
Citation: Gibson, J.; Hadi, M.U.

Modeling and Optimal Control for

Rotary Unmanned Aerial Vehicles in

Northern Ireland Climate. Appl. Sci.

2022, 12, 7677. https://doi.org/

10.3390/app12157677

Academic Editors: Shanling Dong

and Meiqin Liu

Received: 18 June 2022

Accepted: 27 July 2022

Published: 30 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Modeling and Optimal Control for Rotary Unmanned Aerial
Vehicles in Northern Ireland Climate
Jack Gibson and Muhammad Usman Hadi *

School of Engineering, Ulster University, Newtownabbey BT37 0QB, UK; gibson-j25@ulster.ac.uk
* Correspondence: usmanhadi@ieee.org

Abstract: Rotary Unmanned Aerial Vehicles (RUAVs) suffer in average Northern Irish winters due to
heavy wind preventing vital tasks from being performed in the economy, such as search and rescue
or civil engineering observations. This work provides enhanced stability of RUAVs under wind
disturbances by using metaheuristic algorithms to select optimal controller gains. Previous work
demonstrated how Particle Swarm Optimization can be used to tune optimal controllers; this work
uses a machine learning algorithm (Genetic Algorithm) to tune the controller. Simulations carried
out on Full State Feedback, Full State Compensator and Linear Quadratic Gaussian controllers tuned
by a variety of techniques revealed that the Genetic Algorithm outperformed conventional manual
tuning by 20% and Particle Swarm Optimization by 17% in performance measured in settling time.
The proposed method tunes the feedback gains and Kalman filter by Genetic Algorithm, which
outperforms the manually tuned conventional schemes and “GA-Hybrid” approach. The conditions
required to employ Reinforcement Learning as an alternative method for RUAV stabilization in future
scope is also explored.

Keywords: optimal controller; RUAV; particle swarm optimization; genetic algorithm; hybrid control

1. Introduction

The Rotary Unmanned Aerial Vehicle (RUAV) is an increasingly popular vertical
take-off and landing (VTOL) aircraft. Low cost, lightweight and agile manoeuvring have
contributed to its diverse usage within the Northern Irish economy, from civil engineering
observations of silt building on the river Lagan to search and rescue operations on the
Mourne mountains and maintenance checks on renewable energy wind farms. Small
size is a considerable advantage; however, this has contributed to a major limiting factor,
instability caused by wind, which is a significant feature of Northern Irish weather.

1.1. Motivation

Data from Meteorological Aerodrome Reports (METAR reports) from Belfast Inter-
national Airport indicate that average wind speeds for Belfast during winter months
(December–February) for 2021 were 36.5 mph. Named storms such as Storm Eunice gusting
up to 60 mph are becoming more frequent [1]. DJI, market leaders in RUAV manufac-
ture, recommend the “MATRICE 300 RTK” for commercial use. This model can safely
operate in wind speeds of 33.5 mph [2], it is apparent that the usage of this RUAV would
be classified as unsafe by DJI in average Belfast wind conditions during winter months
(December–February).

The detrimental impact of this is wide-ranging: in winter months, Belfast City Council
are unable to safely operate RUAVs to assess silt levels in the river Lagan, renewable energy
companies are unable to perform maintenance checks on windfarms using RUAVS, and
search and rescue on the Mourne mountains are unable to use RUAVs to locate missing
persons. This is a huge problem which needs to be addressed and is an important area for
further research.

Appl. Sci. 2022, 12, 7677. https://doi.org/10.3390/app12157677 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12157677
https://doi.org/10.3390/app12157677
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3363-2886
https://doi.org/10.3390/app12157677
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12157677?type=check_update&version=2

Appl. Sci. 2022, 12, 7677 2 of 27

1.2. Problem Statement

In order to overcome the issues explained, the current control structure must be rein-
forced to enable RUAVs to fly in the common high winds experienced in Northern Ireland
during winter months. Methods of enhancing current techniques must be explored to
create flight controllers that exhibit improved stability than those commercially available.
These improvements can be achieved using data-driven methods employing metaheuris-
tic algorithms to select controller gains to stabilize complex systems. Additionally, the
nonlinear properties associated with RUAVs are difficult to accurately model and create
controllers for, by employing Machine Learning Control to combine with the conventional
methods to create a Hybrid approach or to fully replace the conventional methods using
Reinforcement Learning.

1.3. Objectives

The main aim of this project is to enhance existing conventional and optimal con-
trol structures using data-driven machine learning improving the stability and attitude
performance of RUAVs, and shall be explored in the following ways:

1. Conventional PID control with a controller for each of the measured outputs;
2. Optimal Controllers comprising Linear Quadratic Regulator (LQR) used in Full State

Feedback configuration, LQR with a Luenberger Observer (LQR + Obs) in a Full State
Compensator configuration for state estimation and Linear Quadratic Gaussian (LQG)
with Kalman Filter for improved noise attenuation;

3. Enhanced Optimal Controllers using metaheuristic algorithms such as Particle Swarm
Optimization (PSO) or Genetic Algorithm (GA) for selecting controller gains;

4. Foundational knowledge required to implement Reinforcement Learning agents.

1.4. Contribution of the Article

The article not only includes and discusses the literature review and current state of the
art in depth, but it also encourages the reader to choose a specific approach by outlining the
many possibilities that have been used in the past. The article has the following novelties:

1. Firstly, an optimal controller comprising of LQR is used in Full State Feedback con-
figuration, LQR with a Luenberger Observer and LQG with Kalman Filter for noise
attenuation enhancing the stability of the RUAVs. Our methodology is novel in a
sense that it does not only tune the feedback gain by genetic algorithm, but also the
gains of the Kalman filter which outperforms the “GA-Hybrid” approach;

2. Secondly, Metaheuristic Algorithms, namely PSO and GA, are used to optimize the
selecting controller gains;

3. Finally, a Reinforcement Learning foundation is outlined, whereby an agent could be
used to replace other control structures.

The remainder of this paper is structured as follows: Section 2 covers an extensive
review of the state-of-the-art literature. The methodology of each state-of-the-art technique
is discussed in Section 3. Section 3.3 is used to explain the current controller structures of
Optimal controllers. The fitness function defined in Section 3.4 sets the evaluation criteria
for the Section 3.5 (Genetic Algorithm). Tuning both the feedback gains and Kalman filter
by a fully data-driven method is novel. Section 4 defines the simulation environment for
each controller used. Section 5 reviews the results obtained from each controller tested, with
Section 6 covering the future scope of research where foundational knowledge is outlined
for using a Reinforcement Learning method using an agent as a potential controller for the
RUAV. Finally, Section 7 provides a conclusion to this work. The summary of this article is
depicted in the Figure 1, where the overall summary of each respective section is shown.

Appl. Sci. 2022, 12, 7677 3 of 27

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 28

The summary of this article is depicted in the Figure 1, where the overall summary of each
respective section is shown.

Figure 1. Schematic of sections in this work.

2. Literature Review
In this section, the strategies for controlling RUAVs are discussed, covering a range

of Linear, Nonlinear and Artificial Intelligence methodologies. The Linear control meth-
ods covers PID control, Linear Quadratic Regulator (LQR), Linear Quadratic Gaussian
(LQG) and H infinity Control. The Nonlinear control methods consist of Sliding Mode
Control (SMC) and Back Stepping Control. Artificial Intelligence methods include Ma-
chine Learning Control, Neural Networks and Fuzzy Logic Control. The diagram sum-
marizing these methods is shown in Figure 2.

Figure 2. Control Systems Classifications.

The Table 1 abbreviates the control strategies used (PID = Proportional Integral Dif-
ferential, LQR = Linear Quadratic Regulator, LQG = Linear Quadratic Gaussian, PSO =
Particle Swarm Optimization, GA = Genetic Algorithm, AI =Artificial Intelligence).

Figure 1. Schematic of sections in this work.

2. Literature Review

In this section, the strategies for controlling RUAVs are discussed, covering a range of
Linear, Nonlinear and Artificial Intelligence methodologies. The Linear control methods
covers PID control, Linear Quadratic Regulator (LQR), Linear Quadratic Gaussian (LQG)
and H infinity Control. The Nonlinear control methods consist of Sliding Mode Control
(SMC) and Back Stepping Control. Artificial Intelligence methods include Machine Learn-
ing Control, Neural Networks and Fuzzy Logic Control. The diagram summarizing these
methods is shown in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 28

The summary of this article is depicted in the Figure 1, where the overall summary of each
respective section is shown.

Figure 1. Schematic of sections in this work.

2. Literature Review
In this section, the strategies for controlling RUAVs are discussed, covering a range

of Linear, Nonlinear and Artificial Intelligence methodologies. The Linear control meth-
ods covers PID control, Linear Quadratic Regulator (LQR), Linear Quadratic Gaussian
(LQG) and H infinity Control. The Nonlinear control methods consist of Sliding Mode
Control (SMC) and Back Stepping Control. Artificial Intelligence methods include Ma-
chine Learning Control, Neural Networks and Fuzzy Logic Control. The diagram sum-
marizing these methods is shown in Figure 2.

Figure 2. Control Systems Classifications.

The Table 1 abbreviates the control strategies used (PID = Proportional Integral Dif-
ferential, LQR = Linear Quadratic Regulator, LQG = Linear Quadratic Gaussian, PSO =
Particle Swarm Optimization, GA = Genetic Algorithm, AI =Artificial Intelligence).

Figure 2. Control Systems Classifications.

The Table 1 abbreviates the control strategies used (PID = Proportional Integral Differ-
ential, LQR = Linear Quadratic Regulator, LQG = Linear Quadratic Gaussian, PSO = Particle
Swarm Optimization, GA = Genetic Algorithm, AI = Artificial Intelligence).

Appl. Sci. 2022, 12, 7677 4 of 27

Table 1. State of the art Control strategies for stability of RUAVs.

No. Author Type Category Advantages Disadvantages

1 Zhang et al. [3] PID Control Linar Unit step provides a fast response
with small overshoot

Slow and inefficient to retune
each time the input changes. No

sensor noise attenuation

2 Lahlouh et al. [4] PID+SOF Linear Fast settling time and minimum
overshoot when compared to PID No noise attenuation.

3 Pandy et al. [5] LQR-TAE Linear
Better Steady-State Error,

transient response and reduction
in control effort than PID

No test against external
disturbance. Dificult to tune

complex systems optimally using
the Trial and Error (TAE) method.

4 De-Xin et al. [6] LQR-TAE Linear
Controller responds well to

disturbance introduced as a sine
wave

Sine wave is an unrealistic
disturbance. Difficult to optimally
tune for a complex system by TAE

5 Chen et al. [7] Integral
LQR-TAE Linear

Eliminates all Steady-State error
when applied to nonlinear system

because of the integrator

Disturbances are constant offsets
that do not accurately represent

RUAV disturbances

6 Baranooni et al. [8] LQG-TAE Linear Gaussian noise in sensor output
rejected by Kalman Filter

Complex to tune by TAE for
MIMO systems

7 Paponpen et al. [9] LQG-PSO Linear Tuned with a small number of
iterations

No improvement to the transient
response when tuned with

Particle Swarm Optimisation
(PSO)

8 Bartys et al. [10] LQG-PSO Linear Lower Control Effort required No improvement in transient
response by tuning with PSO

9 Yu et al. [11] LQG-PSO Linear
Better transient response

observed for PSO-LQG when
compared with PID

Better response is more likely
down to comparison of PID with

LQG as opposed to LQG and
PSO-LQG

10 Walker et al. [12] H-Infinity Linear Improved Anti-Interference when
compared to LQR

Slower settling time when
compared to LQR

11 Boukhnifer
et al. [13] H-Infinity Linear Improved stability in wind

disturbance than PID control
With no disturbance H-inf was

slower than PID

12 Huang
et al. [14] H-Infinity Linear

H-Infinity outperforms LQG in
high wind disturbances,

maintaining low percentage
overshoot

Benefits of H-Infinity only
become apparent at high winds as

LQG was much faster under
small disturbances

13 Lec et al. [15] Sliding Mode
Control Nonlinear

Good rejection of Gaussian noise
when used with a sliding mode

observer

Control chattering due to high
frequency switching

14 Mandeni et al. [16] Backstepping
Control Nonlinear

If designed in compliance with
the Lyapunov stability theorem,

stability is guaranteed

Explosion in complexity seen
when used on systems with many
state. No tests for noise rejection

15 Hwangbo et al.
[17]

Reinforcement
Learning AI

Performs well in real applications,
highly stable in harsh conditions

(RUAV thrownin the air)
High computational cost

16 Waslander et al.
[18]

Reinforcement
Learning AI

Model-based method using linear
regression instead of Neural

Networks, thus, fewer
computations

Limited success for a simple step
and hover motion

17 Le et al. [19] Fuzzy Logic
control Hybrid Impressive Reference tracking as

learning rate is updated online
Controller was not tested with

any sensor or actuator noise

Appl. Sci. 2022, 12, 7677 5 of 27

Table 1. Cont.

