
Citation: Carvalho, A. REX:

General-Purpose CNL with Code

Generation Support. Appl. Sci. 2022,

12, 7700. https://doi.org/10.3390/

app12157700

Academic Editors: Alberto Rodrigues

Da Silva and Luis Olsina

Received: 25 June 2022

Accepted: 26 July 2022

Published: 30 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

REX: General-Purpose CNL with Code Generation Support
Adriano Carvalho

Centro Algoritmi, Universidade do Minho, 4800-058 Guimarães, Portugal; b4795@algoritmi.uminho.pt

Abstract: Controlled natural languages (CNLs) have been proposed to address some of the issues
of natural language when it is used to express requirements. CNLs, however, are based on formal
grammar, which can easily become complex, hard to read, and especially hard to write, and the
implementation of support tools can also demand a significant effort. Moreover, unanticipated
constructions cannot be handled or have to be handled in unexpected and cumbersome ways. In this
article, we present REX, a CNL with a simple grammar that is, thus, easy to understand and easy to
support, but still general purpose. To accomplish this, instead of trying to support every conceivable
construction and imposing a language on the users, through a small but comprehensive set of rules
and through patterns, users specify their own language and how natural it is. Another of the benefits
of CNLs is the possibility to automate the transformation of a text or specification into something
useful, thereby reducing manual labor and transformation errors. In this article, we also present the
support tools that were used to transform a REX text into code and a complete application. It is also
shown that this CNL and its support tools can be easily adapted to suit different needs.

Keywords: controlled natural language; code generation; programming; requirements specification

1. Introduction

The estimated cost of fixing an error during the requirements phase has been es-
timated as up to 1500 times cheaper than fixing an error in other phases of the project
life-cycle [1]. One of the approaches proposed for the reduction and early detection of
errors in the requirements is the use of controlled natural languages (CNLs) for writing
requirements [2,3].

A CNL should read like natural language, such that it is accessible to all or most
stakeholders. However, according to a formal grammar, there is always one interpretation
for a given sentence [4]. Hence, with a CNL, it is possible to remove ambiguity and, through
appropriate support tools, the reduction and early detection of errors in the requirements.
CNLs, nevertheless, are not without limitations. They require readers, but especially writers,
to know the grammar and learn to express themselves using that grammar in a way that
does not impair their creativity [5]. Moreover, formal grammars can easily become complex,
and the implementation of support tools demand a significant effort. Lastly, unanticipated
constructions or patterns cannot be handled or have to be handled in unexpected and
cumbersome ways. These limitations lead to trade-offs (e.g., comprehensive grammar vs.
available support tools), which ultimately result in CNLs that are either limited in scope
or not very useful. In the end, the CNLs that are found in the literature have at least one
of the following limitations: not suitable or very limited for requirements specifications,
no runtime code generation support, or no balance between natural and technical modes
of expression.

In this article, we present REX (the implementation used for this article can be found
at: https://github.com/b4795/REX, accessed on 24 June 2022), a CNL which distinguishes
itself by having a small but comprehensive set of rules, and thus, a grammar that is simple,
easy to understand, and easy to support. Despite the small set of rules, it is a general-
purpose language because it can be extended by the users to suit their particular needs
through patterns. In this article, code generation from REX is also demonstrated. Code

Appl. Sci. 2022, 12, 7700. https://doi.org/10.3390/app12157700 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12157700
https://doi.org/10.3390/app12157700
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4672-689X
https://github.com/b4795/REX
https://doi.org/10.3390/app12157700
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12157700?type=check_update&version=2

Appl. Sci. 2022, 12, 7700 2 of 17

generation (as well as the generation of any other artifacts) is possible because of the CNL’s
formal grammar, bringing a number of benefits to add to those already mentioned.

This article is structured as follows. Section 2 provides some background and reviews
of related work. Section 3 presents REX through four simple examples of increasing
complexity, while Section 4 describes the implementation of support tools. This article ends
with some conclusions and additional remarks in Section 5.

2. Background and Related Work

A requirement has been defined as “a statement that identifies a necessary attribute,
capability, characteristic, or quality of a system in order for it to have value and utility to a
user” [6]. Requirements are often the basis for communication between stakeholders with
different backgrounds (e.g., users, developers, project managers), and so, requirements
should be accessible and, whenever possible, easy to understand. There are different ways
of documenting requirements. By far, the most common way is to use text, but there are
also graphical notations (which end up relying on text as well). Text-based requirements
are written, more often than not, using informal natural language, often ambiguous and
thus, error-prone. Graphical notations introduce some formalisms, which help to reduce
ambiguity, but there is still room for informality and, most of all, require stakeholders
to know those notations. In some cases (e.g., for critical systems), formal methods are
sometimes used, but these rely on languages and methods accessible to only a very few.
Altogether, this means that, in practice, requirement specifications contain ambiguities that
lead to costly errors.

The estimated cost of fixing an error during the requirements phase has been estimated
as up to 1500 times cheaper than fixing an error in other phases of the project life-cycle [1].
Errors in the requirements are inevitable, hence, those who are able to detect and correct
them early, such that they do not propagate, have a significant competitive advantage.
Besides the cost of correcting errors, the cost of changing requirements is also high (an
increasing necessity nowadays in order to adapt to fast changing business needs). There
are, however, not only monetary and time-related costs, but also a psychological cost on
the developers and other stakeholders, leading to a resistance to change and innovation.

