
network with the convolutional neural network (CNN) to automatically diagnose CAD
based on ECG signals. Babaoğlu, İsmail, and Findik et al. [26] compared various feature
selection models utilizing binary particle swarm optimization and a genetic algorithm
using a support vector machine classifier. Kumar, Mohit, and Pachori et al. [27] worked on
limited repository data using the wavelet transform method for a CAD-related diagnosis.
Kurt, I., Ture, M. et al. [28] carried out a comparative study on various types of classifiers
related to CAD.
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In view of the shortcomings related to the nature of data, the size of the data, and the
lack of clinical data, which were encountered in earlier works, in the present study, we
aimed to develop a reliable artificial intelligence-based prediction system for CAD. The
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neural model is unique in terms of exhaustive datasets of live patients, a higher frequency of
sampling of feature data, and a unique combination of activation functions across layers of
the neural networks. Such a system will assist the healthcare expert in accurately predicting
the presence or absence of CAD among the patients during periodic tests.

The majority of ECG research use data from publicly accessible archives [29–31].
Archived datasets from the repository are readily available with noise cancellation and
features extracted; moreover, they are in proper data formats, unlike clinical lab data.
However, in the present case, a large dataset of 550 patients was considered, with a high
sampling rate of 815 pixel points/sec, which is far higher than any other work reported thus
far. No researcher has attempted to apply different activation functions across different
layers. In the present study, different activation functions were adopted for different
layers of the CNN model, optimally, resulting in highly accurate prediction capabilities for
the model.

1.1. Digitization and Feature Extraction

A modular feature extraction procedure will dispense with the access rights issues,
which are likely to be encountered while using ECG machines with digitally recorded ECG
data. It also enhances the utility value of ECG machines, which otherwise just generate
ECG graphs by supplementing with a high sampling data extraction rate. Most of the ECG
machines available in developing or underdeveloped countries do not allow sharing digital
forms of ECG data. In the voltage versus time graph obtained from the electrocardiography,
the automated analysis allows for the identification of ECG findings and the assessment
of pathological anomalies without the need for human involvement. Digitization through
image processing is one of the methods used to store ECG and TMT-ECG data [32]. The pre-
processing of an image is primarily done based on pixel information. The pixel dimension
of the image is determined by the size of the pixel array. The height and width of an image
are determined by the number of rows (N) and columns (M) of the array. M X N is the
size of the pixel array. The fundamentals of image processing for digitization are: image
segmentation, color correction, point, line, and edge detection, aid in the region-dependent
threshold system, the removal of paper noise with a filter, morphological image processing
operations for image dilation, erosion, and pixel indexing to store the data.

The ECG signal has to be interpreted in terms of specific quantitative features, i.e.,
P—the arterial systole contraction pulse, R—the peak of the ventricular contraction, S—the
downward deflection immediately after the ventricular contraction, Q—the downward
deflection immediately preceding the ventricular contraction, and T—the recovery of the
ventricles. The method is defined in terms of locating the P, Q, R, S, and T waves in
electrocardiograms, which then measure the R-peak [18,33], PR, and R–R segments [21].

The scanned image with optical character recognition (OCR) is another digitization
technique. It uses the threshold method to eliminate gridlines [34] and the median filter
to remove noise before converting the data to a 1D vector. The Tompkins algorithm [35]
was created in 1985–1986 to find features, such as the QRS complex using the low pass and
high pass filters, squaring signal, integration, and adaptive thresholding with an accuracy
of 95%. The common approach adopted to obtain features of these ECG signals is the
principal component analysis (PCA) [36], while the wavelet packet decomposition (WPD)
method combined with statistical methods can yield better outcomes [37]. The digitization
tool [32,38] is used to digitize ECG graphs and measure features such as heart rate, QRS
distance, R–R peak variance, and PQRS complex with 90% accuracy.

Since interpreting variations of ECG or TMT-ECG manually is difficult, a computer-
aided diagnostic system assisting in cardiac health monitoring is a better alternative.
The nonlinear extraction approach (because of its nonlinear nature) is ideally suited for
extracting information from the ECG signal [2]. The ECG processing system [21,39] is
capable of reading a wide range of pathological situations, including P, Q, R, S, T wave
directions, a T wave greater than the R wave, and the absence of the Q wave in amplitude.
Based on the wavelet transformation method [31], the QRS complex and QRS-T segments
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(30 ms before 240 ms after QRS position) are detected automatically. Thus, the selection of
the best method delivers effective digitized ECG signal data by implementing the state-of-
the-art technique.

1.2. Neural Network

The neural network model receives digitized data of ECG and TMT-ECG signals
and generates proper recommendations as output. The basic features (age, QRS complex,
ST segment drop, etc.) in addition to input data lead to the improved performance of
the neural network [40–42]. The deep neural network is an automatic learning process
consisting of multiple layers and activation functions from the lower level to higher-level
representation data. The automated convolutional neural network is a version of the deep
neural network finding application in predicting medical disease. CNN models have been
developed to analyze ECG signals to detect arrhythmia conditions [17,20], intervals of the
ECG segment [43], atrial fibrillation (AF) [23], and classes of ECG signals [44] using 4-layer
architecture [45,46], 11-layer architecture [43], 16-layer architecture [44], and 34-layer [5]
architecture, respectively.