No. Author Type Category Advantages Disadvantages

18 Al-Sharman [20]

Neural
Network

state
estimation

Hybrid
Provides a high level of sensor
noise attenuation for use with

LQR

Larger level of computational
complexity when compared with

a Kalman filter

19 Marino et al. [21] PIDNN Hybrid

Optimal gains for PID
controller improving the

conventional Extremum seeking
and Zigler Nichols algorithms

No consideration of the practical
implementation of the controller,

torques possible in simulation
may not be feasible in real

application

20 Brunton et al. [22] PID-GA Hybrid

Genetic Algorithm (GA) used to
tune PID gains out-performs
Extremum seeking and Zigler
Nichols in settling time and

overshoot

Implemented on a simple
dynamic system so may not

transfer accurately to an RUAV.

21 Choubey et al. [23] LQG-GA Hybrid

LQG tuned by GA out performs
the same controller tuned

manually in tracking
performance.

Only the Feedback gain element
of the LQG was tuned by GA, the

Kalman filter was tuned
manually.

The main limitation associated with using an optimal controller for real applications
is the uncertainty associated with using the trial-and-error method (TAE) for tuning the
controller. TAE is a knowledge-based approach used by Pandy et al. [5], De-Xin et al. [6],
Chen et al. [7] and Baranooni et al. [8] to select controller parameters, a solid understanding
of the system dynamics is required for good performance here. Complex, highly coupled
systems become much harder to tune effectively by the TAE method. By using an optimiza-
tion algorithm to select controller gains, the results obtained by TAE can be improved. The
results obtained from Choubey et al. [23] show that the Genetic Algorithm can improve
the response of an LQG controller when compared with TAE. However, this method only
tuned the feedback gain without considering using optimization for tuning the Kalman
filter. Metaheuristic algorithms such as those proposed by Brunton et al. [22], Yu et al. [11]
and Bartys et al. [10], such as PSO or GA, can be used to create a controller tuned completely
by data driven methods, eliminating the limitations of a knowledge-based approach.

3. Methodology

The proposed controller for providing stability of the RUAV was developed by eval-
uating different controller structures. The following are the five primary steps taken to
realize the best control structure to stabilize the RUAV from harsh wind disturbances.

A. Plant Representation.
B. Conventional Control (PID).
C. Optimal Control.
D. Particle Swarm Optimization application.
E. Genetic Algorithm application.

3.1. Plant Representation

The RUAV model is configured in State Space representation. Due to the complex,
highly coupled nature of the dynamic system, the differential equations are arranged in
matrix form, making the controller design process simpler. The state space equations are
shown in Equation (1) along with the corresponding block diagram for these equations in
Figure 3, the matrices for deriving these differential equations can be found in Appendix A.

Appl. Sci. 2022, 12, 7677 6 of 27

.
x = Ax + Bu

y = Cx + Du
(1)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 28

Figure 3. State Space Block Diagram— representing integrator block in MATLAB Simulink.

The A matrix is the system matrix and contains the state information of the system.
The RUAV model has eight states—longitudinal velocity (m), normal velocity (w), pitch
rate (q), pitch displacement (𝜃 , lateral velocity (v), roll rate (p), roll displacement 𝜑) and
yaw rate (r). The variable x is the state vector containing the current value of the states, in
the case of the RUAV model, it is an eight-element vector with each element correspond-
ing to a state in the A matrix.

The B matrix is the Input matrix and describes the behavior of each input to the sys-
tem. The RUAV has three inputs—pitch displacement (𝜃), roll displacement (𝜑) and yaw
rate (r). The 𝑢 variable is the input vector (controller output), 𝑢 contains the output of the
controller, in this case, a three-element vector is required with each element correspond-
ing to the size of the B matrix.

The C matrix is the output matrix and details which of the state are measured as
outputs in the system. The RUAV model has five measured outputs—pitch displacement
(𝜃), roll displacement (𝜑), yaw rate®, pitch rate (q), roll rate (p).

The D matrix is the feedthrough/feedforward matrix, this is used in the system when
the system input directly effects the system output. In this case, the RUAV model does not
have a D matrix and as such, has a 5 × 3 matrix of zeros. The 𝑦 variable details the output
of the system.

3.1.1. Output Selection
The RUAV dynamic model can be simplified for some control structures. Three of

the input/output combinations are complimentary (pitch displacement, roll displacement
and yaw rate), whereas the other two measured outputs (pitch rate and roll rate) are not
fed back directly to an input. These two measured outputs can therefore be removed with-
out negatively effecting the system. Removing the extra outputs reduces the hardware
required to sense the outputs and effectively stabilize the vehicle where space and weight
comes at a premium.

3.2. Conventional Control (PID)
Proportional Integral Differential (PID) control, also known as three-term control, is

a simple, yet effective control scheme for systems with no noise. PID controllers are used
for controlling Single Input Single Output (SISO) systems, however, the RUAV plant used
is a Multiple Input Multiple Output (MIMO) system. To control the system, a multi-loop
approach is required where one PID controller is used to control each of the inputs to the
system using the three corresponding measured outputs of the same state.

The equation for the controller output (𝑢) is shown in Equation (2) below, the signal
error (𝑒) is calculated as the difference in the system output from the reference signal. This
error is used in the controller, first by multiplying by the proportional gain, then by taking
the differential of the error and multiplying by a differential gain and lastly, by taking the
integral of the error and multiplying by an integral gain, these three products are then
added together to produce the final output of the controller.

Figure 3. State Space Block Diagram— 1
s representing integrator block in MATLAB Simulink.

The A matrix is the system matrix and contains the state information of the system.
The RUAV model has eight states—longitudinal velocity (m), normal velocity (w), pitch
rate (q), pitch displacement (θ), lateral velocity (v), roll rate (p), roll displacement (ϕ) and
yaw rate (r). The variable x is the state vector containing the current value of the states, in
the case of the RUAV model, it is an eight-element vector with each element corresponding
to a state in the A matrix.

The B matrix is the Input matrix and describes the behavior of each input to the system.
The RUAV has three inputs—pitch displacement (θ), roll displacement (ϕ) and yaw rate (r).
The u variable is the input vector (controller output), u contains the output of the controller,
in this case, a three-element vector is required with each element corresponding to the size
of the B matrix.

The C matrix is the output matrix and details which of the state are measured as
outputs in the system. The RUAV model has five measured outputs—pitch displacement
(θ), roll displacement (ϕ), yaw rate®, pitch rate (q), roll rate (p).

The D matrix is the feedthrough/feedforward matrix, this is used in the system when
the system input directly effects the system output. In this case, the RUAV model does not
have a D matrix and as such, has a 5 × 3 matrix of zeros. The y variable details the output
of the system.

3.1.1. Output Selection

The RUAV dynamic model can be simplified for some control structures. Three of the
input/output combinations are complimentary (pitch displacement, roll displacement and
yaw rate), whereas the other two measured outputs (pitch rate and roll rate) are not fed
back directly to an input. These two measured outputs can therefore be removed without
negatively effecting the system. Removing the extra outputs reduces the hardware required
to sense the outputs and effectively stabilize the vehicle where space and weight comes at
a premium.

3.2. Conventional Control (PID)

Proportional Integral Differential (PID) control, also known as three-term control, is a
simple, yet effective control scheme for systems with no noise. PID controllers are used
for controlling Single Input Single Output (SISO) systems, however, the RUAV plant used
is a Multiple Input Multiple Output (MIMO) system. To control the system, a multi-loop
approach is required where one PID controller is used to control each of the inputs to the
system using the three corresponding measured outputs of the same state.

The equation for the controller output (u) is shown in Equation (2) below, the signal
error (e) is calculated as the difference in the system output from the reference signal. This
error is used in the controller, first by multiplying by the proportional gain, then by taking
the differential of the error and multiplying by a differential gain and lastly, by taking the

Appl. Sci. 2022, 12, 7677 7 of 27

integral of the error and multiplying by an integral gain, these three products are then
added together to produce the final output of the controller.

u(t) = Kpe + Kd
de
dt

+ Ki

∫ t

0
e(t) dt (2)

The Proportional gain (Kp) is proportional to the current signal error (e), if set too low,
the controller will settle slowly, potentially not creating enough controller output to correct
the error before the RUAV fails. If set too high, the controller will overcompensate for the
error and will oscillate about the setpoint potentially becoming unstable.

The Integral gain (Ki) relates to the speed of response and to totally eradicate steady-
state error for accurate asymptotic reference tracking, if set too low, the response will be
slow and may not correct the error in time before the system fails, if set too high, the
controller will produce a response that overshoots and oscillates about the setpoint.

The differential gain (Kd) works to steady the response when gains for Kp and Ki are
set incorrectly causing oscillations. If Kd is set too low, then there may still be oscillations
in the system even when at steady state, if Kd is set too high, then the response may be
delayed, the desired input may take a long time to reach the output.

3.2.1. PID Control

The block diagram shown in Figure 4 shows the multiloop configuration of the system
where a PID controller is used to control the Pitch displacement (θ), Roll displacement (ϕ)
and the Yaw rate (r).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 28

𝑢 𝑡 = 𝐾 𝑒 + 𝐾 𝑑𝑒𝑑𝑡 + 𝐾 𝑒 𝑡 𝑑𝑡 (2)

The Proportional gain (𝐾) is proportional to the current signal error (𝑒), if set too
low, the controller will settle slowly, potentially not creating enough controller output to
correct the error before the RUAV fails. If set too high, the controller will overcompensate
for the error and will oscillate about the setpoint potentially becoming unstable.

The Integral gain (𝐾) relates to the speed of response and to totally eradicate steady-
state error for accurate asymptotic reference tracking, if set too low, the response will be
slow and may not correct the error in time before the system fails, if set too high, the con-
troller will produce a response that overshoots and oscillates about the setpoint.

The differential gain (𝐾) works to steady the response when gains for 𝐾 and 𝐾
are set incorrectly causing oscillations. If 𝐾 is set too low, then there may still be oscilla-
tions in the system even when at steady state, if 𝐾 is set too high, then the response may
be delayed, the desired input may take a long time to reach the output.

3.2.1. PID Control
The block diagram shown in Figure 4 shows the multiloop configuration of the sys-

tem where a PID controller is used to control the Pitch displacement (𝜃), Roll displacement
(𝜑) and the Yaw rate (r).

Figure 4. Multiloop PID Control Block Diagram

The controllers are tuned using MATLAB’s Control System tuner, whereby a track-
ing reference of 20% is defined along with a maximum damping frequency of 10 Hz to
prevent excessive oscillation in the time domain in the response and gain and phase mar-
gins of 5 dB and 40 deg, respectively. These stability margins were added to ensure ro-
bustness to process variations when applied to a real system. The gain margin was set to
avoid changes in rotor dynamics/inertia, while the phase margin was introduced to avoid
problems introduced with time sensitive slow computational hardware.

3.2.2. PID Control with Static Output Feedback
PID control alone can struggle to achieve constant zero steady-state error quickly, in

multivariable systems; to aid this, a Static Output Feedback (SOF) gain was added [4]. To
implement this, the removed measured outputs discussed in Section 3.1.1 were added
back to the system to offer the SOF gather more information on the state of the dynamic
model to improve the stability of the RUAV. This method eliminates all steady-state error
and oscillations from the system. The SOF gain is tuned using the same tuning rules de-
fined for the PID controllers in Section 3.2.1; the block diagram for this control structure
is seen in Figure 5.