We identify two major kinds of errors in the requirements: (1) errors when expressing
or understanding requirements (we will call these verification errors); (2) errors estimating
the realization value of requirements in practice (we will call these validation errors).

In the literature, we also find two major kinds of approaches which propose the
reduction or early detection of errors in the requirements, namely: (1) new processes, and
(2) new tools. If processes were followed scrupulously, most (if not all) errors would be
found. The issue, in our opinion, is that typical human beings are unable to maintain
the necessary level of focus and concentration required to follow processes that are often
complex, have high overhead, and lack adequate support tools. This is exacerbated by
the large size of typical requirement specifications. It is impossible for a typical human
being to reason on such large texts with the necessary precision. In terms of tools, and
to workaround the current limitations in natural language processing, controlled natural
languages (CNLs) have been proposed for writing requirements [2,3].

A CNL should read like natural language, such that it is accessible to all or most
stakeholders. However, according to a formal grammar, there is always one interpretation
for a given sentence [4]. Hence, with a CNL, it is possible to remove ambiguity and,
through appropriate support tools, the reduction and early detection of verification errors
in the requirements. CNLs, nevertheless, are not without limitations. They require readers,
and especially writers, to know the grammar and to learn to express themselves using
that grammar in a way that does not impair their creativity [5]. Formal grammars can
easily become complex, and the implementation of support tools demand a significant
effort. Moreover, unanticipated constructions or patterns cannot be handled or have to be
handled in unexpected and cumbersome ways. These limitations lead to trade-offs (e.g.,

Appl. Sci. 2022, 12, 7700 3 of 17

comprehensive grammar vs. support tools) which ultimately result in CNLs that are either
limited in scope or not very useful.

Besides removing ambiguity, another major benefit of using a CNL is that relevant arti-
facts can be predictably generated. This enables, in particular, code generation, automated
verification, early validation, and in the end, reduced time-to-market. A requirements
specification written in a CNL can be compiled into a formal model that can be verified to
prove that there are no contradictions, that invariants are not violated, and more [2,3,7–10].
Similarly, a requirements specification can be compiled into prototypes or mockups, or ide-
ally, into runtime or production code, which can be delivered to QA as well as to end-users,
enabling the realization of the requirements to be tested and validated in practice as soon
as possible.

In the literature, we find that Osmosian [11], Logical English [12,13], requs [14,15], and
Gherkin [16], are the CNLs that most closely resemble REX. First, Osmosian is accompanied
by compiler, desktop, editor, etc., all of them written in “plain english”. This project seems
to have been developed to prove the point that “plain english programming” is feasible
(we believe that requirements can be regarded as just another programming language,
yet one with a very high-level of abstraction and all-powerful), and thus, resorts almost
completely in “plain english”, which for practical purposes is not always appropriate. For
practical purposes, there should be a balance between natural and technical modes of
expression. Second, requs, like REX, has also been developed for runtime code generation,
but from very limited use case specifications. Third, Cucumber is focused on acceptance
tests specifications, which some may regard as a requirements specification; however, so far,
it has not been sufficient for runtime code generation (as opposed to test code generation).
Lastly, Logical English, developed in Prolog, with a complex and imposing grammar has
also not been developed for runtime code generation.

In the literature, many other CNLs can be found, of which we highlight: (1) the
CNLs presented by Silva et al. [17], which impose a strict and thus, limiting grammar;
(2) SBVR [18], or SBVR-SE, to be more specific, and RuleSpeak [19] (supported by RuleX-
press [20]) for managing business rules; and (3) ACE [4] and PENG [21] for knowledge
representation using first-order logic.

In the end, the CNLs that are found in the literature have at least one of the following
limitations: not suitable or very limited for requirements specifications, no runtime code
generation support, or no balance between natural and technical modes of expression.
In this article, we present REX, a CNL which distinguishes itself by having a small but
comprehensive set of rules, and thus, a grammar that is simple, easy to understand, and
easy to support. In this way, and as explained in the following sections, the limitations
above do not apply to REX.

Looking back through a CNL for requirement specification, the two major kinds of
requirement errors identified above are addressed as follows:

• Verification errors: ambiguity is removed (through a formal grammar), and automated
verification is added (through code generation);

• Validation errors: the time/effort required to measure the realization value of require-
ments in practice is reduced (through code generation).

Altogether, some of the error-prone parts of requirements engineering can be auto-
mated (e.g., verification) and accelerated (e.g., validation), leading to reduced time-to-
market, and enabling stakeholders to focus more of their time, energy, and motivation on
producing value.

3. REX
3.1. Introduction

REX is a CNL that distinguishes itself by having a small but comprehensive set of rules
(seven statements or phrases), and thus, a very simple grammar. This means that it has a
low entry barrier since there is only a small set of rules to learn, and it is easy to support.
Despite the small set of rules, as will be shown, it is a general purpose language because

Appl. Sci. 2022, 12, 7700 4 of 17

it can be extended by the users to suit their needs. The rules that are defined should be
natural and accessible to people from all backgrounds. The seven statements or phrases
are:

• Class declaration (one statement);
• Class composition (one statement);
• Subclassing (one statement);
• Function/pattern declaration, definition, and call (two statements, one phrase);
• Class/object instantiation (one phrase).