The performance of any convolution neural network is assessed by the data behavior.
CNNs find wide applications in the area of image processing [47], object recognition [48],
and handwriting data classification [49]. In an ECG-related analysis for medication, CNNs
are mostly designed for arrhythmia, AF, and MI diseases under a MIT-BIH [17,35,40] dataset.
Thus far, no major work has been reported (as per the literature surveyed) regarding the
application of the CNN model for the prediction of CAD.

The highlight of the present study for CAD detection involved the incorporation of
activation functions for different layers based on detailed analyses of various combinations
(for optimum performance). This study proposes the best CNN combinatorial model with
end-to-end architecture (from data extraction to effective disease prediction) (Figure 2),
focused on ethically approved fresh ECG and TMT-ECG datasets (IRB approved), which
were collected from a reputed hospital in a printed image file format. Data extraction was
conducted with a hybrid image processing technique and an optimized CNN model was
developed thereafter, which was more accurate.
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Figure 2. The 12-lead TMT-ECG end-to-end architecture for ECG prediction.

2. Methodology

The development of an effective computer-aided diagnostic system requires an accu-
rate prediction algorithm. In most medical applications, the convolutional neural network
has been identified as the best prediction algorithm.
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The study proposes a one-dimensional convolutional network (1D-CNN) with mul-
tiple layers and different activation functions for different layers. The datasets extracted
using ECG and TMT-ECG signal image processing for single-lead and 12-lead data were
used as input in the CNN model. Since the data type is a one-dimensional vector format, the
prediction was conducted effectively with the help of a one-dimensional convolutional neu-
ral network. The one-dimensional CNN is excellent at reading the best feature set, which is
a self-distinguishing method from signal data [50]. The development of a one-dimensional
data prediction system involves the following steps.

2.1. Dataset

The study mainly focused on a clinical dataset of 550 patients (collected from a reputed
hospital) with the intention of developing a predictive model to support ECG machines
installed in rural health centers. The non-availability of cardiac experts in rural health
centers will have variability in ECG data interpretation. The supervised method was
adopted to build a model, i.e., data used as input labeled by cardiac experts. ECG signal
data were collected during two phases, one was called the normal ECG and the other was
TMT-ECG signals (stressed ECG), collected according to the Bruce Protocol. It is a universal
technique adopted in all diagnostic centers. According to that, there are 4 stages. Stage one
involves resting, stages 2 and 3 involve exercising at incremental speeds; stage 4 involves
recovering. The angiography-confirmed ECG is considered (as CAD ECG signals—and
others—are considered normal when identifying the data reliability). These observations
were carried out with an almost equal number of male and female participants between the
ages of 25 and 70. The participants for those ECG and TMT-ECG data were recommended
for TMT by healthcare experts (based on ECG results). These age-related and other health-
related variables were not considered during the development of the model. These data
were extracted from ECG and TMT- ECG images using the signal processing methodology.
These signals were considered during peak conditions with one-second durations. The
data extraction was adopted on these signal images to obtain one-dimensional data with a
sampling rate of 815. A detailed explanation of the data extraction is provided as follows.

2.2. Data Extraction

The nonlinear dynamic behavior of the electrocardiogram (ECG) signal is well known,
and it was a key feature that is used in this study. Since the CNN system needs feedback in
the form of digitized signals, the digitization process was implemented, wherein the data
were extracted from ECG and TMT-ECG graphs. The proposed method of digitization was
also recommended to overcome various paper degradation problems, in addition to the
reasons cited in the introduction.

According to a previous analysis, the digitization of ECG graphs was applied only
for single-lead ECGs, and the majority of cases were treated with only resting condition
ECGs. However, TMT-ECG was measured while the patient was running on the treadmill,
based on the Bruce protocol. This plays a key role in predicting arrhythmia, CAD, and
other heart-related conditions. The proposed approach was designed to digitize both the
resting and TMT-ECG conditions (TMT-ECG). This novel approach will include digitized
ECG data and features for each of the 12 leads individually.

The electrical signal of the heart was printed as a waveform (TMT report), which
was collected through 10 electrodes and printed as 12-lead heart signals. The ECG and
TMT-ECG reports used for data extraction were of an exercised (TMT-ECG) condition, as
shown in Figure 3. The p-value, QRS complex, ST segments, and T value were all parts of
the single-lead ECG and 12-lead ECG signals. The digitization of the TMT report, as shown
in Figure 4, which involved both the resting (ECG) and TMT-ECG, aided in the study of
the entire pattern of heart disease activity. Different stages of data extraction in the study
are discussed below.
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2.2.1. Image Scanning

The combined ECG and TMT-ECG report was taken from the GE healthcare diagnostic
ECG MAC 5500 HD machine at the hospital. The thermal paper-printed ECG data were
scanned using a flatbed HP A4/A5 scanner with a 600 dpi scanner resolution [51] (Figure 4).
Any errors in inclination while placing the report on the scanning bed can be nullified by
the following mathematical operation (Equation (1)).