Figure 4. Multiloop PID Control Block Diagram.

The controllers are tuned using MATLAB’s Control System tuner, whereby a tracking
reference of 20% is defined along with a maximum damping frequency of 10 Hz to prevent
excessive oscillation in the time domain in the response and gain and phase margins of
5 dB and 40 deg, respectively. These stability margins were added to ensure robustness to
process variations when applied to a real system. The gain margin was set to avoid changes
in rotor dynamics/inertia, while the phase margin was introduced to avoid problems
introduced with time sensitive slow computational hardware.

3.2.2. PID Control with Static Output Feedback

PID control alone can struggle to achieve constant zero steady-state error quickly, in
multivariable systems; to aid this, a Static Output Feedback (SOF) gain was added [4]. To
implement this, the removed measured outputs discussed in Section 3.1.1 were added back
to the system to offer the SOF gather more information on the state of the dynamic model
to improve the stability of the RUAV. This method eliminates all steady-state error and
oscillations from the system. The SOF gain is tuned using the same tuning rules defined for
the PID controllers in Section 3.2.1; the block diagram for this control structure is seen in
Figure 5.

Appl. Sci. 2022, 12, 7677 8 of 27
Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 28

Figure 5. Multiloop PID with Static Output Feedback Control Block Diagram [24].

3.3. Optimal Control
Optimal control strategies aim to extract the best performance from a dynamic sys-

tem for the minimum cost. Several methods have been used to create the controller have
been explored. Section 3.3 is used to explain the current controller structures of optimal
controllers, the authors do not claim this section to be novel. This section was added to
provide a basic underlying knowledge required for better readability for the wider audi-
ence.

3.3.1. Full State Feedback (Linear Quadratic Regulator)
The Full State Feedback controller assumes that every state in the system is available

for use in the controller. The input defined as 𝑢 in Equation (1) is calculated for Full State
Feedback with: 𝑢 = −𝐾𝑥 (3)

The K variable is the gain of the Full State Feedback controller. Input to the system
(𝑢) is calculated as the product of the negative feedback gain and the state vector (𝑥). The
controller architecture of this controller is defined in Figure 6 [25].

Figure 6. Full State Feedback Controller.

To equate the controller gain K in Equation (3) for LQR a series of procedures must
be followed:
1. Define the Q and R matrices;
2. Solve for S in the Algebraic Riccati Equation;
3. Compute the controller gains K from generated S;
4. Evaluate produced controller gains to select the optimal controller.

The Q and R matrices are square matrices the size of the state and input vectors used
for weighting the cost function. Each diagonal element of the Q and R matrices corre-
sponds to the element of the State or Input vector that they penalize. The cost function 𝐽

Figure 5. Multiloop PID with Static Output Feedback Control Block Diagram [24].

3.3. Optimal Control

Optimal control strategies aim to extract the best performance from a dynamic system
for the minimum cost. Several methods have been used to create the controller have been
explored. Section 3.3 is used to explain the current controller structures of optimal con-
trollers, the authors do not claim this section to be novel. This section was added to provide
a basic underlying knowledge required for better readability for the wider audience.

3.3.1. Full State Feedback (Linear Quadratic Regulator)

The Full State Feedback controller assumes that every state in the system is available
for use in the controller. The input defined as u in Equation (1) is calculated for Full State
Feedback with:

u = −Kx (3)

The K variable is the gain of the Full State Feedback controller. Input to the system
(u) is calculated as the product of the negative feedback gain and the state vector (x). The
controller architecture of this controller is defined in Figure 6 [25].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 28

Figure 5. Multiloop PID with Static Output Feedback Control Block Diagram [24].

3.3. Optimal Control
Optimal control strategies aim to extract the best performance from a dynamic sys-

tem for the minimum cost. Several methods have been used to create the controller have
been explored. Section 3.3 is used to explain the current controller structures of optimal
controllers, the authors do not claim this section to be novel. This section was added to
provide a basic underlying knowledge required for better readability for the wider audi-
ence.

3.3.1. Full State Feedback (Linear Quadratic Regulator)
The Full State Feedback controller assumes that every state in the system is available

for use in the controller. The input defined as 𝑢 in Equation (1) is calculated for Full State
Feedback with: 𝑢 = −𝐾𝑥 (3)

The K variable is the gain of the Full State Feedback controller. Input to the system
(𝑢) is calculated as the product of the negative feedback gain and the state vector (𝑥). The
controller architecture of this controller is defined in Figure 6 [25].

Figure 6. Full State Feedback Controller.

To equate the controller gain K in Equation (3) for LQR a series of procedures must
be followed:
1. Define the Q and R matrices;
2. Solve for S in the Algebraic Riccati Equation;
3. Compute the controller gains K from generated S;
4. Evaluate produced controller gains to select the optimal controller.

The Q and R matrices are square matrices the size of the state and input vectors used
for weighting the cost function. Each diagonal element of the Q and R matrices corre-
sponds to the element of the State or Input vector that they penalize. The cost function 𝐽

Figure 6. Full State Feedback Controller.

To equate the controller gain K in Equation (3) for LQR a series of procedures must
be followed:

1. Define the Q and R matrices;
2. Solve for S in the Algebraic Riccati Equation;
3. Compute the controller gains K from generated S;
4. Evaluate produced controller gains to select the optimal controller.

The Q and R matrices are square matrices the size of the state and input vectors used
for weighting the cost function. Each diagonal element of the Q and R matrices corresponds
to the element of the State or Input vector that they penalize. The cost function J shown in
Equation (4) is used for measuring the cost of the controller. Although the variable J is not
explicitly used in Equations (5)–(8), it shows the relationship between speed of response

Appl. Sci. 2022, 12, 7677 9 of 27

relating to the Q matrix and the actuator effort in the R matrix used to achieve the desired
response from the controller.

By setting elements in the Q matrix high, the non-zero states in the xT vector brought
about by wind disturbance will introduce a high cost in Equation (4), prioritizing the
offset state for faster return to equilibrium. By setting elements in the R matrix high, the
cost of using an actuator is increased, meaning that the controller will prioritize return to
equilibrium using small actuator effort. For fast return to equilibrium where actuator effort
is not a concern, elements in the Q matrix are set high, while elements in the R matrix are
set low; this produces a greater cost for non-zero state values. Contrastingly, if the speed of
correction is not a priority but rather, conservation of actuator effort is mandatory, then
values in the Q matrix are set low with values in the R matrix set high; this produces a
greater cost for using actuators to respond to the state offset.

J =
∫ ∞

0
xT .Qx(t) + u(t)T Ru(t) dt (4)

Once the Q and R matrices are defined, the second step is to solve for S in the Algebraic
Riccati Equation defined in Equation (5). This produces more than one solution, however,
only one will stabilize the system optimally. The Q and R matrices used in Equation (4)
defining the cost are used in Equation (5) as the next step towards solving controller gain K.

ATS + SA− SBR−1BT + Q = 0 (5)

Once S is found, the feedback gain K can be computed using Equation (6) below.

K = R−1BTS (6)

As there is more than one solution for Equation (5), there are many controllers created
from Equation (6), each should be evaluated to identify which is optimal. To evaluate the
produced controllers, the closed loop eigenvalues are generated using Equations (7) and (8).
The controller that pushes all eigenvalues of the closed loop system into the negative
domain is taken as optimal.

CL = A− B.K (7)

Eigenvalues = det(CL− λ I) (8)

The optimal controller gain K generated and evaluated by Equations (5)–(8) can then
be used as part of Equation (3) as the feedback term generating the input u to bring about
stability in the system.

3.3.2. Full State Compensator

Full State Feedback measures each state using sensors. These sensors often contribute
to Full State Feedback’s main shortcoming; its large hardware requirement to measure each
of the internal states of the RUAV. This is not only expensive in terms of hardware, but is
also computationally expensive for the controller to have constant feedback from all states
of the system (eight sensors required in the case of the RUAV model).

Instead, the values of the states of the system are estimated so less emphasis is placed
on highly accurate, constant sensor data. The Full State Feedback gain is used with a
Luenberger Observer predicting the internal states of the system to create a Full State
Compensator. The controller architecture of the Full State Compensator is shown in
Figure 7 [25]. The main change from Full State Feedback is that the feedback gain K is
multiplied by the predicted state x̂ from the Observer instead of the actual internal states of
the system. By using the Luenberger Observer, a smooth transient response can be achieved
even when the real internal states may be compromised. This is particularly applicable to
Aerial Vehicles where weight comes at a premium, by using an observer component, the
internal states of the vehicle do not need to be measured by bulky sensors.

Appl. Sci. 2022, 12, 7677 10 of 27

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 28

Vehicles where weight comes at a premium, by using an observer component, the internal
states of the vehicle do not need to be measured by bulky sensors.

Figure 7. Full State Compensator.

The State Feedback gain is calculated using the same process as the Full State Feed-
back discussed in Section 3.3.1. The Observer gain is calculated in the same four steps as
Full State Feedback with slight modifications. The A and B matrices are replaced with
transposed A and transposed C matrices while the Q matrix comprises the product of B
and B transposed matrices. The R matrix remains the same as the Full State Feedback.

3.3.3. Linear Quadratic Gaussian (LQG)
While the Luenberger Observer works well in instances where all states cannot be

measured, those states that are measured must be noiseless if an acceptable response is to
be achieved. However, this is not usually the case, as even expensive sensors can inherit
some measurement noise, many dynamic systems also suffer from process noise from
high frequency actuators (such as motors used to spin RUAV rotors). The Linear Quad-
ratic Gaussian controller provides the same benefits of a Luenberger Observer, but with
the added advantage of improved noise attenuation. The controller architecture is shown
in Figure 8 below [21].

Figure 8. Linear Quadratic Gaussian.

The input 𝑢 to the system is the same as for Full State Feedback discussed in Section
3.3.1, but the Kalman-estimated 𝑥 is used instead of all measured states. The input 𝑢 and
output 𝑦 are then fed back into the Kalman filter to reject Gaussian noise.

The LQG controller is tuned similarly to the LQR with Luenberger Observer, the
Feedback gain 𝐾 is tuned in the same way. The Kalman filter is tuned slightly differently,
instead of a Q matrix, there is a Vd (process covariance matrix) matrix, the same dimen-
sions of as the Q matrix. Tuning Vd requires a knowledge of where the noise is in the
system, where each diagonal element in the matrix corresponds to the location of the noise
in the system (e.g., Vd (1, 1) corresponds to noise in State (1). The Vn (sensor covariance

Figure 7. Full State Compensator.

The State Feedback gain is calculated using the same process as the Full State Feedback
discussed in Section 3.3.1. The Observer gain is calculated in the same four steps as Full State
Feedback with slight modifications. The A and B matrices are replaced with transposed A
and transposed C matrices while the Q matrix comprises the product of B and B transposed
matrices. The R matrix remains the same as the Full State Feedback.

3.3.3. Linear Quadratic Gaussian (LQG)

While the Luenberger Observer works well in instances where all states cannot be
measured, those states that are measured must be noiseless if an acceptable response is to
be achieved. However, this is not usually the case, as even expensive sensors can inherit
some measurement noise, many dynamic systems also suffer from process noise from high
frequency actuators (such as motors used to spin RUAV rotors). The Linear Quadratic
Gaussian controller provides the same benefits of a Luenberger Observer, but with the
added advantage of improved noise attenuation. The controller architecture is shown in
Figure 8 below [21].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 28

Vehicles where weight comes at a premium, by using an observer component, the internal
states of the vehicle do not need to be measured by bulky sensors.

Figure 7. Full State Compensator.

The State Feedback gain is calculated using the same process as the Full State Feed-
back discussed in Section 3.3.1. The Observer gain is calculated in the same four steps as
Full State Feedback with slight modifications. The A and B matrices are replaced with
transposed A and transposed C matrices while the Q matrix comprises the product of B
and B transposed matrices. The R matrix remains the same as the Full State Feedback.