Instead of trying to support every conceivable construction and instead of imposing
a language on the users, and thus, a complex grammar and implementation, through the
small set of rules that are available, the users can specify their own language using patterns.
Since it is the users that define the language it is up to them how natural it is, whether it is
concise or verbose, whether to enforce good practices (e.g., (Big) EARS patterns [22,23]),
and so on. Moreover, when it comes to legacy system, patterns provide the flexibility
needed to support a language that is already in use. Patterns are easy to understand and
are precise, but they can be tedious and labor-intensive to work with since all patterns have
to be specified ipsis verbis or close before being used. After some time, however, the most
common and useful patterns have been specified and not much work should be needed, at
least when it comes to specifying patterns. Despite having chosen patterns, we believe that
the ideal is a combination of approaches. We envisage a specification that is parsed using
both pattern recognition and formal grammars, depending on the context. For those areas
for which a formal grammar has already been defined, we can leverage a workaround for
the limitations of patterns.

Because REX relies on user-defined patterns, it attributes no semantics. That is also
controlled by the users. The users can attribute semantics to a pattern by specifying it in
terms of other patterns, or, as will be shown, the users can attribute semantics during the
transformation to code or directly in code. In the end, a REX text can be seen as a tree
whose leaves have to be defined elsewhere.

3.2. Hello, World!

The goal of the example in this section is to print “Hello, World!” on a console. This
example’s REX text is shown in Listing 1. It consists of two sentences, where each sentence
ends with a period.

Listing 1. REX text for the “Hello, World!” example.

it_is_possible_to print_hello_world.
if launch_application, then print_hello_world.

The first sentence declares a pattern or a function (we will use the term function
onwards because it provides a better definition for the ways in which a pattern can be
used). Functions can be called or, in other words, used in the definition of other functions.
The semantics of calling or using a function are not defined by the CNL; that is up to
the users. However, in REX (and thus, in all of the examples in this article), it is set up
to be the typical function call seen in imperative languages. The function’s signature is
defined by what is after the keyword (e.g., print_hello_world), and it can be used to call this
function, as in the second sentence. The grammar (simplified) for a function declaration is
shown in Listing 2. It is a limitation of the current implementation that WORDs have to
be separated by one underscore and not spaces, as would be expected. The semantics or
the implementation of this function are not specified here, as mentioned earlier. Later, that
will be set to print “hello, world!” on a console, as expected. In REX, the first sentence is

Appl. Sci. 2022, 12, 7700 5 of 17

transformed into a method named print_hello_world with no arguments, no return value,
and no implementation, as will be shown.

Listing 2. Grammar for the function declaration (first sentence) in the “Hello, World!” example
(simplified).

FunDecl <-- "it_is_possible_to" FunDeclElem+ "."
FunDeclElem <-- WORD

Examples:
it_is_possible_to show_UI.
it_is_possible_to create_main_window.
it_is_possible_to add_account.
it_is_possible_to translate_to_portuguese.

The second sentence defines a function, including its signature, and a body (i.e., a list
of function calls or just one). The grammar (simplified) for a function definition is shown in
Listing 3. In REX, the semantics are such that whenever the function being defined is called
(through its signature), the functions specified in the body are also called, in the same order
as they have been specified. This, however, is enforced by REX, not by the CNL. In REX, the
second sentence is transformed into a method named launch_application (no arguments, no
return value), whose body is a call to a method named print_hello_world, as will be shown.

Listing 3. Grammar for the function definition (second sentence) in the “Hello, World!” example
(simplified).

FunDef <-- "if" FunDeclElem+ ","
"then" FunCallElem+ "."
FunDeclElem <-- WORD
FunCallElem <-- FunDeclElem

Examples:
if show_UI, then create_main_window.
if add_account_button_clicked, then add_account.
If translate_button_clicked, then translate_to_portuguese.

In REX, without user intervention, this text’s model or AST (see Figure 1) is compiled
into an Ecore model (see Figure 2), which is then used by EMF (Eclipse Modeling Frame-
work) [24] to generate Java code (see Listing 4). Please refer to Section 4 for more details.
At this point, no semantics or implementation were provided for print_hello_world, and as
such, by default, EMF throws an exception, as shown in Listing 4. There are at least two
alternatives to provide an implementation for print_hello_world: (1) update the method’s
implementation in the generated code file (EMF supports this, and is able to keep code that
has been entered manually); (2) override the method in a subclass. Throughout this article,
the second alternative will be followed. With this in mind, in Listing 5, the implementation
of print_hello_world is set, alongside a possible main method.

Appl. Sci. 2022, 12, 7700 6 of 17

Figure 1. AST of the REX text in the “Hello, World!” example.

Figure 2. Ecore model compiled from the REX text in the “Hello, World!” example.