The coordinates of a point (X1, y1) when shifted by an angle (θ) around (X0, y0)
becomes (X2, y2) and is defined as

X2 = cos(θ)× (X1 − X0) + sin(θ)× (y1 − y0)
y2 = −sin(θ)× (X1 − X0) + cos(θ)× (y1 − y0)

(1)

2.2.2. Image Masking

The scanned report contains string values pertaining to electrode locations and general
information about the patient. These string values needed to be removed from the image as
redundant data. The image masking helped to remove such redundancies from the images.
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2.2.3. Defining a Threshold Value

The background in the graph image should be removed in order to extract the signal
image from the scanned one. When it comes to removing the backgrounds from graph
images, a color histogram comes into account. The color distribution over an image is
represented by a histogram. In the ECG graph, the intensity of the red pixel is shown in
Figure 5a. The histogram (Figure 5a) was generated with the help of a MATLAB R2020b
module, namely “Color Threshold GUI”. Ten different ECG/TMT-ECG scanned images
were selected randomly to achieve proper red pixel erosion. In the above color threshold
module, the threshold value for the red pixel intensity was determined to be 145–255 by
the trial-and-error method. Once the threshold was identified, the system automatically
removed the lesser range of red pixels from the image. Finally, a black line ECG graph was
retained at the end of red pixel intensity filtering.

2.2.4. Binarization

To convert an image to black-and-white, the luminosity method described in the GIMP
image tool of MATLAB R2020b [52] was used (Figure 5b).

The luminosity method is given by:

Luminosity = 0.21R + 0.72G + 0.07B (2)

Equation (2) shows the luminosity formula, where R refers to red, G refers to green, and
B represents the blue pixel values. This method is more advanced [53] than other methods.
It also uses a weighted average method to average the values for human experiences.



Appl. Sci. 2022, 12, 7711 8 of 25Appl. Sci. 2022, 12, 7711 8 of 26 
 

 
Figure 5. (a) Intensity of RGB distribution, (b) binary image of ECG, (c) clean binary image of ECG, 
(d) after a morphological operation. 

2.2.4. Binarization 
To convert an image to black-and-white, the luminosity method described in the 

GIMP image tool of MATLAB R2020b [52] was used (Figure 5b). 
The luminosity method is given by: 

Luminosity = 0.21R + 0.72G + 0.07B  (1)

Equation (2) shows the luminosity formula, where R refers to red, G refers to green, 
and B represents the blue pixel values. This method is more advanced [53] than other 
methods. It also uses a weighted average method to average the values for human expe-
riences. 

2.2.5. Open Area Deletion 
The use of a binarization Gaussian filter can reduce the clarity of the image. To pre-

vent this, the open areas of the image were deleted by a process that combined the removal 
of noise and image dilation. Such an open area deletion feature eliminates the pixel cluster 
of fewer than fifty pixels for binary images and leads to better clarity of the image (Figure 
5c). 

2.2.6. Morphological Operation  
The ECG signal after the elimination of open areas is represented by a thick line. A 

morphological operation was used to retrieve the typical data segment out of this. The 
morphological operation algorithm chooses the averaged pixels in a row of pixels. Conse-
quently, the morphological operation’s output will be a thin binarized image, resulting in 
a clean, thin graph (Figure 5d). Mathematically, it is written as (Equation (3)) [54]: 𝑡ℎ𝑖𝑛(𝑋, 𝑌) = 𝑋 − (𝑋⨂𝑌) (3) 
where the thinning of a set X by structuring elements (SE) Y is denoted by X ⨂ Y. The 
thinning by a sequence of SEs is as in (Equation (4)) (𝑋⨂𝑌) = [𝑋 − ((𝑋 ⊖  𝑌 )⋂ (𝑋 ⊝  𝑌  (4) 

Figure 5. (a) Intensity of RGB distribution, (b) binary image of ECG, (c) clean binary image of ECG,
(d) after a morphological operation.

2.2.5. Open Area Deletion

The use of a binarization Gaussian filter can reduce the clarity of the image. To prevent
this, the open areas of the image were deleted by a process that combined the removal of
noise and image dilation. Such an open area deletion feature eliminates the pixel cluster of
fewer than fifty pixels for binary images and leads to better clarity of the image (Figure 5c).

2.2.6. Morphological Operation

The ECG signal after the elimination of open areas is represented by a thick line. A
morphological operation was used to retrieve the typical data segment out of this. The
morphological operation algorithm chooses the averaged pixels in a row of pixels. Conse-
quently, the morphological operation’s output will be a thin binarized image, resulting in a
clean, thin graph (Figure 5d). Mathematically, it is written as (Equation (3)) [54]:

thin(X, Y) = X− (X⊗Y) (3)

where the thinning of a set X by structuring elements (SE) Y is denoted by X ⊗ Y. The
thinning by a sequence of SEs is as in (Equation (4))

(X⊗Y) = [X− ((X	Y1) ∩ (XC 	Y2))] (4)