3.3.3. Linear Quadratic Gaussian (LQG)
While the Luenberger Observer works well in instances where all states cannot be

measured, those states that are measured must be noiseless if an acceptable response is to
be achieved. However, this is not usually the case, as even expensive sensors can inherit
some measurement noise, many dynamic systems also suffer from process noise from
high frequency actuators (such as motors used to spin RUAV rotors). The Linear Quad-
ratic Gaussian controller provides the same benefits of a Luenberger Observer, but with
the added advantage of improved noise attenuation. The controller architecture is shown
in Figure 8 below [21].

Figure 8. Linear Quadratic Gaussian.

The input 𝑢 to the system is the same as for Full State Feedback discussed in Section
3.3.1, but the Kalman-estimated 𝑥 is used instead of all measured states. The input 𝑢 and
output 𝑦 are then fed back into the Kalman filter to reject Gaussian noise.

The LQG controller is tuned similarly to the LQR with Luenberger Observer, the
Feedback gain 𝐾 is tuned in the same way. The Kalman filter is tuned slightly differently,
instead of a Q matrix, there is a Vd (process covariance matrix) matrix, the same dimen-
sions of as the Q matrix. Tuning Vd requires a knowledge of where the noise is in the
system, where each diagonal element in the matrix corresponds to the location of the noise
in the system (e.g., Vd (1, 1) corresponds to noise in State (1). The Vn (sensor covariance

Figure 8. Linear Quadratic Gaussian.

The input u to the system is the same as for Full State Feedback discussed in Section 3.3.1,
but the Kalman-estimated x̂ is used instead of all measured states. The input u and output
y are then fed back into the Kalman filter to reject Gaussian noise.

The LQG controller is tuned similarly to the LQR with Luenberger Observer, the
Feedback gain K is tuned in the same way. The Kalman filter is tuned slightly differently,
instead of a Q matrix, there is a Vd (process covariance matrix) matrix, the same dimensions
of as the Q matrix. Tuning Vd requires a knowledge of where the noise is in the system,
where each diagonal element in the matrix corresponds to the location of the noise in the
system (e.g., Vd (1, 1) corresponds to noise in State (1). The Vn (sensor covariance matrix)
matrix, similar to the R matrix in LQR controller, sets the control effort. If the value is
set low, the transient response settles very quickly, but with noise in at steady state. The
noise disturbance to the system is assumed to be zero-mean Gaussian. Figure 9 shows how

Appl. Sci. 2022, 12, 7677 11 of 27

isolating and increasing the values in the Vd matrix the shape of the transient response
changes. At low values, the response is very slow but rejects all noise, whereas Vd at higher
values produces a much faster response but is noisy. Comparatively, if Vn is set high, the
response is slower, but more noise is rejected from the system. Tuning the parameters of
Vn and Vd is a trade-off between aggressiveness of signal estimation and noise attenuation,
this tuning process can be difficult for multivariable systems with many states.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 28

matrix) matrix, similar to the R matrix in LQR controller, sets the control effort. If the value
is set low, the transient response settles very quickly, but with noise in at steady state. The
noise disturbance to the system is assumed to be zero-mean Gaussian. Figure 9 shows
how isolating and increasing the values in the Vd matrix the shape of the transient re-
sponse changes. At low values, the response is very slow but rejects all noise, whereas Vd
at higher values produces a much faster response but is noisy. Comparatively, if Vn is set
high, the response is slower, but more noise is rejected from the system. Tuning the pa-
rameters of Vn and Vd is a trade-off between aggressiveness of signal estimation and noise
attenuation, this tuning process can be difficult for multivariable systems with many
states.

Figure 9. Comparison of varying Vd and Vn matrix values.

The Kalman gain 𝐾 , as seen in Figure 8, can be obtained using the same process as
used in Sections 3.3.1 and 3.3.2. The Q and R matrices are swapped for the Vd and Vn
matrices while the A and B matrices are swapped for A transposed and C transposed.

3.4. Particle Swarm Optimization Algorithm
The Particle Swarm Optimization, also known as PSO, is a heuristic algorithm that

can be used to tune the matrices of a controller based on maximum and minimum user-
defined values. This method has been detailed by many authors as shown in Table 1. The
inspiration for this algorithm comes from the behavior of flocks of birds or schools of fish.
The number of particles (individuals) is first defined, the larger the number of particles,
the more likely the swarm is to find the global optimum in the set number of iterations.
The maximums and minimums for the values to be tuned are held within the W max and
W min variables. The W variable represents the inertia weight and is the distance the par-
ticle can search within an iteration.

The 𝐶 and 𝐶 values relate to the particles individual and social behavior respec-
tively. If 𝐶 is set high, there will be a high level of “communication” between the parti-
cles in the swarm. Based on Equation (9), a greater emphasis will be placed on the personal
best over the group best. The swarm will converge quickly, but possibly on a local mini-
mum instead of the global minimum. If 𝐶 is set high, then the emphasis is placed on the
individual in the swarm without communication between particles, the exploration space
is large, but the particles do not work as a “team” to find the global minimum. Balancing
the 𝐶 and 𝐶 values is key to the success of the algorithm. The elements for 𝑟 and 𝑟
introduce randomness into the calculation to change the result each time. 𝑃 and 𝐺
correspond to the particles optimum and group optimum, respectively. The calculation
for 𝑣 below uses these values to derive the velocity of the 𝑖 𝑡ℎ particle in the swarm,
then update its position 𝑥 using its previous position and the newly calculated velocity.

Figure 9. Comparison of varying Vd and Vn matrix values.

The Kalman gain K f , as seen in Figure 8, can be obtained using the same process as
used in Sections 3.3.1 and 3.3.2. The Q and R matrices are swapped for the Vd and Vn
matrices while the A and B matrices are swapped for A transposed and C transposed.

3.4. Particle Swarm Optimization Algorithm

The Particle Swarm Optimization, also known as PSO, is a heuristic algorithm that
can be used to tune the matrices of a controller based on maximum and minimum user-
defined values. This method has been detailed by many authors as shown in Table 1. The
inspiration for this algorithm comes from the behavior of flocks of birds or schools of fish.
The number of particles (individuals) is first defined, the larger the number of particles, the
more likely the swarm is to find the global optimum in the set number of iterations. The
maximums and minimums for the values to be tuned are held within the W max and W
min variables. The W variable represents the inertia weight and is the distance the particle
can search within an iteration.

The C1 and C2 values relate to the particles individual and social behavior respectively.
If C2 is set high, there will be a high level of “communication” between the particles in the
swarm. Based on Equation (9), a greater emphasis will be placed on the personal best over
the group best. The swarm will converge quickly, but possibly on a local minimum instead
of the global minimum. If C1 is set high, then the emphasis is placed on the individual
in the swarm without communication between particles, the exploration space is large,
but the particles do not work as a “team” to find the global minimum. Balancing the C1
and C2 values is key to the success of the algorithm. The elements for r1 and r2 introduce
randomness into the calculation to change the result each time. Pbest and Gbest correspond
to the particles optimum and group optimum, respectively. The calculation for vi below
uses these values to derive the velocity of the i′th particle in the swarm, then update its
position x using its previous position and the newly calculated velocity.

vi = Wvi + C1r1(Pbest,i − xi) + C2r2(Gbest − xi) (9)

xi = xi + vi (10)

Appl. Sci. 2022, 12, 7677 12 of 27

A Fitness Function is required for testing the gains chosen by the algorithm, this
can be configured as a cost function, better gains will result in a drop in the overall cost
function of the controller. The Fitness Function used is Eigenstructure Assignment, where
the eigenvalues of the devised controller in the closed loop system are taken, as shown in
Equation (11), the observer component (Lo.C) is removed for Full State Feedback controller.
This fitness function was selected as it incorporates both eigenvectors and eigenvalues in
the equation relating to the speed and shape of response respectively directly correlating
to the settling time and % overshoot of the closed loop system. With each iteration of the
algorithm, the poles of the closed loop system are moved further into the negative domain,
stabilizing the system.

[V, D, W] = det((A− B.K + Lo.C)− λ I) (11)

The left and right eigenvalues (V, W) are taken to evaluate S in Equation (12). In
Equation (13), the absolute sum of S is taken as the fitness value, large values show a poor
performance of the algorithm while small values show good performance.

S =
WTV

||W||2||V||2
(12)

J =
∣∣∑ S

∣∣ (13)

The code for the calculation of optimal values using PSO algorithm is defined in
Pseudocode 1.

Pseudocode 1: Particle Swarm Optimisation

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 28

𝑣 = 𝑊𝑣 + 𝐶 𝑟 𝑃 , − 𝑥 + 𝐶 𝑟 𝐺 − 𝑥 (9)𝑥 = 𝑥 + 𝑣 (10)

A Fitness Function is required for testing the gains chosen by the algorithm, this can
be configured as a cost function, better gains will result in a drop in the overall cost func-
tion of the controller. The Fitness Function used is Eigenstructure Assignment, where the
eigenvalues of the devised controller in the closed loop system are taken, as shown in
Equation (11), the observer component (Lo.C) is removed for Full State Feedback control-
ler. This fitness function was selected as it incorporates both eigenvectors and eigenvalues
in the equation relating to the speed and shape of response respectively directly correlat-
ing to the settling time and % overshoot of the closed loop system. With each iteration of
the algorithm, the poles of the closed loop system are moved further into the negative
domain, stabilizing the system. [𝑉, 𝐷, 𝑊] = det 𝐴 − 𝐵. 𝐾 + 𝐿𝑜. 𝐶 − 𝜆 𝐼 (11)

The left and right eigenvalues (V, W) are taken to evaluate S in Equation (12). In Equa-
tion (13), the absolute sum of S is taken as the fitness value, large values show a poor
performance of the algorithm while small values show good performance. 𝑆 = 𝑊 𝑉‖𝑊‖ ‖𝑉‖ (12)

𝐽 = 𝑆 (13)

The code for the calculation of optimal values using PSO algorithm is defined in
Pseudocode 1.

Pseudocode 1: Particle Swarm Optimisation𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 the control parameters N, c1, c2, Wmin, Wmax and MaxIter 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 pop of N particles 𝒇𝒐𝒓 1: MaxIter 𝒅𝒐
 for each particle
 Calculate the objective of the particle based on Fitness Function
 Update P_best if better than previous
 Update G_best if better than previous

 end for

 Update the inertia weight (W)
for each particle

 Update the velocity (v)
 Update the position (x)

 end for

 Return G_best as the best estimation of the global optimum

end for

3.5. Genetic Algorithm
The Genetic Algorithm (GA) is another metaheuristic algorithm used for locating op-

timal gains for controllers. The inspiration for this algorithm comes from the theory of
evolution and natural selection where the best individuals in an environment will pass
genes onto the next generation, compounding into a highly evolved individual well suited
to a given task. The process used in GA can be used to tune controller parameters com-
pletely from scratch or adapt and improve those selected manually.

3.5. Genetic Algorithm

The Genetic Algorithm (GA) is another metaheuristic algorithm used for locating
optimal gains for controllers. The inspiration for this algorithm comes from the theory
of evolution and natural selection where the best individuals in an environment will
pass genes onto the next generation, compounding into a highly evolved individual well
suited to a given task. The process used in GA can be used to tune controller parameters
completely from scratch or adapt and improve those selected manually.

Firstly, the number of individuals is defined making up the total population along with
the maximum number of generations. Usually, the larger the population and the number of
generations the more likely the algorithm will find the global minimum. However, creating
a bigger population and maximum generation value requires more computational effort
making the algorithm slower to run on suboptimal hardware.

Appl. Sci. 2022, 12, 7677 13 of 27

The population works following a set of predefined ‘genetic rules’ to minimize a cost
function (Fitness Function) producing optimal controller gains for Kr (feedback gains) and
K f (Kalman gains). Each individual in the population is made up of a defined number
of chromosomes. The number of chromosomes relates to the values of the matrices to be
tuned. For example, a Full State Feedback controller used to tune a system with 3 inputs
and 8 states will require a Q matrix of size 8 and an R matrix of size 3. The resulting
individual will require 11 (8 + 3) chromosomes to tune the controller.