Listing 4. Java code generated by EMF from the Ecore model compiled from the REX text in the
“Hello, World!” example (simplified).

public class _ops {

public void print_hello_world() {
throw new UnsupportedOperationException();
}

public void launch_application() {
print_hello_world();
}
}

Listing 5. Java code entered manually for the “Hello, World!” example (simplified).

public class HelloApp extends _ops {

public static void main(String[] args) {
HelloApp hello = new HelloApp();
hello.launch_application();
}

public void print_hello_world() {
System.out.println(‘‘Hello, World!’’);
}
}

3.3. Hello, World! 2

The goal in this section is still to print “Hello, World!” on a console. However, what is
printed is set directly on the REX code, instead of being hardcoded in the Java code. This
example’s REX text is shown in Listing 6, and it consists of three sentences.

The first sentence declares the existence of a class of objects (e.g., strings), through
the name of that class of objects in plural and singular forms. Objects can be created (or

Appl. Sci. 2022, 12, 7700 7 of 17

instantiated), modified, and passed around. Objects can also hold other objects, through
class composition (e.g., “a name is_composed_by a first_name, and a last_name.”, “a text
is_composed_by zero_or_more strings.”), which has not been used in any of the examples.
Moreover, as will be shown for the second sentence, certain parts of a function signature
can be restricted to only accept references to objects of a particular class and its subclasses
(possible through subclassing, e.g., “a first_name is a string.”, which has also not been
used in any of the examples). For examples of class composition and subclassing, see:
https://github.com/b4795/REX/blob/main/examples/Bank/src/bank.mydsl, accessed
on 24 June 2022. When a function accepts references to objects, the corresponding function’s
body, when there is one, can reference those objects and pass them to other functions (see
the next section for an example). The grammar (simplified) for a class declaration is shown
in Listing 7.

Listing 6. REX text for the “Hello, World! 2” example.

there_are strings (string).
it_is_possible_to print a string S.
if launch_application, then print ‘‘Hello, World!’’.

Listing 7. Grammar for the class declaration (first sentence) in the “Hello, World! 2” example
(simplified).

ClassDecl <-- "there_are" ClassPlu "(" ClassSin ")" "."
ClassPlu <-- WORD
ClassSin <-- WORD

Examples:
there_are persons (person).
There_are names (name).
there_are clients (client).
there_are banks (bank).

The semantics behind the class of objects that is declared are also not specified here.
That will depend on the way the objects are used, to which functions they are passed, and
how those functions are defined. In REX, however, strings, alongside booleans and integers,
are considered built-in, and some semantics are predefined (e.g., built-in objects cannot
hold other objects). It is a limitation of the current implementation that their existence has
to be declared explicitly. The predefined semantics of a string include: (1) a string is an
ordered set of characters, and (2) a string object can be instantiated with characters between
double quotes, as shown in the third sentence. In REX, the first sentence is transformed
into a class _string with an attribute named “value”, whose type is Java’s built-in String, as
well as one setter and one getter, as shown in Listing 8.

https://github.com/b4795/REX/blob/main/examples/Bank/src/bank.mydsl

Appl. Sci. 2022, 12, 7700 8 of 17

Listing 8. Java code, regarding the string class, generated by EMF from the Ecore model compiled
from the REX text in the “Hello, World! 2” example (simplified).

public class _string {
protected String value;

public String getValue() {
return value;
}

public void setValue(String newValue) {
value = newValue;
}
}

The second sentence, as in the previous section, declares a function, but, as mentioned
above, part of the function signature is restricted to only accept references to a particular
class of objects (e.g., strings). The only reference is also given the name “S”. An updated
grammar (still simplified) for a function declaration is shown in Listing 9. As before,
semantics are not specified here. Later, that will be set to print the value of the string S on a
console. In REX, the second sentence is transformed into a method named print__string with
one argument of type _string, no return value, and no implementation, as will be shown.

Listing 9. Grammar for the function declaration (second sentence) in the “Hello, World! 2” example
(simplified).

FunDecl <-- "it_is_possible_to" FunDeclElem+ "."
FunDeclElem <-- WORD
| (("a" | "an") ClassSin)

Examples:
it_is_possible_to show a UI X.
it_is_possible_to show a widget W.
it_is_possible_to add an account ACC.

The third sentence, as in the previous section, defines a function. An updated grammar
(still simplified) for a function definition is shown in Listing 10. In REX, the semantics
are the same as in the previous section, but, in this case, a string object is instantiated
(implicitly) with the value “Hello, World!” and a reference to that object is passed to the
function print__string, as will be shown.

Appl. Sci. 2022, 12, 7700 9 of 17

Listing 10. Grammar for the function definition (third sentence) in the “Hello, World! 2” example
(simplified).

FunDef <-- "if" FunDeclElem+ ","
"then" FunCallElem+ "."
FunDeclElem <-- WORD
FunCallElem <-- WORD
| STRING

Examples:
if show UI, then create main window named "App".
if show UI, then add account named "savings".
If translate button clicked, then
translate "hello" to portuguese.

In REX, the text in Listing 6 is compiled into the Ecore model shown in Figure 3, which
is then used by EMF to generate the Java code shown in Listing 11. Lastly, in Listing 12, the
semantics of print a string S are set, alongside a possible main method.

Figure 3. Ecore model compiled from the REX text in the “Hello, World! 2” example.

