
Citation: Gärtner, A.E.; Fay, T.-A.;

Göhlich, D. Fundamental Research

on Detecting Contradictions in

Requirements: Taxonomy and

Semi-Automated Approach. Appl.

Sci. 2022, 12, 7628. https://doi.org/

10.3390/app12157628

Academic Editors: Alberto Rodrigues

Da Silva and Luis Olsina

Received: 24 June 2022

Accepted: 26 July 2022

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Fundamental Research on Detecting Contradictions in
Requirements: Taxonomy and Semi-Automated Approach
Alexander Elenga Gärtner 1,2,*, Tu-Anh Fay 2 and Dietmar Göhlich 2

1 IAV GmbH, 10587 Berlin, Germany
2 Methods of Product Development and Mechatronics, Technische Universität Berlin, 10623 Berlin, Germany;

tu-anh.fay@tu-berlin.de (T.-A.F.); dietmar.goehlich@tu-berlin.de (D.G.)
* Correspondence: alexander.elenga.gaertner@campus.tu-berlin.de or alexander.elenga.gaertner@iav.de

Abstract: Requirements documents can contain several thousand individual requirements. They
must be error-free to avoid unnecessary complications and costs in the later product development
stages. An important part of this is to identify contradictions between two requirements. The first
step is therefore to define what contradictions are and in what form they can occur in requirement
documents. In this paper the scientific theories regarding contradictions are discussed, concerning to
their usefulness for the topic. In doing so, the Aristotelian Logic proved to provide the best basis for
an application in the Requirements Engineering context. Based on this theory, we have created specific
subtypes of contradictions to match them to the requirements engineering field. The identification of
these subtypes is done by a formalization of the requirement sentences and a subsequent analysis by
means of simple questions. To validate the method, industrial requirement documents were searched
for contradictions. For each detected type of contradiction, we present an example of the detection
process. Thereby, we show that the method is easy to apply and may also be used by non-specialists.
Thus, our method provides a taxonomy as a basis for further research on automated contradiction
detection as well as on automated quality analysis of requirements documents.

Keywords: requirements engineering; contradictions; conflicts; logic

1. Introduction

Complete and error-free requirements specifications are crucial for effective product
development. One aspect of this, is to ensure that the documents are contradiction-free. On
the way toward this, contradictions must first be defined in the Requirements Engineering
(RE) context to recognize and classify them. Subsequently, the quality of the requirements
specification can be determined and, depending on the class of the contradiction, a solution
can be pursued.

1.1. Problem

Requirements form the basis for project planning, risk management, acceptance testing,
and many other fields [1]. Requirements specifications that describe an entire system are
often written in an interdisciplinary manner. The partial results must merged according to
their logical and temporal dependencies, to form the overall solution. This process involves
a risk of error, especially for complex systems, regarding the consistency of the partial
solutions within the overall solution [2]. Therefore, it is not surprising that errors, e.g., in
the form of contradictions, are often found in these documents.

Empirical research on requirements quality focuses on improvement techniques, with
very few primary studies addressing evidence-based definitions and evaluations of quality
attributes [3].

Appl. Sci. 2022, 12, 7628. https://doi.org/10.3390/app12157628 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12157628
https://doi.org/10.3390/app12157628
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0684-6165
https://orcid.org/0000-0001-5362-3939
https://doi.org/10.3390/app12157628
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12157628?type=check_update&version=2

Appl. Sci. 2022, 12, 7628 2 of 16

1.2. Contribution

In this paper, a proposal is made on what contradictions are in the RE context, how
they can be classified, and how they can be determined. The classification of distinctive
categories allows for a more consistent assessment of the quality of requirements documents,
as different types of contradictions have different criticality levels. Also, depending on the
type of contradiction, different approaches are needed to solve them. Finally, the proposed
standardized solution provides a partially automated method, which is the basis for a
potential fully automated contradiction detection.

Within our validation, examples from real requirements documents are used.

2. Fundamentals

The market study from Luisa et al. concluded that in most cases (95%) requirements
documents were expressed in Natural Language [4], which is inherently ambiguous [5]
and must therefore be interpreted to a certain degree. This interpretation can often be an
undetected source of errors.

In this paper, we focus on contradictions between pairs of text-based requirements in
tabular form. Below, we will specify how these requirements should be phrased and how
contradictions are generally defined.

2.1. Formulation and Building Blocks

Ideally, requirements should be based on a specific scheme [1]: Requirement Ex-
pression = Boilerplate + Placeholder values. A boilerplate for a typical non-causal re-
quirement shows the following form: The <stakeholder type> must be able to <capability>.
Another example for a boilerplate could look like this: If <operational condition (cause)>,
the <system> shall <function> not less than <quantity> <object>, e.g. If the fuel tank is empty,
the Flexray shall sustain communication not less than 1 h. Simplified, sentences are built with
<Cause> + <Effect> which in turn consist of variables and conditions, as shown in Figure 1:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 16

1.2. Contribution
In this paper, a proposal is made on what contradictions are in the RE context, how

they can be classified, and how they can be determined. The classification of distinctive
categories allows for a more consistent assessment of the quality of requirements docu-
ments, as different types of contradictions have different criticality levels. Also, depend-
ing on the type of contradiction, different approaches are needed to solve them. Finally,
the proposed standardized solution provides a partially automated method, which is the
basis for a potential fully automated contradiction detection.

Within our validation, examples from real requirements documents are used.

2. Fundamentals
The market study from Luisa et al. concluded that in most cases (95%) requirements

documents were expressed in Natural Language [4], which is inherently ambiguous [5]
and must therefore be interpreted to a certain degree. This interpretation can often be an
undetected source of errors.

In this paper, we focus on contradictions between pairs of text-based requirements
in tabular form. Below, we will specify how these requirements should be phrased and
how contradictions are generally defined.

2.1. Formulation and Building Blocks
Ideally, requirements should be based on a specific scheme [1]: Requirement Expres-

sion = Boilerplate + Placeholder values. A boilerplate for a typical non-causal requirement
shows the following form: The <stakeholder type> must be able to <capability>. Another ex-
ample for a boilerplate could look like this: If <operational condition (cause)>, the <system>
shall <function> not less than <quantity> <object>, e.g. If the fuel tank is empty, the Flexray
shall sustain communication not less than 1 h. Simplified, sentences are built with <Cause>
+ <Effect> which in turn consist of variables and conditions, as shown in Figure 1:

Figure 1. Formulation and building blocks.

2.2. Contradictions
In this paper, we differentiate between the term contradiction—which occurs when

a statement is in opposition either with itself or an established fact—and the term contra-
dictory, which we will explain below. In the literature on Requirements Engineering,
many definitions of contradictions can be found, see Section 3 Related Work. To get the
most generically valid and scientifically accepted definition, we base our theory on the
logical philosophy of Aristotle. The foundation of his logic—also known as term logic,
traditional logic, or formal logic—developed in his work Metaphysics is the law of non-
contradiction (LNC) [6]. There, he argues that it is impossible that the same thing belongs
and does not belong simultaneously in an identical way to the same object [7]. “The doc-
trine of the square of opposition [as seen in Figure 2; note by the author] originated with
Aristotle in the fourth century BC and has occurred in logic texts ever since. Although
severely criticized in recent decades, it is still regularly referred to” [8] and will hence
serve as a basis for our purposes.

