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Featured Application: We propose a non-random dropout method named FocusedDropout, aiming
to make the network focus more on the target. It can effectively improve the performance of feature
learning in deep learning that can be used for any applications with deep learning technology.

Abstract: In a convolutional neural network (CNN), dropout cannot work well because dropped
information is not entirely obscured in convolutional layers where features are correlated spatially.
Except for randomly discarding regions or channels, many approaches try to overcome this defect
by dropping influential units. In this paper, we propose a non-random dropout method named
FocusedDropout, aiming to make the network focus more on the target. In FocusedDropout, we
use a simple but effective method to search for the target-related features, retain these features and
discard others, which is contrary to the existing methods. We find that this novel method can improve
network performance by making the network more target focused. Additionally, increasing the
weight decay while using FocusedDropout can avoid overfitting and increase accuracy. Experimental
results show that with a slight cost, 10% of batches employing FocusedDropout, can produce a
nice performance boost over the baselines on multiple datasets of classification, including CIFAR10,
CIFAR100 and Tiny ImageNet, and has a good versatility for different CNN models.

Keywords: classification; convolutional neural network; dropout; regularization

1. Introduction

In recent years, deep neural networks have made significant achievements in many
computer vision tasks such as image classification [1–4], object detection [5–7], and semantic
segmentation [8,9]. However, deep layers and millions of neurons also lead to inadequate
training of CNN. Dropout [10] is proposed as a regularization method widely used to fight
against overfitting, which stochastically sets the activations of hidden units to zero during
training. For deep CNN, dropout works well in fully connected layers, but its effect is still
not apparent in convolutional layers, where features are correlated spatially. When the
features are strongly correlated between adjacent neurons, the information of discarded
neurons cannot be completely obscured.

Many researchers have observed this defect and tried to make dropout better regular-
ize CNN. As shown in Figure 1, SpatialDropout [11] randomly discards entire channels
from whole feature maps. DropBlock [12] randomly discards units in a contiguous region
of a channel instead of substantive units. Guided dropout [13], AttentionDrop [14], and
CamDrop [15] search the influential units in the network through different methods and
drop them to enhance the generalization performance of the network. Furthermore, Auto
Dropout [16] is proposed to learn the dropping patterns of SpatialDropout and DropBlock
via reinforcement learning. Although it achieves state-of-the-art results, it requires a huge
computational cost and is more like an extension of the mentioned approaches.
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Figure 1. Four forms of dropout in CNN. (a) Dropout randomly drops units on each channel.
However, it does not work well on CNN. (b) SpatialDropout randomly drops channel instead of units.
(c) DropBlock randomly drops some contiguous regions inspired by Cutout. (d) Some non-random
dropout methods discard influential units. The orange neurons, channels and contiguous regions
present the discarded parts, and the gray will be retained.

From another perspective, the foreground of the image is the main focus of classifica-
tion, which means accurately finding the foreground is important for image classification.
The results of observation experiments show the spatial information of images remains
unchanged during training, and channels in the network are associated with the classifi-
cation target. This indicates that we can enhance the foreground and thus improve the
recognition of objects. It can also avoid noise interference from backgrounds. All of them
enlightened us on using dropout to enhance the network’s ability to recognize the objects
by keeping the foreground-related units and dropping other units during training, which is
contrary to the existing methods that drop influential ones. There are two challenges: how
to identify the foreground-related units, and how to prevent overfitting when enhancing
influential ones.

In this paper, we propose FocusedDropout as a non-random dropout method to
regularize CNNs. Inspired by Network Dissection [17], a visualization method proposed
by Hence, Bau et al., we first select the channel with the highest average activation value and
discard the units with an activation value below a threshold on this channel. Then, we can
distinguish useful units from redundant units with the support of spatial invariance of CNN
by discarding all units that have the same positions as previously discarded ones on the
rest of the channels. Increasing weight decay [18] while using FocusedDropout can avoid
overfitting and increase accuracy. As a result, the network focuses more on the units that
have the highest probability associated with the target, which is particularly effective for
regularization. Extensive experimental results show that even a slight cost, 10% of batches
employing FocusedDropout, can produce a nice performance boost over the baselines on
CIFAR10 [19], CIFAR100 [19], Tiny ImageNet (http://tiny-imagenet.herokuapp.com/),
and has a good versatility for different CNN models including ResNet [4], DenseNet [20],
VGGNet [21] and Wide ResNet [22].