Listing 11. Java code generated by EMF from the Ecore model compiled from the REX text in the
“Hello, World! 2” example (simplified).

public class _ops {

public void print__string(_string S) {
throw new UnsupportedOperationException();
}

public void launch_application() {
SystemFactory factory = new SystemFactory();
_string _local__string0 = factory.create_string();
_local__string0.setValue(‘‘Hello, World!’’);
print__string(_local__string0);
}
}

Appl. Sci. 2022, 12, 7700 10 of 17

Listing 12. Java code entered manually for the “Hello, World! 2” example (simplified).

public class Hello2App extends _ops {

public static void main(String[] args) {
Hello2App hello2 = new Hello2App();
hello2.launch_application();
}

public void print__string(_string S) {
System.out.println(S.getValue());
}
}

3.4. Hello, World! 3

In this section, the goal is to, first, ask the user’s name, and then, to great the user
using the name provided. This example’s REX text is shown in Listing 13. It consists of five
sentences, where the fifth sentence is composed of nine phrases.

Listing 13. REX text for the “Hello, World! 3” example.

there_are strings (string).

it_is_possible_to print a string S.
it_is_possible_to start_a_new_line.
it_is_possible_to read_input_from_user_and_store_it_in a string S.

if launch_application, then
there_is_one string S,
print "Hey! What’s your name?",
start_a_new_line,
read_input_from_user_and_store_it_in S,
print "Hello ",
print S,
print "! Welcome!",
start_a_new_line.

The implications of sentences one to four should be clear by now. The semantics of the
forth sentence, however, will be set such that the reference S works as an output or return
value (instead of as an input, as in the previous section). In REX, all objects are passed by
reference, and thus, they can be both inputs and outputs. Whether a reference works as an
input or output, or both, depends on the functions that are called, and their implementation.
That, however, should be clear from the function signature, as in this example.

Regarding the fifth sentence, with the exception of the second phrase, the implications
of all phrases should also be clear by now. In the second phrase, an object of the specified
class is instantiated (explicitly) such that it can hold a value and such that it can be refer-
enced by the specified name. Here, it is instantiated an object of the class string, named S,
which is then used to hold the user’s input (phrases 5 and 7). The grammar (simplified) for
a class instantiation is shown in Listing 14.

Appl. Sci. 2022, 12, 7700 11 of 17

Listing 14. Grammar for the class instantiation (third sentence, second phrase) in the “Hello, World!
3” example (simplified).

ClassInst <-- "there_is_one" ClassSin WORD "."
ClassSin <-- WORD

Examples:
there_is_one person ADA.
There_is_one name N.
there_is_one client C.

In REX, the text in Listing 13 is compiled into the Ecore model shown in Figure 4, which
leads to the generation of the Java code shown in Listing 15 (only the launch_application
method is shown since the rest should be straightforward by now). In Listing 16, the
semantics of undefined functions are set, alongside a possible main method.

Figure 4. Ecore model compiled from the REX text in the “Hello, World! 3” example.

Listing 15. Java code generated by EMF from the Ecore model compiled from the REX text in the
“Hello, World! 3” example (simplified, and only the launch_application method is shown).

public void launch_application() {
SystemFactory factory = new SystemFactory();
_string _local__string0 = factory.create_string();
_local__string0.setValue("Hey! What’s your name?");
_string _local__string1 = factory.create_string();
_local__string1.setValue("Hello ");
_string _local__string2 = factory.create_string();
_local__string2.setValue("! Welcome!");
_string S = factory.create_string();
print__string(_local__string0);
start_a_new_line();
read_input_from_user_and_store_it_in__string(S);
print__string(_local__string1);
print__string(S);
print__string(_local__string2);
start_a_new_line();
}

Appl. Sci. 2022, 12, 7700 12 of 17

Listing 16. Java code entered manually for the “Hello, World! 3” example (simplified).

public class Hello3App extends _ops {

public static void main(String[] args) {
Hello3App hello3 = new Hello3App();
hello3.launch_application();
}

public void print__string(_string S) {
System.out.print(S.getValue()); // no new line.
}

public void start_a_new_line() {
System.out.println(); // new line.
}

public void read_input_from_user_and_store_it_in__string(_string S) {
Scanner scanner = new Scanner(System.in);
S.setValue(scanner.nextLine());
}
}

3.5. Fibonacci

The goal here is to calculate the result of the application of the Fibonacci’s function to
an integer N or, in other words, to calculate the Nth element in the Fibonacci sequence. This
example’s REX text is shown in Listing 17. Mathematical arithmetic and comparison are
verbose. This is another limitation of the current implementation. Nevertheless, nothing
precludes including mathematical operators in function signatures (e.g., an integer A > an
integers B is a boolean). The only thing that is needed is to treat those operators like any
other alphanumeric character. Most of the text should be clear by now, however, conditions
are introduced and these need some background. In REX, functions with signatures
ending with is a boolean can be used as conditions. We recognize this construction is a
bit unexpected. It was chosen because it simplifies the implementation, but completely
different approaches are possible. For example, the declaration “it_is_possible_that an integer
X is_or_is_not_greater_than_or_equal_to an integer Y.”, because of the prefix is_or_is_not_
could imply a boolean return value, as well two different function signatures, namely:
“. . . is_greater_than_or_equal_to . . . ” and “. . . is_not_greater_than_or_equal_to . . . ”. It should
also be noted that: “an integer X is an integer Y” is expected to correspond and will be set to
the assignment of Y’s value to X.