2.2.7. Pixel Indexing

With the pixel indexing technique [55], the heart signal (ECG) graph is converted into
an array sequence that corresponds to the amplitude and time series on the ECG graph.
Results of all non-zero elements of the column and row are represented in the 2D array.
The first column of the array stores the row value (time series) of the pixel. Similarly, the
second column of the array stores the column value (amplitude) of the corresponding row
pixel. If there are more than one number of white pixels present in a single column for the
defined time series, the white pixel in the middle will provide good results. Hence, in such
a situation, the middle pixel (maximum pixel intensity value) will be retained. The flow
chart of the corresponding algorithm is shown below (Figure 6). A lot of the redundancy
(in the form of the uneven thickness of the ECG graph) is eliminated by this procedure.
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2.2.8. Data Storage

The data obtained by pixel indexing were stored in a readable file format (.dat and
.excel) and translated from dots per inch to millimeters for further applications using the
equation below (Equation (5)).

L = ld × 25.4/600 (5)

where l is the length in millimeters and ld is the length in dots per inch (1 inch equals
25.4 mm) at 600 dots per inch (dpi), and each 1 dot corresponds to 0.0423 mm.

It should be noted that, in the ECG/TMT-ECG graph, the grid unit along the amplitude
axis corresponds to 0.1 mV and along the time series axis corresponds to 0.02 s [56]. The
extracted data of the entire 12-lead plots are compared with the ECG graph of the original
12-lead images, as shown in Figure 7.

2.2.9. Feature Extraction

The literature studies have highlighted several algorithms developed to extract ECG
features. In the majority of cases, the data used in these algorithms were QRS complex and
ST sections of the ECG graph. In this work, an intelligent system was developed based on
a novel approach. The Pan–Tompkins method [57,58], with the combination of a statistical
method [37], was used in the feature extraction analysis. The Tompkins extraction method
is ideally suited for extracting from the QRS complex.
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The accuracy of an intelligent system is determined by key features extracted from
ECG graph data. The data from the QRS complex and the ST section were inadequate to
create an efficient framework. Additional segmentation of lead data resolved this problem.
The segments were extracted using a statistical procedure that selected the lead maximum
and minimum values of the data. This was achieved by fixing the QRS complex position.
Once the QRS complex (QRS segment) position was fixed, the maximum values of the
neighboring signals provided the P and T amplitudes (Figure 8). Using these amplitude
values, the other segments (PQ, QT, ST) could easily be determined.
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2.3. Prediction System Architecture

The feature data extracted from the ECG and TMT-ECG signals were used to develop
the prediction system for the CAD, using convolution neural network (CNN) modeling.
This prediction system was developed on two considerations. The first one was based on
single-lead signals and the other on 12-lead signals (I, II, III, aVR, aVL, aVF, V1, V2, V3, V4,
V5, V6). In the design of the CNN model, the data obtained through the data extraction
procedure array of the time series voltage datasets, including the ECG feature data, were
used as input. The amplitude values of the signal, QRS complex, ST segment, P, Q, R, S,
and T values, were included.

Initially, in the single-lead CNN model, a total of 815 time-series data extracted from
individual ECG graphs were normalized and fed into the input layer to obtain an output
during the training cycles. Iterations were repeated for the designated number of training
data in a similar way. For the 12-lead ECG, a similar approach was adopted but, in this
case, the number of time series data extracted from a single multi-lead (12-lead) ECG
graph was 9792. These data were obtained as a one-dimensional dataset and were used
in the development of the CNN model. Considering various CNN architectures, each
with different layer numbers and combinations of activation functions, an optimal CNN
network was arrived at. Three subcategories were made based on the number of layers
used for the optimization procedure, i.e., (1) a one-layer CNN architecture, (2) two-layer
CNN architecture, and (3) three-layer CNN architecture [40].

2.4. Single-Lead ECG/TMT-ECG-Based CNN Architecture

Here, the mathematical representation of the generalized convolution operation is
given by:

xn =
n−1

∑
k=0

yk fn−k (6)

where the variable y corresponds to the input signal, f denotes the filter, and n represents
the number of data/feature elements in y, respectively. The variable ‘x’ represents the
output vector. These layers were convoluted with a kernel size of 1 and a stride of 1 using
Equation (6) [59]. Four activation functions adopted in the CNN model across the different
layers were: ReLU, SoftMax, LeakyReLU, and linear.
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The following approach was adopted to arrive at a proper CNN architecture for
effective prediction. Initially, four independent single-layer CNN models (N-1 to N-4),
each with different activation functions, were developed, as shown in Table 1. All of the
developed CNN models have inputs of sequential models [60] (Figure 9a). As shown in
Figure 9a, the output of the independent CNN architecture passes through a flattened layer
and a fully-connected dense layer with sixteen filters. The sigmoid activation function was
used in the output layer to classify the CAD and normal data. By this stage, the effective
activation functions for the next step were identified.

Table 1. Detailed CNN architecture for a single-lead ECG with one-convolutional, two-convolutional,
and three-convolutional layers, respectively.