This work provides these primary contributions: 1. This paper proposes a non-
random dropout method to regularize CNNs, called FocusedDropout. Unlike previous
works, which discarded influential units, it enhances features related to the classification
by discarding others, thus effectively improving the classification performance. 2. We also
propose an assisted training strategy to avoid overfitting, magnifying the weight decay
while the FocusedDropout is used, and only randomly select 10% of the batches to use the
proposed method. 3. Extensive experiments are conducted to verify the performance. The
results show the FocusedDropout is lightweight, achieving the best score in many tasks.

http://tiny-imagenet.herokuapp.com/
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2. Related Work

Regularization methods have always been effective ways to improve the performance
of neural networks, which involve two common regularization techniques: data augmen-
tation and dropout [10]. Unlike data augmentation, such as [23–25], which expands the
data space, dropout injects noise into feature space by randomly zeroing the activation
function to avoid overfitting. Inspired by dropout, DropConnect [26] drops the weights
of the networks instead of activations to regularize large neural network models. Shake-
out [27] randomly chooses to enhance or inverse the contributions of each unit to the next
layer. Concrete Dropout [28] utilizes concrete distributions to generate the dropout masks.
Alpha-dropout [29] is designed for Scaled Exponential Linear Unit activation function.
Variational dropout [30] is proposed as a generalization of Gaussian dropout, but with a
more flexibly parameterized posterior. These strategies work well on the fully connected
network, but their performance on CNN is unsatisfactory. The reason is that the correlation
between the units on each channel in CNN is so strong that information can still flow
through the networks despite dropout. Obviously, this reduces the improvement [11].

Previous studies demonstrated that the correlation always relies on location informa-
tion, which pushes forward the study about dropping the network weights by leveraging
structures. SpatialDropout [11] is proposed by randomly discarding the entire channels
rather than individual activations. Channel-Drop [31] overcomes the drawbacks of local
winner-takes-all methods used in deep convolutional networks. Inspired by Cutout [32],
DropBlock [12] randomly drops some contiguous regions of the feature map. With the
continuous improvement of the network models, lots of regularization methods, such as
Stochastic Depth [33], Shake-Shake [34], and ShakeDrop [35], have emerged for specific
CNNs such as ResNet [4] and ResNext [36]. Although the above methods enhance the
networks’ ability by randomly discarding neurons or changing weight, the network also
easily suffers from the overfitting problem because the networks can still learn too many
features about the objects during the training.

Therefore, some approaches focus on discarding specific units are proposed. Max-
drop [37] drops the activations which have high values across the feature map or the
channels. Targeted dropout [38] combines the concept of network cropping with dropout,
which selects the least important weights in each round of training and discards the
candidate weights to enhance network robustness. Guided Dropout [13] defines the
strength of each node and strengthens the training of weak nodes by discarding strong
nodes during training. Weighted Channel Dropout [39] aims to solve the overfitting in
small data set training, which calculates the average activation value of each channel
and retains the high-valued channels with higher possibility. AttentionDrop [14] drops
features adaptively based on attention information. CamDrop [15] electively abandons
some specific spatial regions in predominating visual patterns by considering the intensity
of class activation mapping. Discarding influential units makes the network less prone
to the overfitting problem. However, it cannot improve the classification performance of
the network.

Recently, some algorithms have also been proposed, and had good results. R-Drop [40]
offers a simple consistency training strategy to regularize dropout. It forces the output
distributions of different sub-models generated by dropout to be consistent with each other.
Contextual Dropout [41] proposes a simple and scalable sample-dependent dropout, which
learns the dropout probabilities with a variational objective and is compatible with both
Bernoulli and Gaussian dropout. Juan Shu et al. [42] develop a Heteroscedastic Gaussian
Dropout algorithm, where the dropout probability is determined by another model with
mirrored GNN architecture. On the other hand, with the development of reinforcement
learning, it has been applied to many domains, including dropout. A controller in Auto
Dropout [16] is introduced to learn the dropping patterns of SpatialDropout and DropBlock,
and generate them at every channel and layer, which will be followed in the training proce-
dure of the target network. Significantly, although those methods achieve improvement
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with varying degrees, our method is able to match or outperform their scores. Additionally,
the computational cost increment is lower than others.