Each chromosome is initially set to a random value for each individual if the algorithm
is tuning from scratch. Alternatively, if the algorithm is improving a controller from
previous approaches such as manual tuning the values of the control matrices are to be
used as the starting point for 60% of the population with the other 40% being set to random
to encourage exploration of new values. Each individual is then evaluated using the Fitness
Function and ranked on its cost.

There are 5 genetic rules to be followed:

1. Elitism—The top 5% of the population advances to the next generation totally unchanged.
2. Replication—The top 5% of the population advances to the next generation and is

replicated 19 times to make up 95% of the new population, this combined with
3. The Elite population makes up the total population. These individuals are modified

using genetic rules 3 and 4.
4. Crossover—Two individuals are selected and are snipped at a defined section of their

chromosomes; these snipped sections are swapped between the individuals. This
process is used to exploit and enhance the existing successful strategies found by
the algorithm.

5. Mutation—Chromosomes within the individual are changed to a random value.
This promotes diversity in the population and increases the scope for exploration of
new values.

The new population is then evaluated on the same Fitness Function, as described in
Section 3.4, Equations (11)–(13). The resulting costs are used to rank each individual, the
new best 5% advances to the next generation. Steps 1–4 are repeated, and the evolution
process continues until the maximum generation is reached where the algorithm will print
the global optimum. The basic code used for the Genetic Algorithm along with the block
diagram can be found in Pseudocode 2.

Pseudocode 2: Genetic Algorithm

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 28

Pseudocode 2: Genetic Algorithm 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 the control parameters PopNum, ChromNum, CrossVal,MutVal, MaxGen
Gen = 1 𝒇𝒐𝒓 1: 𝑀𝑎𝑥𝐺𝑒𝑛 𝒅𝒐
 for each individual
 Calculate the cost of the individual based on Fitness Function

 end for

 Rank individuals based on cost into ranked_pop
 Advance top 5% of ranked_pop and copy to match PopNum

 for 1: 0.95*new_pop
 Crossover snip and cross at CrossVal
 Mutate the chromosome MutVal

 end for

 Return Lowest Cost
 Return Gen

 Gen = Gen+1
end for

4. Simulation Environment
To validate the proposed algorithms as an improvement to traditional methods for

tuning controllers, a simulation environment was developed. This environment contains
each of the optimal control structures outlined in Section 3.3, along with the benchmark
PID controller. Each of the optimal controllers was tuned using three methods, Manual
Tuning, Particle Swarm Optimization and Genetic Algorithm. For those with an observer
component (Full State Compensator and LQG) Genetic Algorithm—Hybrid was added as
a fourth tuning option, whereby the observer was tuned manually with the feedback gain
being tuned using GA. A graphical representation of the simulation environment is
shown in Figure 10.

Figure 10. Simulation Environment for RUAV control schematic. The functions are as follows: 1:
Allows for switching between different tuning methods for the selected controller. 2: Allows for
switching between classic PID and PID controller with Static Output Feedback to enhance response.
3: Allows the vehicle model to be configured to each of the controllers where their responses can be
analyzed in the scope.

Appl. Sci. 2022, 12, 7677 14 of 27

4. Simulation Environment

To validate the proposed algorithms as an improvement to traditional methods for
tuning controllers, a simulation environment was developed. This environment contains
each of the optimal control structures outlined in Section 3.3, along with the benchmark
PID controller. Each of the optimal controllers was tuned using three methods, Manual
Tuning, Particle Swarm Optimization and Genetic Algorithm. For those with an observer
component (Full State Compensator and LQG) Genetic Algorithm—Hybrid was added as
a fourth tuning option, whereby the observer was tuned manually with the feedback gain
being tuned using GA. A graphical representation of the simulation environment is shown
in Figure 10.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 28

Pseudocode 2: Genetic Algorithm 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 the control parameters PopNum, ChromNum, CrossVal,MutVal, MaxGen
Gen = 1 𝒇𝒐𝒓 1: 𝑀𝑎𝑥𝐺𝑒𝑛 𝒅𝒐
 for each individual
 Calculate the cost of the individual based on Fitness Function
 end for

 Rank individuals based on cost into ranked_pop
 Advance top 5% of ranked_pop and copy to match PopNum

 for 1: 0.95*new_pop
 Crossover snip and cross at CrossVal
 Mutate the chromosome MutVal
 end for

 Return Lowest Cost
 Return Gen

 Gen = Gen+1
end for

4. Simulation Environment
To validate the proposed algorithms as an improvement to traditional methods for

tuning controllers, a simulation environment was developed. This environment contains
each of the optimal control structures outlined in Section 3.3, along with the benchmark
PID controller. Each of the optimal controllers was tuned using three methods, Manual
Tuning, Particle Swarm Optimization and Genetic Algorithm. For those with an observer
component (Full State Compensator and LQG) Genetic Algorithm—Hybrid was added as
a fourth tuning option, whereby the observer was tuned manually with the feedback gain
being tuned using GA. A graphical representation of the simulation environment is
shown in Figure 10.

Figure 10. Simulation Environment for RUAV control schematic. The functions are as follows: 1:
Allows for switching between different tuning methods for the selected controller. 2: Allows for
switching between classic PID and PID controller with Static Output Feedback to enhance response.
3: Allows the vehicle model to be configured to each of the controllers where their responses can be
analyzed in the scope.

Figure 10. Simulation Environment for RUAV control schematic. The functions are as follows: 1:
Allows for switching between different tuning methods for the selected controller. 2: Allows for
switching between classic PID and PID controller with Static Output Feedback to enhance response.
3: Allows the vehicle model to be configured to each of the controllers where their responses can be
analyzed in the scope.

Tuning Parameters for Each Controller Type

The table in Appendix B shows the parameters used in simulation of the Full State
Feedback controller along with the tuning gains and static output feedback gains for
the PID benchmark. Initial Conditions are applied to the State matrix to generate an
offset in the model, initializing simulation outside the equilibrium condition. Process
and measurement noise coefficients are also defined to test noise attenuation for each
controller architecture. Appendix B also details the Q and R matrices used in manual
tuning, along with the hyperparameters used in both the Particle Swarm Optimization
and the Genetic Algorithm. Finally, the resulting feedback gains (K) used in the Full
State Feedback controller are defined for each tuning method. The initial conditions and
noise parameters remain constant throughout simulation and as such are identical to those
defined in Appendices C and D.

Appendix C shows the parameters for tuning the Full State Compensator. The Q and
R matrices are detailed for both the feedback gain and the Luenberger observer gain. The
feedback gain for manually tuned remains the same as manually tuned Full State Feedback
gain which are detailed in Appendix B.

The table in Appendix D contains the parameters for tuning the Linear Quadratic
Gaussian. The Q and R matrices are detailed for tuning the feedback gain while the Vd and
Vn matrices are defined for tuning the Kalman gains for the manually tuned method. The

Appl. Sci. 2022, 12, 7677 15 of 27

hyperparameters for generating controller gains using the Genetic Algorithm and Particle
Swarm Optimization are also defined.

Each of the controller architectures used in the simulation environment are defined in
block diagram form in Appendix E. The feedback gains and Luenberger/Kalman gains
are altered depending on the simulation configurations defined by Figure 10. All other
gain blocks are used to represent the configuration of the Observer or the RUAVs dynamic
model these are to remain the same throughout the simulation process.

5. Simulation Results

The findings from the simulation testbed described in the previous section are ex-
plained here. The two methods of evaluating the performance of the devised controllers
are by using percentage overshoot (%OS) and settling time (Ts). These two criteria are used
as the %OS measures how much the vehicle overshoots its hover state, ensuring %OS is
as low as possible is key to the success of the selected controller. Additionally, the Ts is
key as it ensures that the vehicle is within the equilibrium boundary (hover state) in the
quickest time possible. Noise attenuation will be evaluated using the generated plots in
Figures 11–14. Each contains the response of controllers’ three measured outputs, Pitch
displacement (θ), Roll displacement (ϕ) and Yaw rate (r) with an added integral of Yaw rate
giving Yaw displacement.

5.1. Full State Feedback vs. Full State Compensator

The responses for Full State Feedback and Full State Compensator are shown in
Figures 11 and 12. The response produced by the Full State Feedback controller shows that
all three tuning methods are heavily compromised by the noise in the system, this is due to
the architecture of the controller as opposed to a specific tuning method.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 28

Figure 11. Full State Feedback response for Manually tuned, PSO and GA.

Figure 12. Full State Compensator response for Manually tuned, PSO and GA.

Figure 11. Full State Feedback response for Manually tuned, PSO and GA.

Appl. Sci. 2022, 12, 7677 16 of 27

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 28

Figure 11. Full State Feedback response for Manually tuned, PSO and GA.

Figure 12. Full State Compensator response for Manually tuned, PSO and GA.
Figure 12. Full State Compensator response for Manually tuned, PSO and GA.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 28

Figure 13. Linear Quadratic Gaussian response for Manually tuned, PSO and GA.

Figure 14. Comparison of the best tuning methods for each controller type.

5.1. Full State Feedback vs. Full State Compensator
The responses for Full State Feedback and Full State Compensator are shown in Fig-

ures 11 and 12. The response produced by the Full State Feedback controller shows that
all three tuning methods are heavily compromised by the noise in the system, this is due
to the architecture of the controller as opposed to a specific tuning method.

The response for each tuning method for Pitch displacement is very similar with no
obvious best method. When compared to roll displacement, both PSO and manually
tuned responses possess similar behavior. However, the controller tuned by GA has a

Figure 13. Linear Quadratic Gaussian response for Manually tuned, PSO and GA.

The response for each tuning method for Pitch displacement is very similar with
no obvious best method. When compared to roll displacement, both PSO and manually
tuned responses possess similar behavior. However, the controller tuned by GA has a
larger overshoot although it does become stable faster than other tuning methods. When
analyzing yaw rate, the response is in terms of angular velocity, making it hard to compare
with the pitch and roll displacement due to the change in unit. To better understand

Appl. Sci. 2022, 12, 7677 17 of 27

the displacement of the vehicle in its yaw direction the integration of yaw velocity, yaw
displacement offers a better insight. Clearly, the controller tuned by GA generates the
smallest amount of displacement in the yaw direction only being displaced by 1.7 degrees.
The second-best tuning method by process of manual tuning being displaced by a total
26 degrees and the worst preforming controller was tuned by PSO reaching a maximum
displacement of 68 degrees.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 28

Figure 13. Linear Quadratic Gaussian response for Manually tuned, PSO and GA.

Figure 14. Comparison of the best tuning methods for each controller type.

5.1. Full State Feedback vs. Full State Compensator
The responses for Full State Feedback and Full State Compensator are shown in Fig-

ures 11 and 12. The response produced by the Full State Feedback controller shows that
all three tuning methods are heavily compromised by the noise in the system, this is due
to the architecture of the controller as opposed to a specific tuning method.

The response for each tuning method for Pitch displacement is very similar with no
obvious best method. When compared to roll displacement, both PSO and manually
tuned responses possess similar behavior. However, the controller tuned by GA has a

Figure 14. Comparison of the best tuning methods for each controller type.

The response for each of the Full State Compensator tuning methods has better noise
attenuation than the Full State Feedback controller due to its state observer (Luenberger
observer) to predict the output of the states instead of measuring the noisy outputs directly.
However, it is still apparent that there is still some noise in the system such as PSO in Yaw
Rate resulting in a particularly poor response. This type of disturbance must be better
attenuated if an acceptable controller is to be achieved.

When analyzing pitch displacement both controllers tuned by GA and PSO appear to
settle faster than other tuning methods. However, when %OS is considered, the response
tuned by PSO overshoots its target by over double the controller tuned by GA. Both the
controller tuned by GA-Hybrid and by manual tuning appear to have a similar response
both overshooting their target the most out of any tuning method, whilst also taking the
longest time to settle.

When analyzing roll displacement, the controller tuned by GA performs the best in
both settling time and %OS. The second-best response is the controller tuned by PSO, the
%OS is less than that of both manually tuned and GA-Hybrid. The controller tuned by PSO
has a settling time similar to GA-Hybrid and the manually tuned controller but not as fast
as GA tuned controller. Both manually tuned and GA-Hybrid controller have a similar
response in terms of %OS, but GA-Hybrid outperforms manually tuned in terms of settling
time.