Single-Layer CNN Two-Layer CNN Three-Layer CNN

Network (N)

N-1 N-2 N-3 N-4 N-5 N-6 N-7 N-8 N-9 N-10

Input (815, 1) (815, 1) (815, 1) (815, 1) (815, 1) (815, 1) (815, 1) (815, 1) (815, 1) (815, 1)

Hidden_1
Layer

Conv1D
+ ReLU
(814, 64)

Conv1D
+

LeakyReLU
(814, 64)

Conv1D
+

SoftMax
(814, 64)

Conv1D
+ Linear
(814, 64)

Conv1D +
ReLU

(814, 64)

Conv1D +
LeakyReLU
(814, 64)

Conv1D +
LeakyReLU

(814, 64)

Conv1D +
ReLU (814,

64)

Conv1D +
LeakyReLU

(814, 64)

Conv1D +
ReLU (814,

64)

Hidden_2
Layer None None None None

Conv1D +
ReLU

(813, 32)

Conv1D +
LeakyReLU
(813, 32)

Conv1D +
ReLU

(813, 32)

Conv1D +
ReLU

(813, 32)

Conv1D +
ReLU

(813, 32)

Conv1D +
LeakyReLU

(813, 32)

Hidden_3
Layer None None None None None None None

Conv1D +
LeakyReLU

(812, 16)

Conv1D +
ReLU (812,

16)

Conv1D +
ReLU (812,

16)
Flatten [52096] [52096] [52096] [52096] [26016] [26016] [26016] [156624] [156624] [156624]

Fully-
Connected

Dense +
ReLU
(16)

Dense +
ReLU
(16)

Dense +
ReLU
(16)

Dense +
ReLU
(16)

Dense +
ReLU (16)

Dense +
ReLU (16)

Dense +
ReLU (16)

Dense +
ReLU (16)

Dense +
ReLU (16)

Dense +
ReLU (16)

Output
Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Table 1 shows the layer-wise details of the output shape with the number of filters
under one-dimensional data conditions. For example, the output shape of Conv1D + ReLU
(814, 64) implies 814 numbers of the one-dimensional data flow from a particular layer and
64 channel filters analyze these data to generate the corresponding output. The system
was trained with 5304 (out of 6630) patients’ data—a single-lead dataset, i.e., 80%—over an
interval of time, and the data had 815 elements recorded, with respect to time. The dataset
included all of the features (P, Q, R, S, T, QRS complex, and ST segment_ for training and
testing purposes. The convolutional neural network model, which is trained for a standard
ratio of 80% and 20% for training and testing, was validated based on CNN methodology.

Out of the four activation functions, the best two (ReLU and Leaky ReLU) were
identified in the previous step. The two-layer CNN architecture with different combinations
of these activation functions was developed (ReLU–ReLU, Leaky ReLU–Leaky ReLU, Leaky
ReLU–ReLU) as shown in Figure 9b to obtain the best result. In the next step, the three-layer
CNN architecture (Figure 9c) was developed from the knowledge of these results, leading
to better results. The overfitting problem was observed with a higher number of layers and,
hence, the three-layer CNN architecture (Figure 10a) was finalized as the best one.
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2.5. Multi (12)-Lead ECG/TMT-ECG with CNN Architecture

ECG machines in general will provide 12-lead ECG/TMT-ECG signals as output, i.e.,
I, II, III, aVR, aVF, aVL, V1, V2, V3, V4, V5, and V6, which correlate to the entire behavior
of the heart, and each lead has different amplitude curves. The study of 12-lead ECG
signals consists of all 12-lead ECG signal data, which are collected by the same procedure
as with the single-lead ECG. These are in the form of a one-dimensional dataset. The
resulting combined 12-lead one-dimensional dataset was used in the development of
CNN architecture.

Since CNNs perform more effectively on nonlinear datasets [43], similar architectures
that are used in single-lead ECG datasets are applied to 12-lead ECGs. The defined CNN
architecture worked with the input of data gathered from 552 patients. Here, each sample
had 9792 parameters instead of 815 as was the case in single-lead architecture, which was
recorded over time intervals. Based on a standard protocol, 80% of the data were used for
training and 20% for testing conditions.

As mentioned in Table 2, four different independent single-layer convolutional net-
works were developed, each using different activation functions (ReLU, leaky ReLU,
SoftMax, and linear, respectively) having a kernel size of 1 and stride of 1. The output
in each of the CNN models (with a shape of (9791, 64)) was flattened and flowed to the
output layer through a fully-connected dense layer as illustrated in Figure 10a. The output
function defined with a dense layer consisted of the sigmoid activation function [17]. The
sequential model is considered as input for all of the CNN models and the output classifi-
cations of these models were conducted through the binary classification process. Hence,
all of the models were compared using the binary cross-entropy loss function [46] with
the Adam optimizer [61]. This process was most suitable to classify the data for ‘CAD’ or
‘normal data’.

Table 2. Detailed CNN architecture for multi (12)-lead ECG with 1-convolutional, 2-convolutional,
and 3-convolutional layers, respectively.