Figure 1. Formulation and building blocks.

2.2. Contradictions

In this paper, we differentiate between the term contradiction—which occurs when
a statement is in opposition either with itself or an established fact—and the term con-
tradictory, which we will explain below. In the literature on Requirements Engineering,
many definitions of contradictions can be found, see Section 3 Related Work. To get the most
generically valid and scientifically accepted definition, we base our theory on the logical
philosophy of Aristotle. The foundation of his logic—also known as term logic, traditional
logic, or formal logic—developed in his work Metaphysics is the law of non-contradiction
(LNC) [6]. There, he argues that it is impossible that the same thing belongs and does not
belong simultaneously in an identical way to the same object [7]. “The doctrine of the
square of opposition [as seen in Figure 2; note by the author] originated with Aristotle
in the fourth century BC and has occurred in logic texts ever since. Although severely
criticized in recent decades, it is still regularly referred to” [8] and will hence serve as a
basis for our purposes.

Appl. Sci. 2022, 12, 7628 3 of 16
Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 16

Figure 2. Square of opposition.

The relations can be described as follows:
• “Every S is P” and “Some S is not P” are contradictories.
• “No S is P” and “Some S is P” are contradictories.
• “Every S is P” and “No S is P” are contraries.
• “Some S is P” and “Some S is not P” are subcontraries.
• “Some S is P” is a subaltern of “Every S is P”.
• “Some S is not P” is a subaltern of “No S is P”.

Therefore, we have four main oppositions: contradictories, contraries, subcontraries,
and subalterns.
1. Contradictory opposites, e.g., “he is sick”/“he is not sick”, are mutually exhaustive

and mutually inconsistent. This means, that one statement must be true and the other
false or vice versa. They cannot both be true or false at the same time.

2. Contrary opposites, e.g., “it is black”/“it is white”, are also mutually inconsistent, but
not exhaustive. While they cannot both be true, they can both be false.

3. Subcontraries, e.g., “you can—If you want to—call in sick”/you can—If you want
to—not call in sick” are mutually consistent. While they can simultaneously be true
at the same time, they cannot simultaneously be false at the same time.

4. The statement “some people are sick” is the subaltern of “everybody is sick”, while
the latter is the superaltern of the former. If the superaltern is true, the subaltern must
also be true and if the subaltern is false, the superaltern must also be false.
By these definitions, the four central kinds of opposition—contradictory, contrariety,

subcontrariety, and subaltern—are mutually inconsistent.
In addition to the contradictions considered so far, there are other types. Kesselring

differentiates between the Aristotelian LNC-contradictions, dialectic contradictions, and
antinomies [9].

Dialectic contradictions are comparable to antagonisms or so-called „conflict of
goals“. For example:
• The vehicle must have high performance
• The vehicle must have low consumption

They don’t stand in a mathematical/logical conflict but are incompatible in practice.
Antinomies denote conceptual or propositional structures in which the truth value

oscillates. A famous example is: Plato says, “Socrates speaks the truth,” and Socrates says,
“Plato lies.” They are often confused with self-contradictions [9].

In this paper, we will tackle the LNC conflicts, except for the subcontraries. As they
can be valid simultaneously, subcontraries are not contradictions that need to be resolved
for the RE work.

Figure 2. Square of opposition.

The relations can be described as follows:

• “Every S is P” and “Some S is not P” are contradictories.
• “No S is P” and “Some S is P” are contradictories.
• “Every S is P” and “No S is P” are contraries.
• “Some S is P” and “Some S is not P” are subcontraries.
• “Some S is P” is a subaltern of “Every S is P”.
• “Some S is not P” is a subaltern of “No S is P”.

Therefore, we have four main oppositions: contradictories, contraries, subcontraries,
and subalterns.

1. Contradictory opposites, e.g., “he is sick”/“he is not sick”, are mutually exhaustive
and mutually inconsistent. This means, that one statement must be true and the other
false or vice versa. They cannot both be true or false at the same time.

2. Contrary opposites, e.g., “it is black”/“it is white”, are also mutually inconsistent, but
not exhaustive. While they cannot both be true, they can both be false.

3. Subcontraries, e.g., “you can—If you want to—call in sick”/you can—If you want
to—not call in sick” are mutually consistent. While they can simultaneously be true at
the same time, they cannot simultaneously be false at the same time.

4. The statement “some people are sick” is the subaltern of “everybody is sick”, while
the latter is the superaltern of the former. If the superaltern is true, the subaltern must
also be true and if the subaltern is false, the superaltern must also be false.

By these definitions, the four central kinds of opposition—contradictory, contrariety,
subcontrariety, and subaltern—are mutually inconsistent.

In addition to the contradictions considered so far, there are other types. Kesselring
differentiates between the Aristotelian LNC-contradictions, dialectic contradictions, and
antinomies [9].

Dialectic contradictions are comparable to antagonisms or so-called „conflict of goals“.
For example:

• The vehicle must have high performance
• The vehicle must have low consumption

They don’t stand in a mathematical/logical conflict but are incompatible in practice.
Antinomies denote conceptual or propositional structures in which the truth value

oscillates. A famous example is: Plato says, “Socrates speaks the truth,” and Socrates says,
“Plato lies.” They are often confused with self-contradictions [9].

In this paper, we will tackle the LNC conflicts, except for the subcontraries. As they
can be valid simultaneously, subcontraries are not contradictions that need to be resolved
for the RE work.

Appl. Sci. 2022, 12, 7628 4 of 16

3. Related Work

In this section, we assembled related works in terms of classification of conflicts,
detection of antagonisms, natural language processing for detecting conflicts, and finally
ontology-based approach for detecting conflicts. In general, we saw a lack of real validation
in these topics, as it is difficult to find non-academic institutions that are willing to share
their requirements-documents for scientific analyses [10].

3.1. Classification of Conflicts

A classification of conflicts is suggested by Marneffe et al., in antonymy, negation,
or numeric mismatches [11]. Negations and numeric mismatches do not fit the LNC
classification of Aristotle and can only be partially combined.

Lamsweerde et al. are classifying conflicts into nine categories [12]:

1. Process-Level Deviation: Conflict between a process-level rule and a specific process state.
2. Instance-Level Deviation: Inconsistency between a product-level requirement and a

specific state of the running system.
3. Terminology Clash: Usage of different terms for the same event
4. Designation Clash: Usage of the same term for different events
5. Structure Clash: Different explanations for a single real-world concept
6. Conflict: Two assertations are directly logically inconsistent
7. Divergence: Two assertations are indirectly (through a boundary condition) logically

inconsistent
8. Competition: Particular case of the divergence
9. Obstruction: Another particular case of the divergence

This doesn’t represent a classification with a consistent structure, since on the one
hand the system level is taken as classification criteria and on the other hand the context is
taken as classification criteria. Also, 7, 8, and 9 cannot clearly be differentiated.

