
Citation: Lagaros, N.D.; Plevris, V.

Artificial Intelligence (AI) Applied in

Civil Engineering. Appl. Sci. 2022, 12,

7595. https://doi.org/10.3390/

app12157595

Received: 5 June 2022

Accepted: 27 July 2022

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Editorial

Artificial Intelligence (AI) Applied in Civil Engineering
Nikos D. Lagaros 1 and Vagelis Plevris 2,*

1 Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical
University of Athens, Heroon Polytechneiou 9, 157 80 Zographou, Greece; nlagaros@central.ntua.gr

2 Department of Civil and Architectural Engineering, Qatar University, Doha P.O. Box 2713, Qatar
* Correspondence: vplevris@qu.edu.qa

1. Introduction

In recent years, artificial intelligence (AI) has drawn significant attention with respect
to its applications in several scientific fields, varying from big data handling to medical
diagnosis. The use of AI is already present in our daily lives with several uses, such as
personalized ads, virtual assistants, autonomous driving, etc. Not surprisingly, AI method-
ologies have found a wide range of uses and applications in engineering fields, including
civil and structural engineering [1,2], with impressive results [3–5]. Figure 1 shows the
research articles related to AI published in the field of civil engineering. In particular, these
are results from the Scopus database (www.scopus.com, obtained on 2 June 2022), using
the query “TITLE-ABS-KEY ((“artificial intelligence” or “AI”) and (“civil” or “structural” or
“transportation” or “geotechnical” or “hydraulic” or “environmental” or “construction” or “shm”
or “structural health”)) and PUBYEAR > 1999 and (LIMIT-TO (SUBJAREA, “ENGI”))”, which
returned 14,059 document results in total (for years from 2000 to 2022). The increase in
AI studies with great acceleration shows that the use of AI in civil engineering is gain-
ing momentum and will keep increasing in the coming years, bringing new innovations
and applications.
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Figure 1. Published articles (in Scopus) using AI in civil engineering-related fields (2000–2021).

This research topic contains applications and recent advances of AI in civil engi-
neering problems, promoting cross-fertilization between these scientific fields. In par-
ticular, the focus is on hybrid studies and applications related to structural engineering,
transportation engineering, geotechnical engineering, hydraulic engineering, environmen-
tal engineering, coastal and ocean engineering, structural health monitoring, as well as
construction management.
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2. Contributions

The research topic has been quite successful, gathering 35 contributions in total, from
19 different countries around the world, covering a broad range of topics related to the
applications of AI in civil engineering. Three MDPI journals participated by cross-listing the
research topic. Most of the articles (29) were published in the “Applied Sciences” journal,
while 3 of them were published in “Mathematics” and another 3 in “Symmetry”.

The articles are divided into 6 groups, as follows: (i) Optimization methods and ap-
plications (7 articles), (ii) Combined machine learning and optimization methodologies
(2 articles), (iii) Machine learning in identification problems (3 articles), (iv) Applications of
convolutional neural networks (8 articles), (v) Combined and multiple AI-based methodolo-
gies (6 articles), and (vi) Other AI-based methods, formulations, and applications (9 articles).
A brief description of each article, for every category, is presented in the following sections.

2.1. Optimization Methods and Applications

Rosso et al. [6] propose an enhanced multi-strategy Particle Swarm Optimization (PSO)
variant to solve constrained problems with a different approach to the classical penalty
function technique. The authors propose several improvements to the original algorithm,
including a new local search operator based on the Evolutionary Strategy (ES). Li et al. [7],
propose an optimization approach with a parallel updated particle swarm optimization
(PUPSO) algorithm aiming at minimizing the objective function of the levelized cost of
energy of the prestressed concrete–steel hybrid wind turbine towers. This is conducted in a
life cycle perspective which represents the direct investments, labor costs, machinery costs,
and the maintenance costs.

Cucuzza et al. [8] study the size and shape optimization of a guyed radio mast for
radiocommunications, using the genetic algorithm (GA) and carrying out both static and
dynamic analyses considering the action of wind, ice, and seismic loads. Guo et al. [9],
propose the use of GA, correlation analysis, and two parametric design methods (floor
plan generation method and component selection method) for optimizing the building
performance of prefabricated buildings.

Uray et al. [10] use the Taguchi method integrated hybrid harmony search algorithm,
carry out a statistical investigation of the optimum values for the control parameters of the
harmony search algorithm and examine their effects on the best solution. The new hybrid
method has been successfully applied to different real-world engineering optimization
problems. Sarjamei et al. [11] use the Gold Rush Optimization (GRO) algorithm for the
optimal design of real-scale symmetric structures under frequency constraints. The efficacy
of the concept of cyclic symmetry to minimize the needed time is assessed with three
examples, including Disk, Silo, and Cooling Tower.

Bao et al. [12], investigate the decision-making problem of pavement maintenance
prioritization considering both quality and cost. They consider a linear optimization model
that maximizes maintenance quality with limited maintenance costs and a multi-objective
optimization model that maximizes maintenance quality while minimizing maintenance
costs. These models are employed in making decisions for actual pavement maintenance
using sequential quadratic programming and GA.

2.2. Combined Machine Learning and Optimization Methodologies

3D printing is already established in the production processes of several industries
while more are continuously being added. Lately, parametric design has become popular
in the architectural design literature, while topology optimization has become part of the
design procedure of various industries. Kallioras and Lagaros [13] propose MLGen, a novel
generative design framework which integrates machine learning (ML) into the generative
design practice. Several benchmark topology optimization problems are examined to show
the ability of MLGen to efficiently handle different engineering problems.