Single-Layer CNN Two-Layer CNN Three-Layer CNN

Network (N)

N-1 N-2 N-3 N-4 N-5 N-6 N-7 N-8 N-9 N-10

Input (9792, 1) (9792, 1) (9792, 1) (9792, 1) (9792, 1) (9792, 1) (9792, 1) (9792, 1) (9792, 1) (9792, 1)

Hidden_1
Layer

Conv1D +
ReLU

(9791, 64)

Conv1D +
LeakyReLU
(9791, 64)

Conv1D +
SoftMax

(9791, 64)

Conv1D +
Linear

(9791, 64)

Conv1D +
ReLU

(9791, 64)

Conv1D +
LeakyReLU
(9791, 64)

Conv1D +
LeakyReLU
(9791, 64)

Conv1D +
ReLU

(9791, 64)

Conv1D +
LeakyReLU
(9791, 64)

Conv1D +
ReLU

(9791, 64)

Hidden_2
Layer None None None None

Conv1D +
ReLU

(9790, 32)

Conv1D +
LeakyReLU
(9790, 32)

Conv1D +
ReLU

(9790, 32)

Conv1D +
ReLU

(9790, 32)

Conv1D +
ReLU

(9790, 32)

Conv1D +
LeakyReLU
(9790, 32)

Hidden_3
Layer None None None None None None None

Conv1D +
LeakyReLU
(9789, 16)

Conv1D +
ReLU

(9789, 16)

Conv1D +
ReLU

(9789, 16)
Flatten [626624] [626624] [626624] [626624] [313280] [313280] [313280] [156624] [156624] [156624]
Fully-

Connected
Dense +

ReLU (16)
Dense +

ReLU (16)
Dense +

ReLU (16)
Dense +

ReLU (16)
Dense +

ReLU (16)
Dense +

ReLU (16)
Dense +

ReLU (16)
Dense +

ReLU (16)
Dense +

ReLU (16)
Dense +

ReLU (16)

Output
Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

Dense +
Sigmoid

(1)

The same procedure was extended to the two-layer CNN architecture, i.e., the sequen-
tial model followed by two CNN layers. The first-layer CNN architecture output shape of
(9791, 64) was the input to the second-layer CNN. This two-layer CNN architecture was
developed using the best two of the effective activation function combinations (Table 2). Its
output shape (9790, 32) was flattened (313280) and flowed to the final dense layer (through
a fully-connected layer) with a sigmoid activation function, as illustrated in Figure 10b.

In the next step, the three-layer CNN architecture was designed based on the knowl-
edge gained from the development of the two-layer CNN architecture. The three-layer
CNN architecture has a sequential model of three CNN layers with output shapes of (9791,
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64), (9790, 32), and (9789, 16), respectively, and with the best combination of two activation
functions. The flattened output of the last CNN layer was fed to the fully-connected layer.
The final output function consists of a dense layer with a sigmoid activation function,
with an output of ‘0’ or ‘1’. A value of ‘0’ indicates ‘normal health’ with respect to the
ECG and a value of ‘1’ indicates the presence of ‘CAD’ (Figure 10b). Since it is a binary
classification, the predefined binary cross-entropy loss function and Adam optimizer were
used to analyze the 12-lead ECG data. To avoid the overfitting error and to obtain the
best-optimized classification model, all convolutional neural network models (10 networks)
were analyzed using a constant number of epoch values (25 epochs). The results of these
combinational models will help to derive an effective and suitable CNN system that is
valid over both types of datasets (single-lead and multi-lead datasets).

3. Results and Discussion
3.1. Correlation Study of Signal Data

In the CNN model developed, using digitized data of the ECG/TMT-ECG signal as
input, 6630 data were considered in the single-lead case; in the case of 12-leads, 552 data
were considered for a period of 1 s. Out of these, a set of 100 sample data were randomly
selected for the data validation process [11,32]. A least-square fit analysis was conducted
for the randomly selected 100 leads (considering both CAD and normal data). The table
showing the summary of test results, i.e., Mean∆ and Median∆, indicates the mean and
median of the sample-by-sample difference (derived ECG minus manual (original) ECG)
of every single lead. Results show a good fit (Table 3). The results showed a good degree
of concurrency, as illustrated in Figure 11. Moreover, Pearson’s correlation coefficient [62]
was also adopted to find the similarity between normalized original and extracted data for
the selected leads. These were one-dimensional datasets, such as in the earlier case. The
result of the averaged correlation was found to be 96%. Thus, the developed prediction
model for CAD incorporated a better approach for feature extraction in terms of PQRST
(Figure 11) and data extraction from the ECG signals (Figure 12).

Appl. Sci. 2022, 12, 7711 16 of 26 
 

layer (through a fully-connected layer) with a sigmoid activation function, as illustrated 
in Figure 10b. 

In the next step, the three-layer CNN architecture was designed based on the 
knowledge gained from the development of the two-layer CNN architecture. The three-
layer CNN architecture has a sequential model of three CNN layers with output shapes 
of (9791, 64), (9790, 32), and (9789, 16), respectively, and with the best combination of two 
activation functions. The flattened output of the last CNN layer was fed to the fully-con-
nected layer. The final output function consists of a dense layer with a sigmoid activation 
function, with an output of ‘0’ or ‘1’. A value of ‘0’ indicates ‘normal health’ with respect 
to the ECG and a value of ‘1’ indicates the presence of ‘CAD’ (Figure 10b). Since it is a 
binary classification, the predefined binary cross-entropy loss function and Adam opti-
mizer were used to analyze the 12-lead ECG data. To avoid the overfitting error and to 
obtain the best-optimized classification model, all convolutional neural network models 
(10 networks) were analyzed using a constant number of epoch values (25 epochs). The 
results of these combinational models will help to derive an effective and suitable CNN 
system that is valid over both types of datasets (single-lead and multi-lead datasets). 