Marneffe et al. propose a looser classification than ours. “Pairs such as ‘Sally sold a
boat to John’ and ‘John sold a boat to Sally’ are tagged as contradictory” [11]. In the context
of requirements engineering though, this should not be interpreted as a contradiction. This
becomes clear in the following example: “Control unit 1 sends a signal to control unit 2.
Control unit 2 sends a signal to control unit 1.” It becomes more complicated when it says,
“Control unit 1 sends the signal X to control unit 2. The control unit 2 sends the signal X to
the control unit 1.” This would indeed be a contradiction, but it would be classified as a
dialectic contradiction: theoretically, it is possible, but it wouldn’t make any practical sense.

Guo et al. propose a classification into three basic conflict types—inconsistencies,
inclusions, and interlocks—which in turn can be divided into seven subcategories [13].
Inconsistencies are defined as contradictions between requirements that cannot both be
fulfilled at the same time. Compared to LNC, this could correspond to contradictories
or contraries as well as dialectical contradictions. Inclusions can correspond to both
contradictories and contraries. Interlocks can be compared with subalterns. This represents
a promising approach and to a large extent can be combined with LNC. In Section 4.2
Contradictions—Subcategories, parts of this classification are taken up, placed in the logical
context, and further refined.

3.2. Natural Language Processing for Detecting Conflicts

According to Zhao et al., most of the studies (67.08%) in the Nature Language Process-
ing domain combined with RE are “solution proposals, assessed by a laboratory experiment
or an example application, while only a small percentage (7%) are assessed in industrial
settings” [14], so they rarely have a practical validation.

However, to the best of our knowledge, no Machine-Learning oriented studies tried to
classify or find contradictions. Many papers deal with classifying requirements, for example
in functional and non-functional requirements [15] or in security-related requirements [16].

Appl. Sci. 2022, 12, 7628 5 of 16

3.3. Ontologies for Detecting Conflicts

Guarino et al. describes computational ontologies as “means to formally model
the structure of a system, i.e., the relevant entities and relations that emerge from its
observation.” [17]. It is required to conduct a mapping of statements to concepts and
relationships. Inconsistencies and opposing elements can be recognized this way [18].

This shows that ontology-based methods are not easy to apply. A certain amount of
preparatory work is needed, including system knowledge. The resulting advantage is that
not only LNC contradictions, but also dialectic contradictions can be detected.

In this paper, however, we want to focus on LNC contradictions and lay the foundation
for automatically finding contradictions in the future, without requiring system knowledge
or preparatory work. Neither is expedient with ontologies.

4. Method for Detecting Contradictions

The findings from the Section 2 Fundamentals can be summarized as shown in Figure 3,
while dialectical contradictions, antinomies, and subcontraries—as already explained—will
not be considered:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 16

However, to the best of our knowledge, no Machine-Learning oriented studies tried
to classify or find contradictions. Many papers deal with classifying requirements, for ex-
ample in functional and non-functional requirements [15] or in security-related require-
ments [16].

3.3. Ontologies for Detecting Conflicts
Guarino et al. describes computational ontologies as “means to formally model the

structure of a system, i.e., the relevant entities and relations that emerge from its observa-
tion.” [17]. It is required to conduct a mapping of statements to concepts and relationships.
Inconsistencies and opposing elements can be recognized this way [18].

This shows that ontology-based methods are not easy to apply. A certain amount of
preparatory work is needed, including system knowledge. The resulting advantage is that
not only LNC contradictions, but also dialectic contradictions can be detected.

In this paper, however, we want to focus on LNC contradictions and lay the founda-
tion for automatically finding contradictions in the future, without requiring system
knowledge or preparatory work. Neither is expedient with ontologies.

4. Method for Detecting Contradictions
The findings from the Section 2 Fundamentals can be summarized as shown in Figure

3, while dialectical contradictions, antinomies, and subcontraries—as already explained—
will not be considered:

Figure 3. Contradictions.

In the following, we present a formal method by which contradictions can be identi-
fied and classified. To have a meaningful application in the RE context, we first must sub-
divide the LNC contradictions. Since many requirements are not just simple statements,
we have added the principle of cause and effect to LNC, as this is not specifically repre-
sented in this theory. With this, our categories are still based on Aristotle but adapted to
the Requirement context. In Section 3, they will be validated with examples from the au-
tomotive sector.

4.1. Nomenclature
First, we must define a nomenclature, to be able to refer to it in the following sections.
Capital letters as 𝐴, 𝐵, 𝐶, and 𝐷:

• Are events that represent, for example, conditions
• Are always unequal
• Can occur simultaneously
• Do not depend on each other

Lowercase letters 𝑥 and 𝑦:
• Are variables

Lowercase letters 𝑐 and 𝑘:
• Are parameters
• Are unequal to each other
• Can occur in parallel: 𝑐 can be equal to 1 and at the same time 𝑘 equal to 2.

Operators

LNC

Contradictory Contrary Subcontrary Subaltern

Dialectic
contradictions Antinomies

Figure 3. Contradictions.

In the following, we present a formal method by which contradictions can be identified
and classified. To have a meaningful application in the RE context, we first must subdivide
the LNC contradictions. Since many requirements are not just simple statements, we have
added the principle of cause and effect to LNC, as this is not specifically represented in this
theory. With this, our categories are still based on Aristotle but adapted to the Requirement
context. In Section 3, they will be validated with examples from the automotive sector.

4.1. Nomenclature

First, we must define a nomenclature, to be able to refer to it in the following sections.
Capital letters as A, B, C, and D:

• Are events that represent, for example, conditions
• Are always unequal
• Can occur simultaneously
• Do not depend on each other

Lowercase letters x and y:

• Are variables

Lowercase letters c and k:

• Are parameters
• Are unequal to each other
• Can occur in parallel: c can be equal to 1 and at the same time k equal to 2.

Operators

• !
=;

!
<;

!
>: must be equal, must be smaller, must be bigger

• ⇒: implies; if... then. e.g., A⇒ x !
= 1 translates to “If A is true, then x must be 1”.

• ¬: not. e.g., The statement ¬A is true if and only if A is false.
• ∧; ∨: and; or. e.g., The statement A ∧ B is true if A and B are both true; otherwise, it

is false. Another example is: The statement A ∨ B is true if A or B (or both) are true;
if both are false, the statement is false.

Appl. Sci. 2022, 12, 7628 6 of 16

4.2. Contradictions—Subcategories

The suggested categories are shown in Figure 4:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 16

• =! ; <! ; >!
: must be equal, must be smaller, must be bigger

• ⇒: implies; if... then. e.g., 𝐴 ⇒ 𝑥 =! 1 translates to “If 𝐴 is true, then 𝑥 must
be 1”.

• ¬: not. e.g., The statement ¬𝐴 is true if and only if 𝐴 is false.
• ∧; ∨: and; or. e.g., The statement 𝐴 ∧ 𝐵 is true if 𝐴 and 𝐵 are both true; oth-

erwise, it is false. Another example is: The statement 𝐴 ∨ 𝐵 is true if 𝐴 or 𝐵
(or both) are true; if both are false, the statement is false.