When analyzing yaw rate, the GA controller falls quickly initially, but flattens slightly
at around 50 degrees per second and settles slowly to zero in 1.5 seconds. When this
response is analyzed in terms of displacement, the reduction of gradient decent in velocity
causes a greater displacement as the controller tuned with GA reaches its highest displace-
ment of 35 degrees. The manually tuned controller shows the best settling time which
results in the least maximum displacement.

Appl. Sci. 2022, 12, 7677 18 of 27

5.2. Linear Quadratic Gaussian

The responses shown in Figure 13 show the Linear Quadratic Gaussian tuned manually,
by PSO, GA and a GA-Hybrid method. When analyzing pitch displacement, the controller
tuned by GA stands out as the best in terms of percentage overshoot and on settling time.
The controller tuned by PSO also produced an impressive response with slight overshoot,
but a faster settling time than manually tuned and GA Hybrid. Manually tuned and GA-
Hybrid both fall slowly until zero but overshoot slightly, taking a long time to correct the
overshoot back to equilibrium. This is the exact reason that a PSO-equipped controller will
outperform manual tuned controller, as demonstrated in Figure 13.

When analyzing roll displacement, it is apparent that the controller tuned by GA
has the shortest settling time and the least %OS, which is corrected quickly. The PSO
controller greatly overshoots its target value and overshoots on its return to zero, making it
an unsuitable controller type. The GA-Hybrid controller has a slight overshoot but a long
settling time. Similarly, the controller tuned manually has no overshoot but like GA-Hybrid,
the settling time is too long to be considered as an effective control strategy.

Analysis of yaw displacement and yaw rate shows the controller tuned by the GA
method as the standout controller with no overshoot and a very small settling time, the final
yaw displacement settling at 21 degrees. There is a slight amount of disturbance present in
the yaw rate plot, this is due to the trade off between speed of response and rejection of
noise discussed in Section 3.3.3, however, this level of disturbance is an acceptable trade-off
for the speed of response. The other tuning methods also settle quickly but overshoot the
point of stability slightly and do not stabilize quicky, as they maintain a slight negative
velocity meaning these controllers are in a constant negative displacement.

5.3. Comparisons of Best Performing Tuning Method from Each Control Type

The plot in Figure 14 shows the comparison of each of the best tuning methods for
each of the different controller types. The benchmark controller “PID SOF” (PID with
static output feedback) was included to compare the optimal controllers against the basic
conventional method. Having discovered in Sections 5.1 and 5.2 that GA performed best
at correcting vehicle offset from wind than any other tuning method, this section aims to
compare between controller architectures to find the best architecture for RUAV control.

Firstly, while comparing between controller architectures, it is clear that those con-
trollers that utilize a filter or observer have superior noise attenuation than those without.
This is of particular importance in aerial vehicle applications where rotor dynamics can
cause large actuator noise, preventing effective correction of the vehicle. Both Full State
Feedback tuned with GA (LQR-GA) and PID with Static Output Feedback (PID SOF) are
very noisy and produce a response that would be unusable for real applications. However,
the controllers that do make use of an observer or filter have better noise attenuation
enabling a clean signal to be preserved, enabling it to be used in real applications.

Figure 15 can be used to easily evaluate the performance of each controller type in
percentage overshoot and settling time. When evaluating controllers on settling time, the
GA tuned LQG (LQG-GA) controller outperforms every other controller tested in both roll
displacement and yaw rate. Similarly, when analyzing percentage overshoot performance,
LQG-GA is clearly the best controller of those tested as it has the least overshoot for
parameters of pitch displacement, roll displacement and yaw rate. This ensures that the
vehicle is moved from a place of state offset back to a constant hover state with no overshoot
of its target providing good vehicle response for correction under harsh conditions. PID-
SOF does have a better settling time than LQG for pitch displacement, but due to its poor
attenuation of noise, this controller is not a viable option to consider as the best controller. It
can be concluded from this section the LQG is the best controller of those tested for RUAV
state correction in cases of high external disturbance due to wind and sensor noise.

Appl. Sci. 2022, 12, 7677 19 of 27Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 28

Figure 15. Percentage Overshoot and settling time for best controllers.

6. Future Work
As discussed in the previous section, Linear Quadratic Gaussian controllers tuned

using machine learning methods such as Genetic Algorithm are capable of outperforming
those same controllers tuned by manually. This poses a new and exciting question:

“Can an optimal controller be replaced by a more advanced machine model such as
Reinforcement Learning to learn a specific control law completely from scratch?”

Reinforcement Learning
Reinforcement Learning (RL) is a fast-growing area of machine learning that enables

artificially intelligent agents to react to changes in an environment with the motivation of
accumulating reward.

Figure 16 presents the block diagram for the Reinforcement Learning process. The
Agent makes decisions based on the policy, this policy is updated by a reinforcement
learning algorithm based on rewards obtained for the previous action. Over time, the
agent will learn to act in a way that maximizes its rewards from the environment. By in-
troducing an agent to control the RUAV the controller is no longer required to define the
conventional control laws as the agent learns them itself.

Figure 15. Percentage Overshoot and settling time for best controllers.

6. Future Work

As discussed in the previous section, Linear Quadratic Gaussian controllers tuned
using machine learning methods such as Genetic Algorithm are capable of outperforming
those same controllers tuned by manually. This poses a new and exciting question:

“Can an optimal controller be replaced by a more advanced machine model such as
Reinforcement Learning to learn a specific control law completely from scratch?”

Reinforcement Learning

Reinforcement Learning (RL) is a fast-growing area of machine learning that enables
artificially intelligent agents to react to changes in an environment with the motivation of
accumulating reward.

Figure 16 presents the block diagram for the Reinforcement Learning process. The
Agent makes decisions based on the policy, this policy is updated by a reinforcement
learning algorithm based on rewards obtained for the previous action. Over time, the agent
will learn to act in a way that maximizes its rewards from the environment. By introducing
an agent to control the RUAV the controller is no longer required to define the conventional
control laws as the agent learns them itself.

However, by using a controller such as Linear Quadratic Gaussian over Reinforcement
Learning, the implemented controller has no complexity and, therefore, no large compu-
tational overheads. In order to make reinforcement learning a viable option for machine
learning control, the complexity of such models must be reduced to enable lightweight
controllers to be created for real applications.

Appl. Sci. 2022, 12, 7677 20 of 27

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 28

Figure 16. Reinforcement Learning Block Diagram [26].

However, by using a controller such as Linear Quadratic Gaussian over Reinforce-
ment Learning, the implemented controller has no complexity and, therefore, no large
computational overheads. In order to make reinforcement learning a viable option for ma-
chine learning control, the complexity of such models must be reduced to enable light-
weight controllers to be created for real applications.

7. Conclusions
This work has demonstrated that the transient response of optimal controllers can be

improved by tuning using machine learning metaheuristic algorithms. Firstly, the con-
ventional method of manual tuning was tested on well-known state-of-the-art methods
such as Full State Feedback, Full State Compensator and Linear Quadratic Gaussian con-
trollers. Secondly, metaheuristic algorithms (Particle Swam Optimization and Genetic Al-
gorithm) were evaluated for their tuning capabilities for the same controller architectures.
This demonstrated that improvements in performance are possible by choosing an algo-
rithmic approach to tuning controller gains. The best controller design tested was the Lin-
ear Quadratic Gaussian tuned by Genetic Algorithm, this controller outperformed the
same controller tuned by manual tuning, Particle Swarm Optimization, and a Genetic Al-
gorithm Hybrid approach. The best controller (LQG-GA) had the fastest settling time out-
performing manual tuning, Particle Swarm Optimization and GA-Hybrid by 20%, 17%
and 21%, respectively, while attenuating measurement and process noise present in the
system. There is a high computational cost associated with running optimization algo-
rithms for tuning controller gains but as this is completed offline, the computational ex-
pense to the RUAV in flight remains the same. The key to successful implementation of
PSO or GA is in the selection of an effective Fitness Function. Currently, there are still
shortcomings associated with zero convergence criteria but this improvement in transient
response induced by machine learning is a key step towards implementing safe, year-
round flight of RUAVs in Northern Ireland.

Author Contributions: Conceptualization, J.G.; methodology, J.G.; software, J.G.; validation, J.G.;
formal analysis, J.G.; investigation, J.G.; resources, J.G.; data curation, J.G.; writing—original draft
preparation, J.G.; writing—review and editing, J.G. and M.U.H.; visualization, J.G.; supervision,
M.U.H.; project administration, J.G. and M.U.H.; funding acquisition, M.U.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 16. Reinforcement Learning Block Diagram [26].

7. Conclusions

This work has demonstrated that the transient response of optimal controllers can be
improved by tuning using machine learning metaheuristic algorithms. Firstly, the conven-
tional method of manual tuning was tested on well-known state-of-the-art methods such
as Full State Feedback, Full State Compensator and Linear Quadratic Gaussian controllers.
Secondly, metaheuristic algorithms (Particle Swam Optimization and Genetic Algorithm)
were evaluated for their tuning capabilities for the same controller architectures. This
demonstrated that improvements in performance are possible by choosing an algorithmic
approach to tuning controller gains. The best controller design tested was the Linear
Quadratic Gaussian tuned by Genetic Algorithm, this controller outperformed the same
controller tuned by manual tuning, Particle Swarm Optimization, and a Genetic Algorithm
Hybrid approach. The best controller (LQG-GA) had the fastest settling time outperform-
ing manual tuning, Particle Swarm Optimization and GA-Hybrid by 20%, 17% and 21%,
respectively, while attenuating measurement and process noise present in the system. There
is a high computational cost associated with running optimization algorithms for tuning
controller gains but as this is completed offline, the computational expense to the RUAV
in flight remains the same. The key to successful implementation of PSO or GA is in the
selection of an effective Fitness Function. Currently, there are still shortcomings associated
with zero convergence criteria but this improvement in transient response induced by
machine learning is a key step towards implementing safe, year-round flight of RUAVs in
Northern Ireland.

Author Contributions: Conceptualization, J.G.; methodology, J.G.; software, J.G.; validation, J.G.;
formal analysis, J.G.; investigation, J.G.; resources, J.G.; data curation, J.G.; writing—original draft
preparation, J.G.; writing—review and editing, J.G. and M.U.H.; visualization, J.G.; supervision,
M.U.H.; project administration, J.G. and M.U.H.; funding acquisition, M.U.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 7677 21 of 27

Appendix A. State Space Model

Matrix Name Values

State Matrix (A)

−0.019 0.017 0.384 −9.792 −0.001 −0.337 0.000 0.000
0.014 −0.299 0.024 −0.586 −0.002 −0.026 0.537 0.000
0.041 −0.003 −1.839 0.000 0.002 0.528 0.000 −0.002
0.000 0.000 0.999 0.000 0.000 0.000 0.000 0.055
0.001 −0.002 −0.338 0.032 −0.035 −0.403 9.778 0.117
0.013 0.000 −3.047 0.000 −0.229 −10.620 0.000 −0.033
0.000 0.000 −0.003 0.000 0.000 1.000 0.000 0.060
0.002 0.006 −0.541 0.000 0.004 −1.855 0.000 −0.349

Input Matrix (B)

−10.350 1.079 0.000
−0.729 0.076 0.000
27.090 −4.724 −0.186
0.000 0.000 0.000
−1.082 −10.370 4.724
−27.290 −156.400 −1.069

0.000 0.000 0.000
−4.897 −27.970 −12.930

Output Matrix—Original (C)

0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0

Output Matrix—Simplified (C)

 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

Feed Forward Matrix—Original (D)

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Feed Forward Matrix—Simplified (D)

 0 0 0
0 0 0
0 0 0

Appendix B. Simulation Parameters for Full State Feedback and PID Controller

Model Parameters Values

Initial Conditions applied to state matrix [2; 2; 90; 60; 2; 60; 60; 180]

Measurement (Sensor) Noise
Gaussian Noise Noise power: 0.05

Sample frequency: 200 Hz

Process (Actuator) Noise
Random Number Mean: 0

Variance: 0.5
Sampling frequency: 10 Hz

Parameters for Manually Tuned Values

Q Matrix—Manually Tuned

1 0 0 0 0 0 0 0
0 30 0 0 0 0 0 0
0 0 9 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 20 0 0
0 0 0 0 0 0 20 0
0 0 0 0 0 0 0 10

.