3. Motivation

Existing non-random dropout methods judge units’ influence in different ways and
discard the units with greater influence, aiming to make the network more robust from
the perspective of preventing overfitting. However, influential units contain information
conducive to classification, and strengthening the learning of this part of units may make
networks focus more on target information. The network could learn more features about
the target point to the classification, thus improving the performance benefits of more
precise learning. However, this may also lead to overfitting performance because the
network will learn many specific characteristics rather than the general ones that indicate
the semantics of said domain. Therefore, there are two challenges: one is how to identify
the target-related units, and the other is how to prevent overfitting when enhancing
influential ones.

We select the target-related units based on Network Dissection [17], a visualization
method for the interpretability of latent representations of CNN. In this study, after putting
an image containing pixel-wise annotations for the semantic concepts into a trained net-
work, the activation map of the target neuron is scaled up to the resolution of the ground
truth segmentation mask. If the measurement result of alignment between the upsampled
activation map and the ground truth segmentation mask is larger than a threshold, the
neuron would be viewed as a visual detector for a specific semantic concept. The results
show the visual detectors always correspond to the ground truth of the target. From this
work, we can conclude that the image’s spatial information remains unchanged during
training, and there are channels related to the classification target in the trained network.
Next, we need to find the target-related channels.

We conduct an exploratory experiment to find the target-related units. We first put
the CIFAR10 dataset’s validation set containing 10,000 images into the vanilla ResNet-56
model pretrained with CIFAR10, and record the channel with the highest activation value
in the last layer for every successfully classified image. Note that there are 9392 successfully
classified images in 10 categories, and the number of the channel in the last layer is 256. The
result can be seen in Figure 2. We find that the channels with the highest activation value
are different for different categories. For the same category of successfully classified images,
there are only one or two fixed channels with the highest activation values. This shows that
the channel with the highest activation value is crucial to the success of the classification
task. Thus, we speculate that the channel with the highest average activation value has
the highest probability of containing foreground information, and the units with the high
activation value on this channel have the highest probability of representing foreground
features. Therefore, we can take this channel as a reference, and combine spatial invariance
to select other useful units on the remaining channels.

As mentioned, retaining only the units with larger weights may exacerbate overfitting
intuitively. Thus, we want to find a balance between strengthening the network’s attention
to the target and preventing the network from overfitting. To achieve this balance, we
propose two countermeasures. First, we only randomly select 10% of the batches to use
FocusedDropout during every training epoch. Additionally, we will magnify weight decay
when using FocusedDropout. We find these two measures can avoid overfitting effectively
and improve the robustness of the network.
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Figure 2. (a–d) The number of channels with the highest average activation value for 10,000 images in
the trained ResNet-56 model’s last layer for the images of four categories. We randomly choose four
categories in CIFAR10. The x-axis shows the specific channel, and the y-axis measures the number
of images in the corresponding channel with the highest activation value. The channels with the
highest activation value are different for different categories of images, but there are one or two fixed
channels with the highest activation values for the successfully classified images in the same category.

4. Our Approach

FocusedDropout is a highly targeted approach that makes the networks focus on the
foreground rather than the background or noise. The main idea of FocusedDropout is
to keep the units in the preferred locations related to the classification target and drop
the units in other locations. According to the spatial invariance of CNN, the locations
of images’ features are fixed during training so that different channels’ units with the
same spatial positions represent the same image features. Inspired by this phenomenon,
FocusedDropout uses a binary mask to cover the target-independent units with the same
positions on each channel, as demonstrated in Figure 3. The algorithm of FocusedDropout
is illustrated in Algorithm 1. Next, we will present the details of FocusedDropout.