Appl. Sci. 2022, 12, 7700 13 of 17

Listing 17. REX text for the “Fibonacci” example.

there_are booleans (boolean).
there_are integers (integer).

it_is_possible_that an integer X is an integer Y.
it_is_possible_that an integer X
is_greater_than_or_equal_to
an integer Y
is a boolean B.

it_is_possible the_addition_of an integer A
with an integer B
is an integer X.
it_is_possible the_difference_between an integer A
and an integer B
is an integer X.

it_is_possible_to output an integer X.

if the_fibonacci_function_of an integer X is an integer Y, then
if X is_greater_than_or_equal_to 3, then
there_is_one integer N1,
there_is_one integer N2,
the_difference_between X and 1 is N1,
the_difference_between X and 2 is N2,
there_is_one integer A,
there_is_one integer B,
the_fibonacci_function_of N1 is A,
the_fibonacci_function_of N2 is B,
the_addition_of A with B is Y;
else
Y is 1.

if launch application, then
there_is_one integer A,
there_is_one integer B,
there_is_one integer C,
the_fibonacci_function_of 1 is A,
the_fibonacci_function_of 2 is B,
the_fibonacci_function_of 10 is C,
output A,
output B,
output C.

In REX, the text in Listing 17 is compiled into the Ecore model shown in Figure 5. In
Listing 18, the semantics of undefined functions are set, alongside a possible main method.

Appl. Sci. 2022, 12, 7700 14 of 17

Figure 5. Ecore model compiled from the REX text in the “Fibonacci” example.

Listing 18. Java code entered manually for the “Fibonacci” example (simplified).

public class FibApp extends _ops {

public static void main(String[] args) {
FibApp fib = new FibApp();
fib.launch_application();
}

public void _integer_is__integer(_integer X, _integer Y) {
X.setValue(Y.getValue());;
}

public void _integer_is_greater_than_or_equal_to__integer_is__boolean(
_integer X, _integer Y, _boolean B) {
B.setValue(X.getValue() >= Y.getValue());
}

public void the_addition_of__integer_with__integer_is__integer(
_integer A, _integer B, _integer X) {
X.setValue(A.getValue() + B.getValue());
}

public void the_difference_between__integer_and__integer_is__integer(
_integer A, _integer B, _integer X) {
X.setValue(A.getValue() - B.getValue());
}

public void output__integer(_integer X) {
System.out.println(X.getValue());
}
}

4. Implementation

In this section, the implementation of REX using the Eclipse IDE is described. Because
REX has a small (but comprehensive) set of rules, and thus, a very simple grammar, its
implementation is also quite straightforward. Using the tools provided by the Eclipse IDE,
only two REX-specific translation units (or source files) are needed, namely, one grammar
(44 rules, 113 lines of code, empty lines not included, approx. 2.5 lines of code per rule)
(see https://github.com/b4795/REX/blob/main/src/org.xtext.example.mydsl/src/org/

https://github.com/b4795/REX/blob/main/src/org.xtext.example.mydsl/src/org/xtext/example/mydsl/MyDsl.xtext
https://github.com/b4795/REX/blob/main/src/org.xtext.example.mydsl/src/org/xtext/example/mydsl/MyDsl.xtext

Appl. Sci. 2022, 12, 7700 15 of 17

xtext/example/mydsl/MyDsl.xtext, accessed on 24 June 2022), and one model transfor-
mation (515 lines of code) (see https://github.com/b4795/REX/blob/main/src/org.xtext.
example.mydsl/src/org/xtext/example/mydsl/generator/mydsl2ecore.etl, accessed on
24 June 2022). More specifically, we have used Eclipse IDE for Java and DSL Developers,
version 2021-09 [25], with Xtext 2.25.0 [26], Epsilon 2.3.0 [27], EMF 2.27.0 [24], and JDK
3.18.900 (builtin).

The implementation was performed on one Eclipse IDE instance, which we will call
“Eclipse-dev”. As illustrated in Figure 6, we have entered REX’s grammar onto Eclipse-dev
and used Xtext to generate a corresponding metamodel and language editor. With the
code generated by Xtext, we start a new Eclipse instance, which we will call “Eclipse-usr”,
featuring, most of all, the REX language editor.

Figure 6. Implementation of REX in Eclipse-dev.

For each of the examples presented in the previous section, we have entered the
respective REX text onto the REX language editor in Eclipse-usr. As illustrated in Figure 7,
whenever the REX text file is saved, Epsilon is triggered to generate a corresponding
Ecore model, as explained in the previous section. To do this, Epsilon requires a model
transformation script, and the model to transform. The model to transform is the REX
text file, which is automatically transformed from a text representation into a model
representation, whenever necessary. The model transformation script, on the other end,
comes with the Eclipse-usr instance. To do that, the script was entered onto the Eclipse-dev
and a configuration file set to include that file in the Eclipse-usr instance. With the Ecore
model in place, Java code generation is triggered, using EMF, and it is now up to the users
to define what has been left undefined, as explained in the previous section.

Figure 7. Implementation and usage of REX in Eclipse-usr.