Appl. Sci. 2022, 12, 7677 22 of 27

Model Parameters Values

R Matrix—Manually Tuned

1 0 0
0 1 0
0 0 10

Full State Feedback Gain (K)—

Manually Tuned

−0.950 −1.325 2.619 7.073 −0.315 −0.715 −2.555 −0.157
0.183 −0.069 −0.402 −1.405 −1.902 −1.902 −12.789 −1.030
0.011 0.004 −0.002 −0.109 0.160 0.151 0.200 −0.935

Parameters for PSO algorithm Values

N_particles 11
Swarm Size 200

c1 2.4
c2 2.44

MaxIter 100
Wmin [0, 0, 0, 0, 0, 0, 0, 0, 0.001, 0.001, 0.001]
Wmax [1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 0.01, 0.01, 0.01]

Full State Feedback Gain (K)—PSO

−171.9 −36.8 242.8 880.8 −34.9 −54.8 −237 −16.6
31.7 −5.8 −35.6 −179.6 −251.1 −314.8 −1235.7 −100.5
12.2 −0.9 0 −88.2 149.5 13.1 −81.2 −144.4

Parameters for GA Values

PopNum 100
ChromNum 11

CrossVal 80
MutVal 20
MaxGen 200

Full State Feedback Gain (K)—GA

−5.367 −1.521 10.926 34.420 −1.558 −0.223 −3.954 −1.408
0.999 −0.083 −1.607 −6.615 −9.297 −1.420 −18.133 −7.068
0.736 0.342 −0.405 −5.938 20.098 1.375 16.020 −31.802

Parameters for PID with SOF Values

Pitch displacement PID controller gains
Kp = −4.887
Ki = 13.427
Kd = 81.438

Roll displacement PID controller gains
Kp = 0.199

Ki = −2.622
Kd = −53.927

Roll displacement PID controller gains
Kp = 1.900

Ki = −2.010
Kd = −241.273

Static Output Feedback gain (SOF)

 6.643 0.360 0.251 0.702 0.006
−0.201 −1.027 0.072 −0.026 −0.075
0.205 0.240 −1.189 −0.026 0.157

Appendix C. Simulation Parameters for Full State Compensator

Model Parameters Values

Initial Conditions applied to state matrix [2; 2; 90; 60; 2; 60; 60; 180]

Measurement (Sensor) Noise
Gaussian Noise Noise power: 0.05

Sample frequency: 200 Hz

Process (Actuator) Noise
Random Number Mean: 0

Variance: 0.5
Sampling frequency: 10 Hz

Parameters for Manually Tuned Values

Appl. Sci. 2022, 12, 7677 23 of 27

Model Parameters Values

Luenberger Q Matrix—Manually Tuned B ∗ BT

Luenberger R Matrix—Manually Tuned

0.5 0 0
0 0.5 0
0 0 0.5

Luenberger Observer Gain
(Lo)—Manually Tuned

−14.308 −1.816 0.944
−1.055 0.379 0.069
25.547 2.971 −1.546
7.138 0.045 −0.206
−0.330 13.422 7.888
−2.164 60.376 132.850
0.0453 10.981 0.439
−0.206 0.439 37.805

Parameters for PSO algorithm Values

N_particles 22
Swarm Size 20

c1 1
c2 1

MaxIter 2000
Wmin [0, 0, 0, 0, 0, 0, 0, 0, 0.001, 0.001, 0.001, 0, 0, 0, 0, 0, 0, 0, 0, 0.001, 0.001, 0.001]

Wmax
[1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 0.01, 0.01, 0.01,1000, 1000, 1000, 1000,

1000, 1000, 1000, 1000, 0.01, 0.01, 0.01]

State Feedback Gain (K)—PSO

−370 −13.1 191.9 1097.4 −50.3 −32.1 −212 −28.6
70.1 −3.7 −23.5 −214.8 −299.8 −195.4 −1051.5 −152.2
12.6 0 −0.2 −76 181 26.8 94.5 −243.8

Luenberger Observer Gain (Lo)—
PSO

55.987 −21.564 1.663
2.671 0.320 1.789

53.243 −14.659 −6.605
255.968 −0.058 0.005
−27.694 −125.848 190.491
−11.456 30.085 −31.376
−0.058 198.186 −0.120
0.005 −0.120 310.408

Parameters for GA-Hybrid Values

PopNum 100
ChromNum 9

CrossVal 80
MutVal 60
MaxGen 2000

State Feedback Gain (K)–GA-Hybrid

−0.458 −0.064 1.049 3.095 −0.092 −0.142 −0.658 −0.016
0.108 −0.014 −0.181 −0.882 −1.364 −1.575 −6.282 −0.468
0.032 −0.003 −0.020 −0.331 0.707 0.003 0.214 −0.297

Parameters for GA Values

PopNum 50
ChromNum 18

CrossVal 80
MutVal 60
MaxGen 5000

State Feedback Gain (K)—PSO

−0.718 −0.112 0.776 3.320 −0.131 −0.080 −0.637 −0.041
0.155 −0.029 −0.116 −0.731 −0.671 −0.485 −2.766 −0.282
0.027 −0.006 −0.010 −0.241 0.309 0.070 0.321 −0.538

Appl. Sci. 2022, 12, 7677 24 of 27

Model Parameters Values

Luenberger Observer Gain (Lo)—GA

8.040 −7.643 1.492
0.263 −0.044 0.118

69.133 5.712 −5.461
11.747 −0.120 −0.188
−3.695 0.349 2.426
−8.400 255.689 −134.315
−0.120 22.230 −4.739
−0.188 −4.739 105.187

Appendix D. Simulation Parameters for Linear Quadratic Gaussian

Model Parameters Values

Initial Conditions applied to state matrix [2; 2; 90; 60; 2; 60; 60; 180]

Measurement (Sensor) Noise
Gaussian Noise Noise power: 0.05

Sample frequency: 200 Hz

Process (Actuator) Noise
Random Number Mean: 0

Variance: 0.5
Sampling frequency: 10 Hz

Parameters for Manually Tuned Values

Feedback gain Q
Matrix—Manually Tuned

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 50 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 200 0
0 0 0 0 0 0 0 50

Feedback gain R

Matrix—Manually Tuned

0.01 0 0
0 0.01 0
0 0 0.01

State Feedback Gain

(K)—Manually Tuned

0.001 0 2.170 69.595 0 −0.154 −13.638 10.375
0 0 −0.364 −12.507 0.001 −0.911 −74.072 −59.003
0 0 0 0.189 −0.003 1.826 119.697 −37.521

Vd Matrix—Manually Tuned

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0.06 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.06 0
0 0 0 0 0 0 0 0.06

Vn Matrix—Manually Tuned

0.2 0 0
0 0.2 0
0 0 0.2

Kalman Gain (Kf)—Manually Tuned

0.959 −1.887 −0.289
−0.133 0.273 0.145
0.078 −0.042 −0.042
1.776 −0.014 0.005
−0.752 5.649 7.882
−0.010 −0.084 −0.162
−0.014 1.684 0.037
0.005 0.037 1.608

Appl. Sci. 2022, 12, 7677 25 of 27

Model Parameters Values

Parameters for PSO algorithm Values

N_particles 18
Swarm Size 20

c1 1
c2 1

MaxIter 2000
Wmin [0, 0, 0, 0, 0, 0, 0, 0, 0.001, 0, 0, 0, 0, 0, 0, 0, 0, 0.001]

Wmax
[1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 0.01,1000, 1000, 1000, 1000, 1000, 1000,

1000, 1000, 0.01]

Full State Feedback Gain (K)—PSO

−0.655 −0.187 0.690 3.177 −0.014 −0.064 −0.341 −0.014
0.170 −0.292 −0.120 −0.696 −0.058 −0.393 −1.342 −0.0252
0.010 0.065 −0.002 −0.141 0.012 0.139 0.315 −0.902

Kalman Gain (Kf)—PSO

−1.564 −1.223 0.040
−0.171 0.415 0.079
0.102 −0.019 −0.031
3.683 −0.004 0.023
−0.804 6.969 6.889
−0.016 −0.072 −0.149
−0.004 5.847 0.028
0.023 0.028 4.884

Parameters for GA-Hybrid Values

PopNum 100
ChromNum 9

CrossVal 80
MutVal 20
MaxGen 5000

State Feedback Gain (K)—
GA-Hybrid

−0.458 −0.064 1.049 3.095 −0.092 −0.142 −0.658 −0.016
0.108 −0.014 −0.181 −0.882 −1.364 −1.575 −6.282 −0.468
0.032 −0.003 −0.020 −0.331 0.707 0.003 0.214 −0.297

Parameters for GA Values

PopNum 1000
ChromNum 18

CrossVal 80
MutVal 20
MaxGen 50

State Feedback Gain (K)—GA

0 0 0.220 1.071 −0.001 0 −0.133 −0.166
0 0 −0.041 −0.292 −0.001 −0.029 −0.440 −0.790
0 0 0.011 0.036 −0.001 0.105 0.371 −0.953

Kalman Gain (Kf)—GA

−3.401 −1.289 −0.453
−0.266 0.435 0.015
0.100 −0.018 −0.035
9.496 −0.002 0.024
−0.730 7.143 5.313
−0.016 −0.053 −0.120
−0.002 9.248 0.031
0.024 0.031 9.982

Appl. Sci. 2022, 12, 7677 26 of 27

Appendix E. Controller Architectures

Controller Name Block Diagram

Full State
Feedback

Appl. Sci. 2022, 12, x FOR PEER REVIEW 26 of 28

Kalman Gain (Kf)—PSO

⎣⎢⎢
⎢⎢⎢
⎢⎡−1.564 −1.223 0.040−0.171 0.415 0.0790.102 −0.019 −0.0313.683 −0.004 0.023−0.804 6.969 6.889−0.016 −0.072 −0.149−0.004 5.847 0.0280.023 0.028 4.884 ⎦⎥⎥

⎥⎥⎥
⎥⎤

Parameters for GA-Hybrid Values
PopNum 100

ChromNum 9
CrossVal 80
MutVal 20
MaxGen 5000

State Feedback Gain (K)—GA-Hy-
brid

−0.458 −0.064 1.049 3.095 −0.092 −0.142 −0.658 −0.0160.108 −0.014 −0.181 −0.882 −1.364 −1.575 −6.282 −0.4680.032 −0.003 −0.020 −0.331 0.707 0.003 0.214 −0.297

Parameters for GA Values
PopNum 1000

ChromNum 18
CrossVal 80
MutVal 20
MaxGen 50

State Feedback Gain (K)—GA
0 0 0.220 1.071 −0.001 0 −0.133 −0.1660 0 −0.041 −0.292 −0.001 −0.029 −0.440 −0.7900 0 0.011 0.036 −0.001 0.105 0.371 −0.953

Kalman Gain (Kf)—GA

⎣⎢⎢
⎢⎢⎢
⎢⎡−3.401 −1.289 −0.453−0.266 0.435 0.0150.100 −0.018 −0.0359.496 −0.002 0.024−0.730 7.143 5.313−0.016 −0.053 −0.120−0.002 9.248 0.0310.024 0.031 9.982 ⎦⎥⎥

⎥⎥⎥
⎥⎤

Appendix E. Controller Architectures.

Controller Name Block Diagram

Full State
Feedback

Full State
Compensator

Appl. Sci. 2022, 12, x FOR PEER REVIEW 27 of 28

Full State
Compensator

Linear
Quadratic
Gaussian

References
1. Met Eireann. Storm Eunice to Bring Strong Winds Rain and Snow. 2022. Available online: https://www.met.ie/storm-eunice-to-

bring-strong-winds-rain-and-snow (accessed on 18 April 2022).
2. DJI. DJI MATRICE 300 RTK—User Manual. 2020. Available online: https://dl.djicdn.com/downloads/matrice-

300/20200507/M300 RTK User Manual EN.pdf (accessed on 18 April 2022).
3. Zhang, Z. Application of PID Simulation Control Mode in Quadrotor Aircraft. In Proceedings of the 2020 International Confer-

ence on Computer Engineering and Application, Guangzhou, China, 18–20 March 2020.
4. Lahlouh, I.; Rerhrhaye, F.; Elakkary, A.; Sefiani, N.; Bybi, A. A combined static output feedback-PID control for TITO process

based particle swarm optimization: Simulation and practical implementation for the poultry house system. Int. J. Dyn. Control
2022, 1–14. https://doi.org/10.1007/s40435-021-00882-5.