Figure 3. Illustration of FocusedDropout. The channel with the highest activation value is selected
as the reference channel to generate the binary mask. After being covered by the mask, the units
most likely to be related to the target will be retained, and the others will be discarded. The orange
represents the neurons dropped by FocusedDropout.
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Algorithm 1 FocusedDropout

Require: whole channels of the previous layer C = [c1, c2, c3, . . . , cn], mode

1: if mode = Inference, then

2: Return C∗ = C

3: end if

4: Calculate the average activation value for each ci as wi, Get the ck with the max wi

5: Get the unit having the highest activation value as ck(x, y)

6: Make the all-zero mask m having the same size with ci

7: for m(i, j) in m do

8: if ck(i, j) > random(0.6, 0.9) · ck(x, y) then

9: m(i, j) = 1

10: end if

11: end for

12: Return C∗ = C�m

4.1. Selecting the Reference Channel

Each channel output by convolutional layers can be regarded as a set of features
extracted from the image. Our goal is to find the channel with the highest possibility of
obtaining the features relevant to the target. We observe that the channel with the largest
average activation value has the greatest effect on the result, and we consider that it contains
the most important features. Therefore, FocusedDropout uses Global Average Pooling to
acquire the average activation value of each channel. To facilitate the presentation, we
introduce the following concepts. C = [c1, c2, . . . , cn] denotes the whole channels from the
previous layer; ci denotes the single channel, i.e., the entire feature map; and ci(x, y) denotes
the activation value of a unit on ci. So, the average activation value of ci is computed as

wi =
1

w× h

w

∑
x=1

h

∑
y=1

ci(x, y), (1)

where w and h are the shared width and height of all channels. After getting all the weights,
we choose the max one, ck, as the reference channel, and k is computed as

k = argmax
i

wi (2)

4.2. Finding the Focused Area

After obtaining the reference channel, we need to get the location information of the
target-related features from it. The units with high activation values have more influence
on the task, so first, we find the highest activation value ck(x, y) on the reference channel as
the criterion for setting the threshold, where (x, y) is set as

(x, y) = argmax
(x,y)

ck(x, y) (3)

We take a random ratio γ between 0.3 and 0.6 and set the threshold as

threshold = γ · c∗(x, y) (4)

We set a random ratio rather than a certain one, because different images have different
numbers of features. Units with an activation value higher than the threshold are considered
target-related. The assembling of these units’ positions is considered as the area related to
the target, i.e., the focused area A.
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4.3. Generating the Binary Mask

Although the focused area is obtained from the reference channel, units in the same
area on the other channels are still related to the target due to the spatial invariance of
CNN. In other words, different channels from the previous layer extract various features
from the image, but the same position of these channels represents the same location of the
image. Thus, we need to retain each channel’s units in the preferred area. To simplify the
calculation, we use a binary mask multiplying all channels to achieve this step. The binary
mask m satisfies

m(i, j) =

{
0, (i, j) /∈ A
1, (i, j) ∈ A

(5)

where m(i, j) represents the value of the binary mask, and A represents the focused area.
Only the units contained in the focused area can be reserved when the binary mask is
multiplied by all channels.

4.4. Magnifying Weight Decay (MWD)

During training, we randomly choose 10% of batches using FocusedDropout rather
than every batch. Only retaining the high-weight units may aggravate the overfitting, so
we increase weight decay when using FocusedDropout, which can limit the network’s
over attention to the classification target and inhibit the overfitting. This is a new train-
ing trick for dropout, because dropout is often used in all batches of every epoch and
weigh decay is fixed during training. We call the rate of batches applying FocusedDropout
participation_rate. The computing resource and time consumption can be decreased ob-
viously, and the model’s performance can still be enhanced with this trick. In the testing
phase, we retain all units as conventional dropout.

4.5. Summing Up

In summary, we first find the focused areas by searching the reference channel with
the highest activation value. They will be considered units, with the higher activation
value associated with the mentioned reference channel. Then, we drop backgrounds by
generating a binary mask and multiplying it with all channels. In this way, the network
will focus on the objects, thus improving the performance. However, it may also lead to
the network falling into the overfitting trap. Therefore, the weight decay will be magnified
while the FocusedDropout is used, and only 10% of the batches are selected to use the
proposed method.

5. Experimental Section

In the following sections, we investigate the effectiveness of FocusedDropout, mainly
for different computer vision tasks. We apply FocusedDropout to different networks for
image classification on various kinds of datasets. Additionally, we study the effect of our
method on object detection.