5. Conclusions

In this article, REX has been presented, a general-purpose CNL with code generation
support. REX distinguishes itself by having a small but comprehensive set of rules, and
thus, a grammar that is simple, easy to understand, and easy to support. To do that,
four examples of increasing complexity were given. After that, its implementation was
also described.

Despite the examples shown in this article being very simple, we are unable to find
reasons for it not being able to scale to much larger applications. Similarly, the examples in

https://github.com/b4795/REX/blob/main/src/org.xtext.example.mydsl/src/org/xtext/example/mydsl/MyDsl.xtext
https://github.com/b4795/REX/blob/main/src/org.xtext.example.mydsl/src/org/xtext/example/mydsl/MyDsl.xtext
https://github.com/b4795/REX/blob/main/src/org.xtext.example.mydsl/src/org/xtext/example/mydsl/generator/mydsl2ecore.etl
https://github.com/b4795/REX/blob/main/src/org.xtext.example.mydsl/src/org/xtext/example/mydsl/generator/mydsl2ecore.etl

Appl. Sci. 2022, 12, 7700 16 of 17

this article restrict themselves to Java code generation and to very simple console-based
applications. Nevertheless, Java is used here as just an example, and by changing the code
generator and/or the REX text transformation, any other language could be supported, as
well as any other type of application (e.g., GUI).

As mentioned throughout the article, REX and its current implementation have some
limitations. Hence, as future work, we propose to address those already mentioned (i.e.,
WORDs have to be separated by one underscore and not spaces, the existence of built-in
classes has to be declared explicitly, mathematical operators not supported), as well as
to add new features, namely: references to functions and complexity management (e.g.,
namespaces). Besides, and more importantly, to evaluate REX, we propose to conduct some
case studies and questionnaires in cooperation with industry partners.

The major purpose of REX and this article is to demonstrate that a general-purpose
CNL, that is more than enough for many projects, and that is easy to support, is best
achieved by letting the users specify their own language, instead of imposing a language
on them (an advantage of itself). In this way, a simple grammar that is also easy to
understand and support, is sufficient. Another major purpose of REX is to serve as a
reference implementation, that can be modified to suit different needs, within practical or
research efforts.

With REX, we believe it is possible that, for example, business experts use the CNL to
specify what they need in a language they understand (and perhaps more importantly, in a
language they created), while technical experts specify model transformations and some
code to ensure the intended semantics are preserved through low-level abstractions. If it is
important to the business experts, the CNL should be used; otherwise, that effort should be
transferred to the technical experts, which may also pick the CNL to do part of the necessary
work. A collaboration between business and technical experts is still necessary, but the role
of business experts is much more prominent. Business experts participate more actively on
the development and can directly affect the implementation, instead of indirectly through
the technical experts and, in some cases, without having to cross multiple organization
layers, which is especially advantageous when the business logic changes more often than
low-level implementation details.

Lastly, besides business applications, we believe it is possible to make software de-
velopment more accessible and empower less technical people. Moreover, the learning
curve towards more traditional software development can be made less steep, and existing
technical experts can benefit not only from increased productivity but also with access to
languages and methods accessible to only a few (e.g., formal methods).

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Conflicts of Interest: The author declares no conflict of interest.

References
1. Stecklein, J.M.; Dabney, J.; Dick, B.; Haskins, B.; Lovell, R.; Moroney, G. Error cost escalation through the project life cycle. In

Proceedings of the 14th Annual International Symposium, Marseille, France, 15–18 July 2014.
2. Yue, T.; Briand, L.C.; Labiche, Y. A systematic review of transformation approaches between user requirements and analysis

models. Requir. Eng. 2011, 16, 75–99. [CrossRef]
3. Tommila, T.; Pakonen, A. Controlled Natural Language Requirements in the Design and Analysis of Safety Critical I&C Systems; VTT

Technical Research Centre of Finland: Espoo, Finland, 2014.
4. Fuchs, N.E.; Kaljurand, K.; Kuhn, T. Attempto controlled english for knowledge representation. In Reasoning Web; Springer:

Berlin/Heidelberg, Germany, 2008; pp. 104–124.
5. Mohanani, R.; Ralph, P.; Turhan, B.; Mandic, V. How Templated Requirements Specifications Inhibit Creativity in Software

Engineering. IEEE Trans. Softw. Eng. 2021. [CrossRef]
6. Young, R.R. Effective Requirements Practices; Addison-Wesley Professional: Boston, MA, USA, 2001.

http://doi.org/10.1007/s00766-010-0111-y
http://dx.doi.org/10.1109/TSE.2021.3112503

Appl. Sci. 2022, 12, 7700 17 of 17

7. Sadoun, D.; Dubois, C.; Ghamri-Doudane, Y.; Grau, B. Formal rule representation and verification from natural language
requirements using an ontology. In Proceedings of the International Symposium on Rules and Rule Markup Languages for the
Semantic Web, Prague, Czech Republic, 18–20 August 2014; pp. 226–235.