4.2. Contradictions—Subcategories
The suggested categories are shown in Figure 4:

Figure 4. Classification of contradictions.

The terms Simplex, Idem, and Alius are described below. It should be noted that re-
quirements can be formulated as “condition + conclusion” as well as inverted as “conclu-
sion + condition”.

Simplex (lat. = simple) refers to contradicting requirements without conditions (non-
causal):
• The car must be red: 𝑥 =! 𝑘.
• The car must be blue: 𝑥 =! 𝑐.

Idem (lat. = same) refers to contradicting causal requirements with the same condi-
tions or pairs where only one requirement has a condition:
• If the customer wishes, the car must be red: 𝐴 ⇒ 𝑥 =! 𝑘.
• If the customer wishes, the car must be blue: 𝐴 ⇒ 𝑥 =! 𝑐.

Alius (lat. = different) refers to contradicting causal requirements with the different
conditions (causal):
• The car must be red if the customer wishes it to be: 𝐴 ⇒ 𝑥 =! 𝑘.
• The car must be blue if the car has four doors: 𝐵 ⇒ 𝑥 =! 𝑐.

The last example is a contradiction because the conditions of both requirements can
be fulfilled at the same time (they are independent of each other) and the conclusions
would then contradict each. Also, this is an example where the condition and conclusion
have been inverted in order.

If one requirement is non-causal and the other is causal, the contradiction as a whole
is said to be causal.

LNC

Contradictory

Simplex

Idem

Alius

Contrary

Simplex

Idem

Alius

Subaltern

Simplex

Idem

Alius

Figure 4. Classification of contradictions.

The terms Simplex, Idem, and Alius are described below. It should be noted that
requirements can be formulated as “condition + conclusion” as well as inverted as “conclu-
sion + condition”.

Simplex (lat. = simple) refers to contradicting requirements without conditions
(non-causal):

• The car must be red: x !
= k.

• The car must be blue: x !
= c.

Idem (lat. = same) refers to contradicting causal requirements with the same conditions
or pairs where only one requirement has a condition:

• If the customer wishes, the car must be red: A⇒ x !
= k .

• If the customer wishes, the car must be blue: A⇒ x !
= c .

Alius (lat. = different) refers to contradicting causal requirements with the different
conditions (causal):

• The car must be red if the customer wishes it to be: A⇒ x !
= k .

• The car must be blue if the car has four doors: B⇒ x !
= c .

The last example is a contradiction because the conditions of both requirements can be
fulfilled at the same time (they are independent of each other) and the conclusions would
then contradict each. Also, this is an example where the condition and conclusion have
been inverted in order.

If one requirement is non-causal and the other is causal, the contradiction as a whole
is said to be causal.

“Contradictory” refers only to the effect, not to the requirement as a whole. If the
effects are contradictory but the requirements as a whole would be contrary, we still refer
to them as contradictory here.

The following Table 1 lists all types of contradiction in their formalized form. The
column “Multiple condition” shows examples of formalized requirements with multiple
conditions. It is not an exhaustive list of all possible multiple conditions:

Appl. Sci. 2022, 12, 7628 7 of 16

Table 1. Formalized contradictions.

Contradictions Simple Examples for
Multiple Conditions

Contradictory

Simplex x !
= k

x !
= ¬k

-

Idem A⇒ x !
= k

A⇒ x !
= ¬k

A ∧ B⇒ x !
= k

A ∧ B⇒ x !
= ¬k

Alius A⇒ x !
= k

B⇒ x !
= ¬k

A ∧ B⇒ x !
= k

A ∧ C ⇒ x !
= ¬k

Contrary

Simplex x !
= c

x !
= k

-

Idem A⇒ x !
= c

A⇒ x !
= k

A ∧ B⇒ x !
= c

A ∨ B⇒ x !
= k

Alius A⇒ x !
= c

B⇒ x !
= k

A ∧ B⇒ x !
= c

C ∧ D ⇒ x !
= k

Subaltern

Simplex x
!
< c + k

x
!
< c

-

Idem A⇒ x
!
< c + k

A⇒ x
!
< c

A ∧ B⇒ x
!
< c + k

A ∧ B⇒ x
!
< c

Alius A⇒ x
!
< c + k

B⇒ x
!
< c

A ∧ B⇒ x
!
< c + k

C ∧ D ⇒ x
!
< c

If a condition is composed of two or-statements, it can be split into two sentences, as
intermediate. This will be shown in Section 5.2.4 Alius Contrary. Each partial cause can

then separately be considered with the effect. From A ∨ B⇒ x !
= c follows A⇒ x !

= c

and B⇒ x !
= c . This facilitates the comparison of requirements that consist of compound

conditions.

4.3. Process

The following Figure 5 shows how the types of contradiction can be recognized based
on simple, but specific questions.

The first three questions refer to the effects of the requirements to be compared. The
following three questions refer to the causes, if any. The questions are elaborated on below.
For a contradiction to be identified, all questions must be answered as specified in the
corresponding column. The check mark stands for “yes” and the cross for “no”. The circle
stands for questions, that do not apply in that case. Condition 1 and condition 2 are the
respective conditions of the effects of requirement 1 and requirement 2. The same applies
for cause 1 and cause 2.

Effect-related questions:

1. Are the variables from condition 1 and condition 2 the same or a subset of each other?

Two statements can contradict each other in the sense of LNC only if the variables,
i.e. the object in question, are the same or one is a part of the other, for example, table and
table leg.

2. Does one condition include the other one?

If one condition includes the other, it could be a subaltern contradiction, for example,
“... between 15 m and 30 m” and “... between 20 m and 22 m”. The range of the second

Appl. Sci. 2022, 12, 7628 8 of 16

statement is included in the range of the first statement and therefore the former is the
superaltern of the latter.

3. Are condition 1 and condition 2 mutually exhaustive and mutually inconsistent?

This question aims at finding contradictory opposites, for example, “the car is ready”/
“the car is not ready”. If one is true, the other must be false and vice versa.

Cause-related questions:

4. Is there a condition?

If there is a condition, any form of Simplex-contradiction can be excluded.

5. Can cause 1 occur at the same time as cause 2?

Two statements can only contradict each other, if they can theoretically occur at the
same time. The statements “If it rains, . . . ” and “If it does not rain, . . . ” cannot occur
at the same time and are therefore not contradicting each other. If “it rains” in the first
statement were to be replaced with “it’s hot outside”, the two statements could theoretically
contradict each other.

6. Are cause 1 and cause 2 the same?

This question simply aims at detecting Idem-contradictions, who must have the same
cause, for example, “If I am here, you are there” and “If I am here, you are here”.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 16

Figure 5. Process overview.