5.1. Implementation Details

To evaluate our method’s generalization, we apply FocusedDropout to three clas-
sification datasets: CIFAR10, CIFAR100, and Tiny ImageNet. Standard data augmenta-
tion schemes such as flipping and random cropping are also incorporated. The hyper-
parameters, including participation_rate and γ, are set by cross-validation. For Wide
ResNet-28, the learning rate is decayed by the factor of 0.1 at 60,120,160; for other networks,
the learning rate is decayed by the factor of 0.1 at 150,225. DropBlock [12] is applied to the
output of the first two groups. Dropout [10], SpatialDropout [11], and FocusedDropout
are applied to the output of the penultimate group for fairness of comparison. The highest
validation accuracy over the full training course is chosen as the result. All experiments are
performed with Pytorch [43] on Tesla M40 GPUs.
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5.2. Evaluation of FocusedDropout
5.2.1. CIFAR10 and CIFAR100

The CIFAR10 [19] dataset consists of 60,000 32×32 color images of 10 classes, each with
6000 images, including 50,00 training images and 10,00 test images. We adopt ResNet-20,
ResNet-56, ResNet-110 [4], VGGNet-19 [21], DenseNet-100 [20], and Wide ResNet-28 [22]
as the baselines to evaluate FocusedDropout’s generalization for different structures of
networks. We set γ to a random value between 0.3 and 0.6, participation_rate = 0.1. As
shown in Table 1, FocusedDropout achieves better improvement than other regularization
methods in all networks. Generalization is an essential property of regularization methods.
Experiments show that our method is suitable for networks with different layers, channels,
and parameter spaces.

Table 1. Test accuracy (%) on CIFAR10 dataset using CNN architectures of ResNet-20, ResNet-50,
ResNet-110,VggNet-19, Densenet-100,Wide ResNet-28 (Top accuracy is in bold). We report the
average over 3 runs.

Method ResNet-20 ResNet-56 ResNet-110 VggNet-19 DenseNet-100 WRN-28

Baseline 91.48 ± 0.21 93.84 ± 0.23 94.32 ± 0.16 93.55 ± 0.24 95.30 ± 0.12 96.16 ± 0.06
Dropout 91.51 ± 0.31 93.74 ± 0.11 94.52 ± 0.23 93.14 ± 0.30 95.32 ± 0.08 96.07 ± 0.04

SpatialDropout 91.98 ± 0.13 94.28 ± 0.20 94.76 ± 0.15 93.19 ± 0.12 95.40 ± 0.16 96.13 ± 0.02
DropBlock 92.15 ± 0.14 94.01 ± 0.08 94.92 ± 0.07 93.50 ± 0.04 95.40 ± 0.31 96.21 ± 0.03

FocusedDropout 92.08 ± 0.17 94.67 ± 0.07 95.24 ± 0.15 93.74 ± 0.19 95.57 ± 0.16 96.48 ± 0.13

The CIFAR100 [19] dataset has the same number of images but 100 classes, which
means the training of CIFAR100 is harder than CIFAR10 because it has more image types
and less training data for each kind. Results are summarized in Table 2. FocusedDropout
still performs better than other dropout methods, and for ResNet-110, the promotion can
even exceed 1.5%. Validation accuracy and training loss comparison of ResNet-110 on
CIFAR100 can be seen in Figure 4, which shows that random MWD and FocusedDropout
can effectively prevent overfitting.

Figure 4. Comparison of the validation accuracy curves and training loss curves of ResNet-110
on CIFAR100. The performance of the training networks with FocusedDropout and random Magnify
Weight Decay (MWD) are worse than the baseline before epoch 150, but when the learning rate
decays, the networks’ performance is much better than the original model.

Table 2. Test accuracy (%) on CIFAR100 dataset. All settings are the same as on CIFAR10. We report
the average over 3 runs.

Method ResNet-20 ResNet-56 ResNet-110 VggNet-19 DenseNet-100 WRN-28

Baseline 69.85 ± 0.20 73.71 ± 0.28 74.71 ± 0.23 73.14 ± 0.16 77.25 ± 0.20 81.27 ± 0.20
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Table 2. Cont.