3. Results and Discussions 
3.1. Correlation Study of Signal Data 

In the CNN model developed, using digitized data of the ECG/TMT-ECG signal as 
input, 6630 data were considered in the single-lead case; in the case of 12-leads, 552 data 
were considered for a period of 1 s. Out of these, a set of 100 sample data were randomly 
selected for the data validation process [11,32]. A least-square fit analysis was conducted 
for the randomly selected 100 leads (considering both CAD and normal data). The table 
showing the summary of test results, i.e., Mean∆ and Median∆, indicates the mean and 
median of the sample-by-sample difference (derived ECG minus manual (original) ECG) 
of every single lead. Results show a good fit (Table 3). The results showed a good degree 
of concurrency, as illustrated in Figure 11. Moreover, Pearson’s correlation coefficient [62] 
was also adopted to find the similarity between normalized original and extracted data 
for the selected leads. These were one-dimensional datasets, such as in the earlier case. 
The result of the averaged correlation was found to be 96%. Thus, the developed predic-
tion model for CAD incorporated a better approach for feature extraction in terms of 
PQRST (Figure 11) and data extraction from the ECG signals (Figure 12). 

 
Figure 11. Comparison of features of the ECG sample and digitized ECG for the sample data. Figure 11. Comparison of features of the ECG sample and digitized ECG for the sample data.



Appl. Sci. 2022, 12, 7711 17 of 25

Table 3. Study of the correlation of 100 randomly selected samples.

Extracted Data vs. Original Data Mean (∆) Median (∆) Correlation (∆)

Mean −0.0311 0.02102 0.98

Standard Deviation 0.02423 0.03541 0.9

Minimum −0.06378 0.06784 0.89

Maximum 0.02785 0.02516 0.97
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3.2. Performance Metrics Evaluation

The CNN model was developed on a system that was configured with the AMD Ryzen
processor consisting of SSD and 24 GB RAM with a 2GB graphics card [10]. The training
algorithm ran with TensorFlow and Keras backend [62,63]. Each epoch approximately
took an average of 5 to 10 s. Tables 4 and 5 show the results of the single-lead and multi-
lead ECG/TMT-ECG for the single-, two-, and three-layer convolutional neural networks,
respectively (precision, recall, F1-score, accuracy, and validation loss), depending on the
classification of CAD and normal ECG segments based on the single-lead ECG and 12-lead
ECG. In Tables 4 and 5, one could see that very high diagnostic accuracy was obtained with
a defined number of training samples.
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Table 4. Results of the single-lead ECG for the single-, two-, and three-convolutional layer networks.

Single-Layer CNN Two-Layer CNN Three-Layer CNN

Network (N)

N-1 N-2 N-3 N-4 N-5 N-6 N-7 N-8 N-9 N-10

Precision 72.50% 84% 32% 97% 97.50% 98% 99% 100% 96.50% 99%
Recall 74.50% 81.50% 50% 95.50% 98% 98% 99% 99% 98% 99%

F1-Score 72.50% 82% 39% 96% 97.50% 97.50% 98% 100% 97.50% 99%
Accuracy 73% 84% 64% 96% 98% 98% 99% 100% 97% 100%
Validation

Loss. 0.4825 0.37 0.65 0.1269 0.0773 0.069 0.022 0.00075 0.0098 0.00412

Table 5. Results of the multi (12)-lead ECG for the single-, two-, and three-convolutional
layer networks.

Single-Layer CNN Two-Layer CNN Three-Layer CNN

Network (N)

N-1 N-2 N-3 N-4 N-5 N-6 N-7 N-8 N-9 N-10

Precision 29.50% 98% 29.50% 97% 29.50% 97.00% 98% 99% 99% 99%
Recall 50.00% 97.50% 50.00% 96.50% 50.00% 97.50% 97% 99% 99% 99%

F1-Score 37.00% 96.50% 37.00% 97% 37.00% 96.50% 97% 100% 100% 100%
Accuracy 59% 98% 59% 97% 59% 97% 98.30% 99% 99% 99%
Validation

Loss 0.68 0.054 0.6878 0.079 0.68 0.052 0.025 0.00022 0.00017 0.00028

The data were of two types (i) single-lead signal and (ii) 12-lead signal data. These data
were used for system training; the detailed evaluation [64] of the model was performed
based on testing and validation data using a standard protocol. The commonly used
performance metrics were accuracy (Equation (7)), sensitivity (Equation (8)), f1 score
(Equation (9)), specificity (Equation (10)), and precision (Equation (11)). [7,8,56].