The first three questions refer to the effects of the requirements to be compared. The
following three questions refer to the causes, if any. The questions are elaborated on be-
low. For a contradiction to be identified, all questions must be answered as specified in
the corresponding column. The check mark stands for “yes” and the cross for “no”. The
circle stands for questions, that do not apply in that case. Condition 1 and condition 2 are
the respective conditions of the effects of requirement 1 and requirement 2. The same ap-
plies for cause 1 and cause 2.

Effect-related questions:
1. Are the variables from condition 1 and condition 2 the same or a subset of each other?

Two statements can contradict each other in the sense of LNC only if the variables,
i.e. the object in question, are the same or one is a part of the other, for example, table and
table leg.
2. Does one condition include the other one?

If one condition includes the other, it could be a subaltern contradiction, for example,
“... between 15 m and 30 m” and “... between 20 m and 22 m”. The range of the second
statement is included in the range of the first statement and therefore the former is the
superaltern of the latter.
3. Are condition 1 and condition 2 mutually exhaustive and mutually inconsistent?

This question aims at finding contradictory opposites, for example, “the car is
ready”/“the car is not ready”. If one is true, the other must be false and vice versa.

Cause-related questions:
4. Is there a condition?

If there is a condition, any form of Simplex-contradiction can be excluded.
5. Can cause 1 occur at the same time as cause 2?

Two statements can only contradict each other, if they can theoretically occur at the
same time. The statements “If it rains, …” and “If it does not rain, …” cannot occur at the
same time and are therefore not contradicting each other. If “it rains” in the first statement
were to be replaced with “it’s hot outside”, the two statements could theoretically contra-
dict each other.

Figure 5. Process overview.

5. Materials and Results

In this section, first, the underlying data set for the validation is explained. Afterward,
the contradiction types defined above are validated using an example from the dataset,
if so found. The dataset was analyzed by hand. The document was read through to
find all existing contradictions. Not only contradictions, but also duplicates, repetitions,
ambiguities and other conflicts were found. For a complete and automated application
over a large data set, see Section 7 Conclusions.

5.1. Materials

The data set consists of several interrelated requirements documents. The originator is
the company IAV GmbH (Berlin, Germany), which was kind enough to make the documents
available. The goal was to create a complete requirements package for the development

Appl. Sci. 2022, 12, 7628 9 of 16

of E-buses, which are in use today. The document consists of about 3500 functional and
non-functional requirements, from system to software level. The original language of the
documents is German and was translated to English. For confidentiality issues, signal
names are anonymized by using square brackets.

5.2. Results

Contradictory connections are counted as one contradiction. In other words: every
contradictory pair is counted as a single contradiction.

From a total of 6500 objects 3500 were requirements. Besides the above mentioned
other conflicts, 49 (1.35%) LNC-contradictions were found. However, it should be noted that
not all contradictions were evenly distributed across all levels. 46 of the 49 contradictions
were found at the software level, where they account for 2.53% of all requirements. The
distribution of the different contradiction types is displayed in Table 2.

Table 2. Distribution.

Simplex Subaltern Alius Subaltern Alius Contradictory Alius Contrary

4 3 2 40

These figures must be viewed with caution, as the analysis was done manually, and it
is likely that further inconsistencies were overlooked.

We didn’t find any contradictions for the following species: Simplex and Idem Con-
tradictories, Idem Contraries, and Idem Subalterns. This will be reflected in Section 6
Discussion. In the following, we explain the method using one example each from the
requirements documents.

5.2.1. Simplex Subaltern

The two selected requirements are:

1. The safe state must be reached within 1000 ms.
2. The safe state must be reached within 800 ms.

The building blocks are shown in Figure 6:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 16

Figure 6. Building blocks for a Simplex Subaltern contradiction, consisting of two requirements.

Its formalized form is: 𝑥 <! 𝑘 (1)𝑥 <! 𝑐 (2)𝑤ℎ𝑖𝑙𝑒 𝑐 < 𝑘 (3)

where “safe state” is 𝑥, “1000 ms” is k and “800 ms” is 𝑐.
The questions presented in our methodology can then be answered as shown in Fig-

ure 7:

Figure 7. Process for Simplex Subaltern.

The questions were answered as given in the column for Simplex Subaltern contra-
dictions. The last two cause-questions did not need to be answered, because the Simplex-
contradictions do not have causes.

5.2.2. Alius Subaltern
The two selected requirements are:

Figure 6. Building blocks for a Simplex Subaltern contradiction, consisting of two requirements.

Its formalized form is:
x

!
< k (1)

x
!
< c (2)

while c < k (3)
where “safe state” is x, “1000 ms” is k and “800 ms” is c.

The questions presented in our methodology can then be answered as shown in
Figure 7:

Appl. Sci. 2022, 12, 7628 10 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 16

Figure 6. Building blocks for a Simplex Subaltern contradiction, consisting of two requirements.

Its formalized form is: 𝑥 <! 𝑘 (1)𝑥 <! 𝑐 (2)𝑤ℎ𝑖𝑙𝑒 𝑐 < 𝑘 (3)

where “safe state” is 𝑥, “1000 ms” is k and “800 ms” is 𝑐.
The questions presented in our methodology can then be answered as shown in Fig-

ure 7:

Figure 7. Process for Simplex Subaltern.

The questions were answered as given in the column for Simplex Subaltern contra-
dictions. The last two cause-questions did not need to be answered, because the Simplex-
contradictions do not have causes.

5.2.2. Alius Subaltern
The two selected requirements are:

Figure 7. Process for Simplex Subaltern.

The questions were answered as given in the column for Simplex Subaltern contra-
dictions. The last two cause-questions did not need to be answered, because the Simplex-
contradictions do not have causes.

5.2.2. Alius Subaltern

The two selected requirements are:

1. If the actual heater stage CbnHeatg_[. . .] > 0, the requested pump power Cbn-
Heatg_SpOfCooltPmp must be limited by the parameter CbnHeatg_TrigForDutyCyc
Of[. . .].

2. If BattChrgnMngt_MsgVld[. . .] = false, the requested pump power CbnHeatg_SpOf
CooltPmp must be limited to 20%.

The parameter CbnHeatg_TrigForDutyCycOf[...] is initialized elsewhere with 80%.
Therefore, we have a similar case as above, only this time there are conditions. The building
blocks are shown in Figure 8:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 16

1. If the actual heater stage CbnHeatg_[…] > 0, the requested pump power
CbnHeatg_SpOfCooltPmp must be limited by the parameter CbnHeatg_TrigForDu-
tyCycOf[…].

2. If BattChrgnMngt_MsgVld[…] = false, the requested pump power
CbnHeatg_SpOfCooltPmp must be limited to 20%.
The parameter CbnHeatg_TrigForDutyCycOf[...] is initialized elsewhere with 80%.

Therefore, we have a similar case as above, only this time there are conditions. The build-
ing blocks are shown in Figure 8:

Figure 8. Building blocks for an Alius Subaltern contradiction, consisting of two requirements.

And results in: 𝐴 ⇒ 𝑥 <! 𝑘 (4)𝐵 ⇒ 𝑥 <! 𝑐 (5)𝑤ℎ𝑖𝑙𝑒 𝑐 < 𝑘 (6)

where “If the actual heater stage CbnHeatg_[…] > 0” is A, “If BattChrgnMngt_MsgVld[…]
= false” is B, “CbnHeatg_SpOfCooltPmp” is x, “Cbn-Heatg_TrigForDutyCycOf[…]” is k
and “20%” is c.