8. Letsholo, K.J.; Zhao, L.; Chioasca, E.V. TRAM: A tool for transforming textual requirements into analysis models. In Proceedings
of the 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), Silicon Valley, CA, USA, 11–15
November 2013; pp. 738–741. [CrossRef]

9. Fifarek, A.W.; Wagner, L.G.; Hoffman, J.A.; Rodes, B.D.; Aiello, M.A.; Davis, J.A. Spear v2. 0: Formalized past LTL specification
and analysis of requirements. In Proceedings of the 9th International Symposium, Moffett Field, CA, USA, 16–18 May 2017;
pp. 420–426.

10. Manaf, N.A.; Antoniades, A.; Moschoyiannis, S. SBVR2Alloy: An SBVR to Alloy Compiler. In Proceedings of the 2017 IEEE
10th Conference on Service-Oriented Computing and Applications (SOCA), Kanazawa, Japan, 22–25 November 2017; pp. 73–80.
[CrossRef]

11. Osmosian. Available online: https://github.com/Folds/osmosian (accessed on 24 June 2022).
12. Kowalski, R. Logical english. In Proceedings of the Logic and Practice of Programming (LPOP), Oxford, UK, 18 July 2020.
13. SWISH—Minicontract.pl. Available online: https://logicalenglish.logicalcontracts.com/p/minicontract.pl (accessed on 24

June 2022).
14. Bugayenko, Y. Combining object-oriented paradigm and controlled natural language for requirements specification. In

Proceedings of the 1st ACM SIGPLAN International Workshop on Beyond Code, Chicago, IL, USA, 17 October 2021; pp. 11–17.
[CrossRef]

15. Bugayenko, Y. yegor256/requs. Available online: https://github.com/yegor256/requs (accessed on 24 June 2022).
16. Gherkin Syntax—Cucumber Documentation. Available online: https://cucumber.io/docs/gherkin/ (accessed on 24 June 2022).
17. da Silva, A.R.; Savic, D. Linguistic Patterns and Linguistic Styles for Requirements Specification: Focus on Data Entities. Appl.

Sci. 2021, 11, 4119. [CrossRef]
18. About the Semantics of Business Vocabulary and Business Rules Specification Version 1.5. Available online: https://www.omg.

org/spec/SBVR/About-SBVR/ (accessed on 24 June 2022).
19. RuleSpeak®||Let the Business People Speak Rules! Available online: http://www.rulespeak.com/en/ (accessed on 24

June 2022).
20. RuleXpress Overview. Available online: https://www.rulearts.com/rulearts-products/rulexpress-business-rules-software/

rulexpress-overview/ (accessed on 24 June 2022).
21. Trentelman, K. Processable English: The Theory Behind the PENG System; Defense Technical Information Center: Fort Belvoir, VA,

USA, 2009.
22. Mavin, A.; Wilkinson, P.; Harwood, A.; Novak, M. Easy Approach to Requirements Syntax (EARS). In Proceedings of the 2009

17th IEEE International Requirements Engineering Conference, Atlanta, GA, USA, 31 August–4 September 2009; pp. 317–322.
[CrossRef]

23. Mavin, A.; Wilkinson, P. Big Ears (The Return of “Easy Approach to Requirements Engineering”). In Proceedings of the 2010 18th
IEEE International Requirements Engineering Conference, Sydney, NSW, Australia, 27 September–1 October 2010; pp. 277–282.
[CrossRef]

24. Eclipse Modeling Project|The Eclipse Foundation. Available online: https://www.eclipse.org/modeling/emf/ (accessed on 24
June 2022).

25. Eclipse IDE for Java and DSL Developers|Eclipse Packages. Available online: https://www.eclipse.org/downloads/packages/
release/2021-09/r/eclipse-ide-java-and-dsl-developers (accessed on 24 June 2022).

26. Xtext—Language Engineering Made Easy! Available online: https://www.eclipse.org/Xtext/ (accessed on 24 June 2022).
27. Epsilon. Available online: https://www.eclipse.org/epsilon/ (accessed on 24 June 2022).

http://dx.doi.org/10.1109/ASE.2013.6693146
http://dx.doi.org/10.1109/SOCA.2017.18
https://github.com/Folds/osmosian
https://logicalenglish.logicalcontracts.com/p/minicontract.pl
http://dx.doi.org/10.1145/ 3486949.3486963
https://github.com/yegor256/requs
https://cucumber.io/docs/gherkin/
http://dx.doi.org/10.3390/app11094119
https://www.omg.org/ spec/SBVR/About-SBVR/
https://www.omg.org/ spec/SBVR/About-SBVR/
http://www.rulespeak.com/en/
https://www.rulearts.com/rulearts-products/rulexpress-business-rules-software/ rulexpress-overview/
https://www.rulearts.com/rulearts-products/rulexpress-business-rules-software/ rulexpress-overview/
http://dx.doi.org/10.1109/RE.2009.9
http://dx.doi.org/10.1109/RE.2010.39
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/downloads/packages/ release/2021-09/r/eclipse-ide-java-and-dsl-developers
https://www.eclipse.org/downloads/packages/ release/2021-09/r/eclipse-ide-java-and-dsl-developers
https://www.eclipse.org/Xtext/
https://www.eclipse.org/epsilon/

	Introduction
	Background and Related Work
	REX
	Introduction
	Hello, World!
	Hello, World! 2
	Hello, World! 3
	Fibonacci

	Implementation
	Conclusions
	References