Method ResNet-20 ResNet-56 ResNet-110 VggNet-19 DenseNet-100 WRN-28

Dropout 69.81 ± 0.12 73.81 ± 0.27 74.69 ± 0.33 73.01 ± 0.21 77.45 ± 0.12 81.21 ± 0.11
SpatialDropout 69.71 ± 0.05 74.38 ± 0.17 74.76 ± 0.12 72.84 ± 0.21 77.97 ± 0.16 81.40 ± 0.30

DropBlock 70.03 ± 0.11 73.92 ± 0.10 74.92 ± 0.07 73.01 ± 0.04 77.33 ± 0.09 81.15 ± 0.09

FocusedDropout 70.27 ± 0.06 74.97 ± 0.16 76.43 ± 0.17 73.91 ±0.19 78.35 ± 0.16 81.90 ± 0.11

5.2.2. Tiny ImageNet

Tiny ImageNet dataset is a subset of the ImageNet [44] dataset with 200 classes. Each
class has 500 training images, 50 validation images, and 50 test images. All images are of
64 × 64 resolution. The test-set label is not publicly available, so we use the validation set
as a test set for all the experiments on Tiny ImageNet, following the common practice. We
apply different dropout methods to ResNet-110 and compare the results with Focused-
Dropout. As shown in Table 3, FocusedDropout achieves a significant 2.16% improvement
over the base model and has a larger gain compared to other dropout methods.

Table 3. The performance comparison on Tiny ImageNet dataset. The best accuracy is achieved by
FocusedDropout. We report the average over 3 runs.

Metod Validation Accuracy (%)

ResNet-110 62.42 ± 0.25
ResNet-110 + Dropout 62.32 ± 0.05

ResNet-110 + SpatialDropout 62.55 ± 0.10
ResNet-110 + DropBlock 63.13 ± 0.29

ResNet-110 + FocusedDropout 64.58 ± 0.16

To get an intuitive grasp of how FocusedDropout makes the network focus more on
target, we use class activation mapping (CAM) [45] to visualize the activation units of
ResNet-110 trained by Tiny ImageNet, as shown in Figure 5, from which we observe that
the network trained with FocusedDropout can more accurately identify the target’s location
and contour; additionally, the identification of the main target and the secondary target in
the image is clearer. This proves that our approach enables the network to focus more on
the target. It also shows that making the network more goal oriented helps improve the
performance of the network.

Figure 5. Class activation mapping (CAM) [45] for ResNet-110 model trained without any method,
trained with DropBlock, and trained with FocusedDropout. The model trained with our method can
accurately identify the target’s location and contour.
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5.3. Object Detection in PASCAL VOC

In this subsection, we show FocusedDropout can also be applied to the training object
detector in Pascal VOC [46] dataset. RetinaNet [47] is used as the framework composed of
a backbone network and two task-specific subnetworks for the experiments. The ResNet-50
backbone, which is responsible for computing a convolutional feature map over an entire
input image, is initialized with the ImageNet-pretrained model and then fine-tuned on
Pascal VOC 2007 and 2012 trainval data. We apply FocusedDropout to ResNet-50 in ResNet-
FPN. The accuracy of ResNet-50 trained with FocusedDropout on ImageNet achieves
76.84%, 0.52% higher than the baseline (76.32%). Models are evaluated on VOC 2007 test
data using the mAP metric. We follow the fine-tuning strategy of the original method.

As shown in Table 4, the model pre-trained with FocusedDropout achieves 71.05%,
+0.91% higher than the baseline performance. It shows that the model trained with Fo-
cusedDropout can identify the target more easily and capture the position of the object
more accurately.

Table 4. The performance comparison on Pascal VOC dataset.

Method mAP (%)

RetinaNet 70.14 ± 0.17
RetinaNet + FocusedDropout pretrained 71.05 ± 0.13

5.4. Ablation Study

In this subsection, we take extensive experiments to analyze the behaviors of Focused-
Dropout.

5.4.1. Effect of the Participation _RATE

We explore the effect of the participation_rate on classification accuracy. Taking the perfor-
mance of ResNet-56 on CIFAR100 as an example, we change the setting of participation_rate
from 0 to 0.4. As shown in Figure 6a, with the increase in participation_rate, the accuracy first
rises and then decreases, after reaching the highest point when the participation_rate is
0.1. This indicates that increasing the participation_rate moderately can improve the net-
work’s performance, but excessive use of FousedDropout may lead to the deviation of the
information learned by the network. The change is not apparent when participation_rate
is below 0.3, so the parameter setting is not crucial for our method. The main additional
computational costs come from the generation of the mask, which only requires some
simple matrix operations. Increasing the participation_rate will add the cost, but is still
closed to other methods. The additional computational costs can almost be ignored in the
standard setting.