The questions presented in our methodology can then be answered as shown in Fig-
ure 9:

Figure 8. Building blocks for an Alius Subaltern contradiction, consisting of two requirements.

And results in:
A⇒ x

!
< k (4)

B⇒ x
!
< c (5)

while c < k (6)

Appl. Sci. 2022, 12, 7628 11 of 16

where “If the actual heater stage CbnHeatg_[. . .] > 0” is A, “If BattChrgnMngt_Msg
Vld[. . .] = false” is B, “CbnHeatg_SpOfCooltPmp” is x, “Cbn-Heatg_TrigForDutyCyc
Of[. . .]” is k and “20%” is c.

The questions presented in our methodology can then be answered as shown in
Figure 9:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 16

1. If the actual heater stage CbnHeatg_[…] > 0, the requested pump power
CbnHeatg_SpOfCooltPmp must be limited by the parameter CbnHeatg_TrigForDu-
tyCycOf[…].

2. If BattChrgnMngt_MsgVld[…] = false, the requested pump power
CbnHeatg_SpOfCooltPmp must be limited to 20%.
The parameter CbnHeatg_TrigForDutyCycOf[...] is initialized elsewhere with 80%.

Therefore, we have a similar case as above, only this time there are conditions. The build-
ing blocks are shown in Figure 8:

Figure 8. Building blocks for an Alius Subaltern contradiction, consisting of two requirements.

And results in: 𝐴 ⇒ 𝑥 <! 𝑘 (4)𝐵 ⇒ 𝑥 <! 𝑐 (5)𝑤ℎ𝑖𝑙𝑒 𝑐 < 𝑘 (6)

where “If the actual heater stage CbnHeatg_[…] > 0” is A, “If BattChrgnMngt_MsgVld[…]
= false” is B, “CbnHeatg_SpOfCooltPmp” is x, “Cbn-Heatg_TrigForDutyCycOf[…]” is k
and “20%” is c.

The questions presented in our methodology can then be answered as shown in Fig-
ure 9:

Figure 9. Process for Alius Subaltern.

5.2.3. Alius Contradictory

It gets more complicated when getting to the following contradictories:

1. Suitable potential equalization is required for all conductive covers or housings of all
HV components.

2. If additional external conductive sheaths or covers are fitted over covers or enclo-
sures consisting of solid insulating materials, equipotential bonding is not required
for these.

By considering the context, it becomes clear, that the demonstrative “these” in the
second sentence is a variable y. It refers to “covers or housings consisting of insulating
materials” and not to “covers or housings” or “solid insulating materials”. However, the
variable x of the first sentence is “covers or housings“, which means that y ∈ x.

Therefore, the building blocks are as shown in Figure 10:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 16

Figure 9. Process for Alius Subaltern.

5.2.3. Alius Contradictory
It gets more complicated when getting to the following contradictories:

1. Suitable potential equalization is required for all conductive covers or housings of all
HV components.

2. If additional external conductive sheaths or covers are fitted over covers or enclo-
sures consisting of solid insulating materials, equipotential bonding is not required
for these.
By considering the context, it becomes clear, that the demonstrative “these” in the

second sentence is a variable y. It refers to “covers or housings consisting of insulating
materials” and not to “covers or housings” or “solid insulating materials”. However, the
variable x of the first sentence is “covers or housings“, which means that 𝑦 ∈ 𝑥.

Therefore, the building blocks are as shown in Figure 10:

Figure 10. Building blocks for an Alius Contradictory contradiction, consisting of two requirements.

The formalized form is: 𝑥 =! 𝑘 (7)𝐴 ∨ 𝐵 ⇒ 𝑦 !് 𝑘 (8)𝑤ℎ𝑖𝑙𝑒 𝑦 ∈ 𝑥 (9)

where “conductive covers or housings of all HV components” is x, “potential equalization”
is k, “additional external conductive covers or housings are fitted over covers” is A and
“housings consisting of solid insulating materials” is B. “these” is y and is actually a subset
of x. It denotes “conductive covers or housings of all HV components with additional ex-
ternal conductive covers or housings fitted over covers or housings consisting of solid in-
sulating materials”.

After the formalized form has been determined, filling in the table works as usual, as
shown in Figure 11:

Figure 10. Building blocks for an Alius Contradictory contradiction, consisting of two requirements.

Appl. Sci. 2022, 12, 7628 12 of 16

The formalized form is:
x !
= k (7)

A ∨ B⇒ y
!
6= k (8)

while y ∈ x (9)

where “conductive covers or housings of all HV components” is x, “potential equalization”
is k, “additional external conductive covers or housings are fitted over covers” is A and
“housings consisting of solid insulating materials” is B. “these” is y and is actually a subset
of x. It denotes “conductive covers or housings of all HV components with additional
external conductive covers or housings fitted over covers or housings consisting of solid
insulating materials”.

After the formalized form has been determined, filling in the table works as usual, as
shown in Figure 11:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 16

Figure 11. Process for Alius Contradictory.

5.2.4. Alius Contrary
The two selected requirements are:

1. If the value of the signal ComVehFrnt_ChrgnCur[…] exceeds the value of 0 (A), the
signal Chrgn[…] must be set to TRUE.

2. If the parameter ChrgnCurChk_SubVal[…] is set to TRUE, the signal Chrgn[…] cor-
responds to the parameterizable value ChrgnCurChk_SubValChrgn[…], otherwise,
the signal is forwarded unchanged.
The second condition of the second requirement should be transferred to a separate

requirement to apply this method. The second requirement thus splits and can be checked
separately against other requirements for contradictions. Accordingly, our customized re-
quirements look like this, while we will be using 2.1 in the further analysis:
2.1 If the parameter ChrgnCurChk_SubVal[…] is set to TRUE, the signal Chrgn[…] cor-

responds to the parameterizable value ChrgnCurChk_SubValChrgn[…].
2.2 If the parameter ChrgnCurChk_SubVal[…] is not set to TRUE, the signal Chrgn[…]

is forwarded unchanged.

Then, the building blocks are as shown in Figure 12:

Figure 11. Process for Alius Contradictory.

5.2.4. Alius Contrary

The two selected requirements are:

1. If the value of the signal ComVehFrnt_ChrgnCur[. . .] exceeds the value of 0 (A), the
signal Chrgn[. . .] must be set to TRUE.

2. If the parameter ChrgnCurChk_SubVal[. . .] is set to TRUE, the signal Chrgn[. . .] cor-
responds to the parameterizable value ChrgnCurChk_SubValChrgn[. . .], otherwise,
the signal is forwarded unchanged.

The second condition of the second requirement should be transferred to a separate
requirement to apply this method. The second requirement thus splits and can be checked
separately against other requirements for contradictions. Accordingly, our customized
requirements look like this, while we will be using 2.1 in the further analysis:

2.1 If the parameter ChrgnCurChk_SubVal[. . .] is set to TRUE, the signal Chrgn[. . .]
corresponds to the parameterizable value ChrgnCurChk_SubValChrgn[. . .].