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Sensitivity =
TP

TP + FN
(8)

F1 Score =
2× TP

2× TP + FP + FN
(9)

Specificity =
TN

FP + TN
(10)

Precision =
TP

TP + FP
(11)

These are related to the true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) rates of the confusion matrix (Figures 13 and 14).
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3.3. Identification of the Optimal Model

The CNN system learns from the empirical set of data features automatically with
multiple levels of abstraction. Hence, it allows learning the complex functions of the
input data with features accessed automatically. The results of the different CNN layers
and activation function scenarios, which were used for experimentations, are compared
in Tables 4 and 5, considering accuracy, precision, validation loss, F1 score, and recall.
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Network-8 exhibited good accuracy during the training and testing phases (99% and 100%),
with less validation loss (0.00022 and 0.00075) for both single-lead and 12-lead ECGs.
The results are acceptable, owing to the good precision and recall rates. The model by
Tan, J.H.; Hagiwara, Y. et al. [10], of the long short-term memory (LSTM) network with a
convolutional neural network (CNN), provided good results in automatically diagnosing
CAD ECG signals with the inclusion of lead II and ECG segments. This limitation was
easily overcome with the application of the present method by retaining the same accuracy.
The prediction method of single-lead and twelve-lead includes data extraction and data
classification. Since it is a complex methodology, the processing time might be higher
compared to a normal repository dataset analysis. This model can further be tested for
patients located in geographically-far locations, so that generality can be ensured for a
wider diaspora. A technically experienced person can effectively deal with these types
of prediction systems. The three-layer CNN network model (Network-8) (Figure 15) is
preferred for the classification of CAD due to its superiority in performance.
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The results of Tables 4 and 5 indicate that a three-layered network with ReLU, ReLu,
and LeakyReLU activation functions assigned to the first, second, and third hidden layers,
was the best-suited architecture for the model, which was not attempted earlier. The
developed three-layer CNN model worked equally well for both the single-lead and
12-lead ECG signal data, exhibiting generality. The performances of the developed model
in terms of training and validation accuracies are plotted in Figure 16a,b for the single-lead.
Figure 17a,b show good convergence of validation loss; it is an ideal fit for twelve-lead
ECG/TMT-ECG data, which were extracted from the ECG/TMT-ECG graph. The model
achieved an accuracy of 99% with a very small validation loss of less than 0.0008% on the
25th epoch.
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3.4. k-Fold Cross Validation

This is a standardized method of estimating the performance of the evaluation of the
prediction model. This is usually applied during a smaller number of data samples that are
present as input. The k-fold cross-validation process contains a single parameter, k, which
designates how many groups should be created from a given data sample. Here, the k-fold
parameters were considered as 5, i.e., k = 5, which indicates that splitting the given data
samples into 5 groups is known as the 5-fold cross-validation, as explained in Figure 18.
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Each split contains five-fold values, out of that, four are used for training and the
remaining one is used for validation.

Table 6 shows the detailed information about accuracy and standard deviation scores
obtained during each split for the single-lead ECG data and twelve-lead ECG data. Results
show the validation scores of Network-8, considering single-lead and 12-lead data. The
average accuracies were obtained as 99.5% and 99.1%, respectively, for single-lead and
12-lead data. Hence, this is one of the best methods to deal with clinical lab datasets. The
model shows good accuracy (of about 98.6%) during the validation phase for both single
and 12-lead ECG data. The development of a graphical user interface (GUI) incorporating
the current model for both types of data can be the main scope for future work (for better
accessibility for healthcare experts).

Table 6. Accuracies of the k-fold cross validation.

Single-Lead ECG Data Twelve-Lead ECG Data

Accuracy (%) Standard
Deviation Accuracy (%) Standard

Deviation

Split-1 99.8 0.006 98.7 0.021
Split-2 99.5 0.011 99.4 0.013
Split-3 99.3 0.01 99.3 0.011
Split-4 99.3 0.012 98.8 0.019
Split-5 99.7 0.008 99.1 0.017

Average 99.5% 0.009 99.1% 0.016

4. Conclusions

Thus, the CNN model was developed for both single-lead and 12-lead ECG datasets
compiled from clinical data. While 6630 datasets were used for the single-lead prediction
model, 552 datasets were used for the 12-lead model. The clinical ECG signal data were
gathered from a reputed hospital with additional features extracted through a unique
feature extraction procedure. A hybrid method combining Pan–Tompkins and a statistical
method involving feature extraction was implemented, which resulted in extracting all
of the features related to the ECG. During the modeling, the CNN model with a single
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layer, two layers, and three layers experimented with different activation functions in
different layers. Later, the three-layer CNN model was found to be the best architecture,
with ReLU, ReLU, and LeakyReLU activation functions in the first, second, and third layers,
respectively. This model showed an accuracy of 99% during the training phase, while it
exhibited an accuracy of 98.6% in the validation trials. Thus, the three-layer CNN model,
with ReLU, ReLU, and LeakyReLU activation functions works well for single-lead as well
as 12-lead ECG datasets and is able to predict the CAD much more reliably than any other
model. Hence, the present model proved to be the best fit for the classification of CAD. The
same model can be implemented as an assisting tool for doctors in clinical applications.
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