5. Pandey, S.K.; Laxmi, V. Optimal Control of Twin Rotor MIMO System Using LQR Technique. In Computational Intelligence in
Data Mining; Springer: New Delhi, India; Volume 1, pp. 11–21.

6. De-Xin, G.; Bao-tong, C. LQR Controller Design of MIMO Systems with External disturbances based on Stability Degree Con-
straint. In Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 4–7 August
2010.

7. Chen, B.; Yu, C.; Hsu, W. Steering control of six-wheeled vehicles using linear quadratic regulator techniques. J. Automob. Eng.
2007, 221, 1231–1240.

8. Barzanooni, E.; Salahshoor, S.; Khaki-Sedigh, A. Attitude flight control system design of UAV using LQG\LTR multivariable
control with noise and disturbance. In Proceedings of the 2015 3rd RSI International Conference on Robotics and Mechatronics
(ICROM), Tehran, Iran, 7–9 October 2015.

9. Panponpen, K.; Konghirur, M. LQR state feedback controller based on particle swarm optimization for IPMSM drive system.
In Proceedings of the IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–
17 June 2015.

10. Bartyś, M.; Hryniewicki, B. The Trade-Off between the Controller Effort and Control Quality on Example of an Electro-Pneu-
matic Final Control Element. Actuators 2019, 8, 23.

Linear
Quadratic
Gaussian

Appl. Sci. 2022, 12, x FOR PEER REVIEW 27 of 28

Full State
Compensator

Linear
Quadratic
Gaussian

References
1. Met Eireann. Storm Eunice to Bring Strong Winds Rain and Snow. 2022. Available online: https://www.met.ie/storm-eunice-to-

bring-strong-winds-rain-and-snow (accessed on 18 April 2022).
2. DJI. DJI MATRICE 300 RTK—User Manual. 2020. Available online: https://dl.djicdn.com/downloads/matrice-

300/20200507/M300 RTK User Manual EN.pdf (accessed on 18 April 2022).
3. Zhang, Z. Application of PID Simulation Control Mode in Quadrotor Aircraft. In Proceedings of the 2020 International Confer-

ence on Computer Engineering and Application, Guangzhou, China, 18–20 March 2020.
4. Lahlouh, I.; Rerhrhaye, F.; Elakkary, A.; Sefiani, N.; Bybi, A. A combined static output feedback-PID control for TITO process

based particle swarm optimization: Simulation and practical implementation for the poultry house system. Int. J. Dyn. Control
2022, 1–14. https://doi.org/10.1007/s40435-021-00882-5.

5. Pandey, S.K.; Laxmi, V. Optimal Control of Twin Rotor MIMO System Using LQR Technique. In Computational Intelligence in
Data Mining; Springer: New Delhi, India; Volume 1, pp. 11–21.

6. De-Xin, G.; Bao-tong, C. LQR Controller Design of MIMO Systems with External disturbances based on Stability Degree Con-
straint. In Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 4–7 August
2010.

7. Chen, B.; Yu, C.; Hsu, W. Steering control of six-wheeled vehicles using linear quadratic regulator techniques. J. Automob. Eng.
2007, 221, 1231–1240.

8. Barzanooni, E.; Salahshoor, S.; Khaki-Sedigh, A. Attitude flight control system design of UAV using LQG\LTR multivariable
control with noise and disturbance. In Proceedings of the 2015 3rd RSI International Conference on Robotics and Mechatronics
(ICROM), Tehran, Iran, 7–9 October 2015.

9. Panponpen, K.; Konghirur, M. LQR state feedback controller based on particle swarm optimization for IPMSM drive system.
In Proceedings of the IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–
17 June 2015.

10. Bartyś, M.; Hryniewicki, B. The Trade-Off between the Controller Effort and Control Quality on Example of an Electro-Pneu-
matic Final Control Element. Actuators 2019, 8, 23.

References
1. Met Eireann. Storm Eunice to Bring Strong Winds Rain and Snow. 2022. Available online: https://www.met.ie/storm-eunice-to-

bring-strong-winds-rain-and-snow (accessed on 18 April 2022).
2. DJI. DJI MATRICE 300 RTK—User Manual. 2020. Available online: https://dl.djicdn.com/downloads/matrice-300/20200507

/M300RTKUserManualEN.pdf (accessed on 18 April 2022).

https://www.met.ie/storm-eunice-to-bring-strong-winds-rain-and-snow
https://www.met.ie/storm-eunice-to-bring-strong-winds-rain-and-snow
https://dl.djicdn.com/downloads/matrice-300/20200507/M300RTKUserManualEN.pdf
https://dl.djicdn.com/downloads/matrice-300/20200507/M300RTKUserManualEN.pdf

Appl. Sci. 2022, 12, 7677 27 of 27

3. Zhang, Z. Application of PID Simulation Control Mode in Quadrotor Aircraft. In Proceedings of the 2020 International Conference
on Computer Engineering and Application, Guangzhou, China, 18–20 March 2020.

4. Lahlouh, I.; Rerhrhaye, F.; Elakkary, A.; Sefiani, N.; Bybi, A. A combined static output feedback-PID control for TITO process
based particle swarm optimization: Simulation and practical implementation for the poultry house system. Int. J. Dyn. Control
2022, 1–14. [CrossRef]

5. Pandey, S.K.; Laxmi, V. Optimal Control of Twin Rotor MIMO System Using LQR Technique. In Computational Intelligence in Data
Mining; Springer: New Delhi, India, 2015; Volume 1, pp. 11–21.

6. De-Xin, G.; Bao-tong, C. LQR Controller Design of MIMO Systems with External disturbances based on Stability Degree Constraint.
In Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 4–7 August 2010.

7. Chen, B.; Yu, C.; Hsu, W. Steering control of six-wheeled vehicles using linear quadratic regulator techniques. J. Automob. Eng.
2007, 221, 1231–1240. [CrossRef]

8. Barzanooni, E.; Salahshoor, S.; Khaki-Sedigh, A. Attitude flight control system design of UAV using LQG\LTR multivariable
control with noise and disturbance. In Proceedings of the 2015 3rd RSI International Conference on Robotics and Mechatronics
(ICROM), Tehran, Iran, 7–9 October 2015.

9. Panponpen, K.; Konghirur, M. LQR state feedback controller based on particle swarm optimization for IPMSM drive system.
In Proceedings of the IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand,
15–17 June 2015.

10. Bartyś, M.; Hryniewicki, B. The Trade-Off between the Controller Effort and Control Quality on Example of an Electro-Pneumatic
Final Control Element. Actuators 2019, 8, 23. [CrossRef]

11. Yu, G.; Hsieh, P. Optimal Design of Helicopter Control Systems Using Particle Swarm Optimization. In Proceedings of the IEEE
International Conference on Industrial Cyber Physical Systems (ICPS), Taipei, Taiwan, 6–9 May 2019.

12. Walker, D.J.; Postlethwaite, I. Advanced helicopter flight control using two-degree-of-freedom H(infinity) optimization. J. Guid.
Control. Dyn. 1996, 19, 461–468. [CrossRef]

13. Boukhnifer, M.; Chaibet, A.; Larouci, C. H-infinity robust control of 3-DOF helicopter. In Proceedings of the International
Multi-Conference on Systems, Signals & Devices, Chemnitz, Germany, 20–23 March 2012.

14. Huang, C.; Zhang, H. Comparison of Disturbance Rejection Performance between Three Types of UAV Linear Controllers. In
Proceedings of the 7th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China,
18–20 December 2020.

15. Lee, K.; Kim, S.; Kwak, S.; You, K. Quadrotor Stabilization and Tracking Using Nonlinear Surface Sliding Mode Control and
Observer. Appl. Sci. 2021, 11, 1417. [CrossRef]

16. Madani, T.; Benallegue, A. Backstepping Control for a Quadrotor Helicopter. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006.

17. Hwangbo, J.; Sa, I.; Siegwart, R.; Hutter, M. Control of a Quadrotor with Reinforcement Learning. IEEE Robot. Autom. Lett. 2017,
2, 2096–2103. [CrossRef]

18. Waslander, S.L.; Hoffmann, G.M.; Jang, J.S.; Tomlin, C.J. Multi-agent quadrotor testbed control design: Integral sliding mode vs. re-
inforcement learning. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,
9–15 October 2006.

19. Le, T.; Quynh, N.V.; Long, N.K.; Hong, S. Multilayer Interval Type-2 Fuzzy Controller Design for Quadcopter Unmanned Aerial
Vehicles Using Jaya Algorithm. IEEE Access 2020, 8, 181246–181257. [CrossRef]

20. Al-Sharmn, M.K.; Zweiri, Y.; Jaradat, M.A.K.; Al-Husari, R.; Gan, D.; Seneviratne, L.D. Deep-Learning-Based Neural Network
Training for State Estimation Enhancement: Application to Attitude Estimation. IEEE Trans. Instrum. Meas. 2019, 69, 24–34.
[CrossRef]

21. Hadi, M.U. Practical Demonstration of 5G NR Transport Over-Fiber System with Convolutional Neural Network. Telecom 2022, 3,
103–117. [CrossRef]

22. Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems and Control; Cambridge
University Press: Cambridge, UK, 2019.

23. Choubey, C.; Ohri, J. Parallel Manipulator control using different LQG tuning methods. In Proceedings of the 2018 5th IEEE Uttar
Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, India,
2–4 November 2018.

24. MathWorks. Multiloop Control of a Helicopter. 2020. Available online: https://uk.mathworks.com/help/control/ug/multi-
loop-control-of-a-helicopter.html (accessed on 18 April 2022).

25. Hadi, M.U.; Jung, H.; Traverso, P.A.; Tartarini, G. Experimental evaluation of real-time sigma-delta radio over fiber system for
fronthaul applications. Int. J. Microw. Wirel. Technol. 2020, 13, 756–765. [CrossRef]

26. MathWorks. Reinforcement Learning Onramp. 2021. Available online: https://uk.mathworks.com/learn/tutorials/
reinforcement-learning-onramp.html (accessed on 18 April 2022).

http://doi.org/10.1007/s40435-021-00882-5
http://doi.org/10.1243/09544070JAUTO471
http://doi.org/10.3390/act8010023
http://doi.org/10.2514/3.21640
http://doi.org/10.3390/app11041417
http://doi.org/10.1109/LRA.2017.2720851
http://doi.org/10.1109/ACCESS.2020.3028617
http://doi.org/10.1109/TIM.2019.2895495
http://doi.org/10.3390/telecom3010006
https://uk.mathworks.com/help/control/ug/multi-loop-control-of-a-helicopter.html
https://uk.mathworks.com/help/control/ug/multi-loop-control-of-a-helicopter.html
http://doi.org/10.1017/S1759078720001282
https://uk.mathworks.com/learn/tutorials/reinforcement-learning-onramp.html
https://uk.mathworks.com/learn/tutorials/reinforcement-learning-onramp.html

	Introduction
	Motivation
	Problem Statement
	Objectives
	Contribution of the Article

	Literature Review
	Methodology
	Plant Representation
	Output Selection

	Conventional Control (PID)
	PID Control
	PID Control with Static Output Feedback

	Optimal Control
	Full State Feedback (Linear Quadratic Regulator)
	Full State Compensator
	Linear Quadratic Gaussian (LQG)

	Particle Swarm Optimization Algorithm
	Genetic Algorithm

	Simulation Environment
	Simulation Results
	Full State Feedback vs. Full State Compensator
	Linear Quadratic Gaussian
	Comparisons of Best Performing Tuning Method from Each Control Type

	Future Work
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	References