2.2 If the parameter ChrgnCurChk_SubVal[. . .] is not set to TRUE, the signal Chrgn[. . .]
is forwarded unchanged.

Then, the building blocks are as shown in Figure 12:

Appl. Sci. 2022, 12, 7628 13 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 16

Figure 11. Process for Alius Contradictory.

5.2.4. Alius Contrary
The two selected requirements are:

1. If the value of the signal ComVehFrnt_ChrgnCur[…] exceeds the value of 0 (A), the
signal Chrgn[…] must be set to TRUE.

2. If the parameter ChrgnCurChk_SubVal[…] is set to TRUE, the signal Chrgn[…] cor-
responds to the parameterizable value ChrgnCurChk_SubValChrgn[…], otherwise,
the signal is forwarded unchanged.
The second condition of the second requirement should be transferred to a separate

requirement to apply this method. The second requirement thus splits and can be checked
separately against other requirements for contradictions. Accordingly, our customized re-
quirements look like this, while we will be using 2.1 in the further analysis:
2.1 If the parameter ChrgnCurChk_SubVal[…] is set to TRUE, the signal Chrgn[…] cor-

responds to the parameterizable value ChrgnCurChk_SubValChrgn[…].
2.2 If the parameter ChrgnCurChk_SubVal[…] is not set to TRUE, the signal Chrgn[…]

is forwarded unchanged.

Then, the building blocks are as shown in Figure 12:

Figure 12. Building blocks for an Alius Contrary contradiction, consisting of two requirements.

The formalized form results in:

A⇒ x !
= c (10)

B⇒ x !
= k (11)

where “the value of the signal ComVehFrnt_ChrgnCur[. . .] exceeds the value of 0 (A)” is
A, “the parameter ChrgnCurChk_SubValForChrgn[. . .] is set to TRUE” is B, “Chrgn[123]”
is x and “TRUE” is c and “ChrgnCurChk_SubValChrgn[. . .]” is k.

The questions presented in our methodology can then be answered as shown in
Figure 13:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 16

Figure 12. Building blocks for an Alius Contrary contradiction, consisting of two requirements.

The formalized form results in: 𝐴 ⇒ 𝑥 =! 𝑐 (10)𝐵 ⇒ 𝑥 =! 𝑘 (11)

where “the value of the signal ComVehFrnt_ChrgnCur[…] exceeds the value of 0 (A)” is
A, “the parameter ChrgnCurChk_SubValForChrgn[…] is set to TRUE” is B, “Chrgn[123]”
is x and “TRUE” is c and “ChrgnCurChk_SubValChrgn[…]” is k.

The questions presented in our methodology can then be answered as shown in Fig-
ure 13:

Figure 13. Process for Alius Contrary.

6. Discussion
It is important to note, that we didn’t find any Idem-contradictions and only one

Simplex-contradiction. Idem-contradictions are so conspicuous that the requirements en-
gineer would probably notice them immediately since he would have to formulate exactly
the same cause twice with the same variables but different effects. The reason for the ab-
sence of Simplex-contradictions is, that the examined system is so complex that simple
statements without conditions would simply not be sufficient to describe the system pre-
cisely.

Besides mentioned reasons, internal validity mistakes could play a role in not finding
certain contradiction types. In the project documents are about 3500 requirements with ∑ 𝑘 = 6,123,250௡ିଵ௞ୀ଴ theoretical combinations. We therefore cannot rule out the possibility,
that we missed Idem- or Simplex-contradictions.

If the requirements are not formulated according to the guidelines, borderline cases
can certainly occur in which contradictions cannot be clearly assigned or even identified.
This is because language is often ambiguous and human interpretation is often needed.
When it comes to complex formulations, even common sense can reach its limits.

7. Conclusions

Figure 13. Process for Alius Contrary.

6. Discussion

It is important to note, that we didn’t find any Idem-contradictions and only one
Simplex-contradiction. Idem-contradictions are so conspicuous that the requirements
engineer would probably notice them immediately since he would have to formulate
exactly the same cause twice with the same variables but different effects. The reason
for the absence of Simplex-contradictions is, that the examined system is so complex

Appl. Sci. 2022, 12, 7628 14 of 16

that simple statements without conditions would simply not be sufficient to describe the
system precisely.

Besides mentioned reasons, internal validity mistakes could play a role in not finding
certain contradiction types. In the project documents are about 3500 requirements with
∑n−1

k=0 k = 6, 123, 250 theoretical combinations. We therefore cannot rule out the possibility,
that we missed Idem- or Simplex-contradictions.

If the requirements are not formulated according to the guidelines, borderline cases
can certainly occur in which contradictions cannot be clearly assigned or even identified.
This is because language is often ambiguous and human interpretation is often needed.
When it comes to complex formulations, even common sense can reach its limits.

7. Conclusions

Especially in the early development phase, ambiguities are very common in Require-
ments documents due to the use of natural language. In this paper, we examined contradic-
tive requirements, which we defined using formal logic. In contrast to other papers, we
did not classify contradictions according to our data set or our code, but according to a
generally accepted, well-tested systematic model. Then, we created a classification tailored
to RE, in which conditions and effects now take a prominent role. Finally, we proposed a
way to identify our contradictions using clear questions.

We have analyzed about 6500 objects, approximately 3500 of which were requirements.
In total, we were able to identify many different conflicts, 49 of which were LNC-related
contradictions that could be identified using our method. The majority of the detected
contradictions were of the Alius Contraries. Furthermore, most of the contradictions
were found at the deeper system levels, namely those of the software requirements. This
corresponds to our expectations, since requirements on the higher levels are written less
concretely and describe the general functionality of the product. As a result, there is often
no risk of contradictions in the first place.

With our method, contradictions can be found in a semi-automated way: The classi-
fication into cause and effect, as well as variable and condition, are fully automated, for
example by using Fischbach’s parser [19]. This way our method can be applied automat-
ically up to the step “Building Blocks”. In the then following formalization the building
blocks must be replaced by symbols and formulas. However, this step is not automated.
To the best of our knowledge, there are currently no methods available which allow for
this. Therefore, further research is required, as mentioned in Section 6 Discussion. Once
the formalization is done, answering the questions in Figure 5 presents a simple—yet
manual—task. This was shown with examples in Section 5.2 Results.

When applying our method, a requirements reviewer does not have to be familiar with
requirements in general or with the topic of the document anymore, to recognize contradic-
tions, as our method provides a simple recipe for detecting LNC-related contradictions.

Future work could entail automation, quality analysis and non-LNC-contradictions.
Requirements documents can become very extensive due to the necessary level of detail [20].
Therefore, an automated determination of contradictions would be useful. The formaliza-
tion of contradictions proposed in this paper provides strong implications for automation,
by serving as the basis for a fully automated contradiction-detection method. The queries
that would have to be made in such a code are already mathematically formulated here.