(a) (b) (c)

Figure 6. CIFAR100 validation accuracy against particitpation_rate, γ and weight decay with ResNet-
56 model. (a) participation_rate; (b) γ; (c) weight decay.
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5.4.2. Analysis of Keeping _RATIO

An obvious characteristic of FocusedDropout is that we do not directly set the
keeping_ratio, but choose a threshold to filter the units. We perform some experiments to
explore the keeping_ratio with a different threshold. Taking the performance of ResNet-
56 on CIFAR100 as an example, we set γ to 0.3, 0.6, 0.9, or a random number between
0.3 and 0.6. The ratio of the number of zeros on the binary mask to the total number of
the mask’s units is considered the keeping_ratio. The mask generated by each image is
different, so we take the average of every keeping_ratio that appeared in an epoch as the
keeping_ratio of this epoch. As illustrated in Figure 6b, the number of units discarded
by FocusedDropout greatly exceeds the conventional dropout when γ is greater than 0.3.
Additionally, Figure 6b shows how the threshold γ affects accuracy with different values
or ranges. When γ is set to a random number, the performance is better than a fixed value.
We consider different images have different features, so a random number is better than a
fixed value.

5.4.3. Exploration of Weight Decay

We tested the effect of magnifying weight decay (MWD) when using FocusedDropout.
As shown in Table 4, the performance of the network with higher weight decay is better. We
consider that higher weight decay can limit the changing parameters, and the network will
not focus too much on the target. Another notable phenomenon is with the same probability,
only randomly expanding weight decay also improves the network’s performance, but
when combined with FocusedDropout, the performance improvement is even greater than
the sum of the two. This demonstrates that FocusedDropout is a balance between making
the network pay more attention to the target and preventing overfitting. Figure 6c shows
that with the increase in weight decay, the accuracy first rises and then decreases after
reaching the highest point when the weight decay is 0.001.

5.4.4. Comparison with Opposite Approach

We explored the performance of methods using the opposite approach to discard units.
When training ResNet-56 on CIFAR100, we set the units included in the focused area on the
binary mask to one, and other positions to zero. Meanwhile, we keep the same parameter
settings as FocusedDropout for training. The comparison can be seen in Table 5.

Table 5. Comparisons among baseline, randomly magnifying weight decay, FocusedDropout without
magnifying weight decay, opposite approach and FocusedDropout of CIFAR100 on ResNet-56.

Model Accuracy (%)

ResNet-56 73.71 ± 0.23
+Randomly MWD 74.27 ± 0.15

+FocusedDropout without MWD 74.32 ± 0.11
+Opposite approach without MWD 73.96 ± 0.08

+Opposite approach 74.31 ± 0.14
+FocusedDropout 74.97 ± 0.16

Although the network’s performance is still improved compared with the baseline,
it is not as good as FocusedDropout. We consider that using the opposite method cannot
make the network more focused on the target, and it is similar to SpatialDropout, which
achieves the effect of overcoming overfitting. Our method makes the network focus
more on the target and also can prevent overfitting. This comparative test verifies that
FocusedDropout improves network performance by enhancing network attention rather
than the randomness.

6. Conclusions

In this work, we introduce a novel regularization method named FocusedDropout.
Inspired by Network Dissection, we find that the high activation value units of CNN often
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correspond to the classification target, so FocusedDropout first chooses the channel with
the highest average activation value as the reference channel and finds the preferred area
from it, then only retain the units in this area for all channels due to the spatial invariance
of CNN. Extensive experiments prove that FocusedDropout brings stable improvement
to different datasets on various models. Additionally, increasing weight decay when
using FocusedDropout can prevent the network from overfitting. The class activation
mapping suggests the model can more accurately identify the target’s location and contour
regularized by FocusedDropout. We consider that FocusedDropout provides a new way to
improve dropout: finding a balance between making the network focus on the target and
preventing overfitting.
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