We can also derive implications for an automated quality analysis. The classification
into different types of contradictions is an important step to quantify the quality of a
requirements document. The logical next step would be to assess the criticality of the
contradiction. Based on this, a meaningful key performance indicator could be determined.
This would require analyzing a large number of inconsistencies, to assess the impact on the
product, as well as any different resolution methods per type of contradiction. The greater
the impact and the more difficult the solution, the more critical the contradiction.

As we saw in Section 2 Fundamentals, there are other types of contradictions besides
LNC-contradictions, that have not been discussed in this paper: dialectic contradictions and

Appl. Sci. 2022, 12, 7628 15 of 16

antinomies. In our opinion, dialectic contradictions cannot be detected by applying simple
rules, instead, they require context and language comprehension. It might be possible to
achieve results with a sufficiently large and clean data set and by using machine learning
algorithms. Regarding antinomies, it should first be checked whether they occur at all in
requirements documents. A solution to these contradictions is similar to the solution of
dialectical contradictions.

Author Contributions: Conceptualization, A.E.G., D.G. and T.-A.F.; methodology, A.E.G.; validation,
A.E.G.; formal analysis, A.E.G.; investigation, A.E.G.; resources, A.E.G. and D.G.; data curation,
A.E.G.; writing—original draft preparation, A.E.G.; writing—review and editing, D.G. and T.-A.F.;
supervision, D.G. All authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge support by the German Research foundation and the Open Access
Publication Fund of TU Berlin.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dick, J. Requirements Engineering, 4th ed.; Springer eBook Collection Computer Science; Springer: Cham, Switzerland, 2017.
2. Bender, B.; Gericke, K. (Eds.) Entwickeln der Anforderungsbasis: Requirements Engineering. In Pahl/Beitz Konstruktionslehre:

Methoden und Anwendung Erfolgreicher Produktentwicklung; 9. Auflage; Springer: Berlin/Heidelberg, Germany, 2021; Volume 50,
pp. 169–209.

3. Montgomery, L.; Fucci, D.; Bouraffa, A.; Scholz, L.; Maalej, W. Empirical research on requirements quality: A systematic mapping
study. Requir. Eng. 2022, 29, 183–209. [CrossRef]

4. Luisa, M.; Mariangela, F.; Pierluigi, N.I. Market research for requirements analysis using linguistic tools. Requir. Eng. 2004,
9, 40–56. [CrossRef]

5. Babcock, J. Good Requirements Are More than Just Accurate. Available online: https://practicalanalyst.com/good-requirements-
are-more-than-just-accurate/ (accessed on 20 May 2022).

6. Horn, L.R. Contradiction; Stanford Encyclopedia of Philosophy: Stanford, CA, USA, 2018.
7. Aristoteles. Metaphysik: Schriften zur Ersten Philosophie; Schwarz, F.F., Ed.; Reclams Universal-Bibliothek: Ditzingen, Germany,

1986; Volume 7913.
8. Parsons, T. The Traditional Square of Opposition; Stanford Encyclopedia of Philosophy: Stanford, CA, USA, 2021.
9. Kesselring, T. Formal Logischer Widerspruch, Dialektischer Widerspruch, Antinomie. Reflexionen über den Widerspruch. In

Jenseits der Dichotomie; Müller, S., Ed.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2013; pp. 15–38.
10. Landhäußer, M.; Körner, S.J. Artificial Intelligence in Requirements Engineering. In Proceedings of the REConf, München,

Germany, 27–29 March 2017.
11. Marneffe, M.C.; Rafferty, A.N.; Manning, C.D. Finding Contradictions in Text; Association for Computational Linguistics: Strouds-

burg, PA, USA, 2008.
12. Van Lamsweerde, A.; Darimont, R.; Letier, E. Managing conflicts in goal-driven requirements engineering. IEEE Trans. Softw. Eng.

1998, 24, 908–926. [CrossRef]
13. Guo, W.; Zhang, L.; Lian, X. Automatically detecting the conflicts between software requirements based on finer semantic analysis.

arXiv 2021. [CrossRef]
14. Zhao, L.; Alhoshan, W.; Ferrari, A.; Letsholo, K.J.; Ajagbe, M.A.; Chioasca, E.V.; Batista-Navarro, R.T. Natural Language Processing

for Requirements Engineering. ACM Comput. Surv. 2021, 54, 1–14. [CrossRef]
15. Kurtanovic, Z.; Maalej, W. Automatically Classifying Functional and Non-functional Requirements Using Supervised Machine

Learning. In Proceedings of the 2017 IEEE 25th International Requirements Engineering Conference (RE), Lisbon, Portugal,
4–8 September 2017; pp. 490–495.

16. Jindal, R.; Malhotra, R.; Jain, A. Automated classification of security requirements. In Proceedings of the 2016 International
Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 21–24 September 2016;
pp. 2027–2033.

17. Guarino, N.; Oberle, D.; Staab, S. What Is an Ontology? In Handbook on Ontologies; Staab, S., Studer, R., Eds.; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 5, pp. 1–17.

18. Sandhu, G.; Sikka, S. State-of-art practices to detect inconsistencies and ambiguities from software requirements. In Proceedings of
the International Conference on Computing, Communication & Automation, Greater Noida, India, 15–16 May 2015; pp. 812–817.

http://doi.org/10.1007/s00766-021-00367-z
http://doi.org/10.1007/s00766-003-0179-8
https://practicalanalyst.com/good-requirements-are-more-than-just-accurate/
https://practicalanalyst.com/good-requirements-are-more-than-just-accurate/
http://doi.org/10.1109/32.730542
http://doi.org/10.48550/arXiv.2103.02255
http://doi.org/10.1145/3444689

Appl. Sci. 2022, 12, 7628 16 of 16

19. Fischbach, J.; Frattini, J.; Vogelsang, A.; Mendez, D.; Unterkalmsteiner, M.; Wehrle, A.; Henao, P.R.; Yousefi, P.; Juricic, T.;
Radduenz, J.; et al. Automatic Creation of Acceptance Tests by Extracting Conditionals from Requirements: NLP Approach and
Case Study. arXiv 2022, arXiv:2202.00932.

20. Göhlich, D.; Fay, T.A. Arbeiten mit Anforderungen: Requirements Management. In Pahl/Beitz Konstruktionslehre: Methoden und
Anwendung Erfolgreicher Produktentwicklung, 9th ed.; Bender, B., Gericke, K., Eds.; Springer: Berlin/Heidelberg, Germay, 2021;
Volume 25, pp. 211–229.

	Introduction
	Problem
	Contribution

	Fundamentals
	Formulation and Building Blocks
	Contradictions

	Related Work
	Classification of Conflicts
	Natural Language Processing for Detecting Conflicts
	Ontologies for Detecting Conflicts

	Method for Detecting Contradictions
	Nomenclature
	Contradictions—Subcategories
	Process

	Materials and Results
	Materials
	Results
	Simplex Subaltern
	Alius Subaltern
	Alius Contradictory
	Alius Contrary

	Discussion
	Conclusions
	References