In order to deal with dynamic traffic flow, adaptive traffic signal controls using rein-
forcement learning are being studied. Gu et al. [14] propose a reinforcement learning-based
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signal optimization model with constraints. The model maintains the sequence of typical
signal phases and considers the minimum green time. It is trained using Simulation of
Urban MObility (SUMO), a microscopic traffic simulator and it is evaluated in a virtual
environment similar to a real road with multiple intersections.

2.3. Machine Learning in Identification Problems

In recent years, deep learning-based detection methods have been successfully applied
to pavement crack detection problems. In this field, Li et al. [15] propose a method to
improve the accuracy of crack identification by combining a semantic segmentation and
edge detection model. Their work is inspired by the U-Net semantic segmentation network
and holistically nested edge detection network. A side-output part is added to the U-Net
decoder that performs edge extraction and deep supervision. A network model is proposed,
combining two tasks that can output the semantic segmentation results of the crack image
and the edge detection results of different scales. The model can also be used for other
tasks that need both semantic segmentation and edge detection. On the topic of concrete
structures, Liu and Li [16] propose an improved self-organizing mapping (SOM) neural
network (NN) model to solve the problem of intelligent detection of damage to modern
concrete structures under complex constraints. The method is based on a small number of
samples and the use of a self-developed 3D laser scanning system. The improved SOM
model method fully combines the network topology and its unique image features and
can accurately identify structural damage, contributing to the realization of high-precision
intelligent health monitoring of damage to modern concrete structures.

In railway engineering, the performance of the passing train and the structural state of
the track bed are common concerns regarding the safe operation of the subway. Monitoring
the vibration response of the track bed structure and identifying abnormal signals within it
can help address these concerns. In this direction, Li et al. [17] propose an unsupervised
learning-based methodology for identifying the abnormal signals of the track beds de-
tected by the ultra-weak fiber optic Bragg grating sensing array. The experimental results
demonstrate that the established unsupervised learning network and the selected metric
for quantifying error sequences can serve the threshold selection well, based on the receiver
operating characteristic curve.

2.4. Applications of Convolutional Neural Networks

In earthquake engineering, the analysis of site seismic amplification characteristics
is one of the most important tasks of seismic safety evaluation. Yang et al. [18] propose
a new prediction method for the amplification characteristics of local sites, using a CNN
combined with real-time seismic signals. The CNN is used to establish the relationship
between the amplification factors of local sites and eight parameters, while the training
and testing samples are generated through observed and geological data. The results
show that the CNN method can provide a powerful tool for predicting the amplification
factors of local sites both for recorded and unrecorded positions. Yan et al. [19] propose a
measurement method of bridge vibration by unmanned aerial vehicles (UAVs) combined
with convolutional neural networks (CNNs) and the Kanade–Lucas–Tomasi (KLT) optical-
flow method. The KLT optical-flow method is used to track the target points on the structure
and the background reference points in the video to obtain the coordinates of these points
on each frame, while the characteristic relationship between the reference points and the
target points is learned by a CNN according to the coordinates of the reference points and
the target points. The objective is to correct the displacement time–history curves of target
points containing the false displacement caused by the UAV’s egomotion.

Based on the features of cracks, Wang et al. [20] propose the concept of a crack key
point as a method for crack characterization and establish a model of image crack detection
based on the reference anchor points method, named KP-CraNet. The accuracy of the model
recognition is controllable and can meet both the pixel-level requirements and the efficiency
needs of engineering. The results show that the method can improve crack detection
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quality and has a strong generalization ability. Dos Santos Junior et al. [21] propose an
architecture for segmenting cracks in facades with Deep Learning (DL) that includes an
image pre-processing step. The authors also propose the Ceramic Crack Database, a set of
images to segment defects in ceramic tiles. The proposed model can adequately identify
the crack even when it is close to or within the grout.

Blockage of culverts by transported debris materials is the salient contributor to
originating urban flash floods, with conventional hydraulic modeling having no success
in addressing the problem. Iqbal et al. [22] explore a new dimension to investigate the
issue by proposing the use of intelligent video analytics (IVA) algorithms for extracting
blockage-related information. Their research aims to automate the process of manual visual
blockage classification of culverts from a maintenance perspective by remotely applying DL
models. On the other hand, Calton and Wei [23] use transfer learning on three advanced
NNs, ResNet, MobileNet, and EfficientNet, and apply techniques for damage classification
and damaged object detection to a post-hurricane image dataset comprised of damaged
buildings from the coastal region of the southeastern USA. The dataset includes 1000 images
for the classification model with a binary classification structure containing classes of floods
and non-floods and 800 images for the object detection model with four damaged object
classes, i.e., damaged roof, damaged wall, flood damage, and structural damage.

Lin et al. [24] aim at the long-term (24–72 h ahead) prediction of wind power with
a mean absolute percentage error of less than 10% by using the Temporal Convolutional
Network (TCN) algorithm of DL networks. In their experiment, they perform TCN model
pretraining using historical weather data and the power generation outputs of a wind
turbine from a Scada wind power plant in Turkey.

Chen et al. [25] propose a text-mining-based accident causal classification method
based on a relational graph convolutional network (R-GCN) and pre-trained bidirectional
encoder representation from transformers (BERT). The proposed method avoids preprocess-
ing such as stop word removal and word segmentation, but also avoids tedious operations,
while the dependence of BERT retraining on computing resources can also be avoided.

2.5. Combined and Multiple AI-Based Methodologies

Some of the research works use multiple AI-based methodologies, either for compar-
ison purposes or in a combined way to achieve better results. In particular, Benbouras
et al. [26] elaborate on a new alternative model for predicting the bearing capacity of piles
based on eleven new advanced ML methods, in order to overcome the problems of the
time-consuming and costly traditional methods. The modeling phase uses a database of 100
samples collected from different countries. Additionally, eight relevant factors are selected
in the input layer based on recommendations from the literature. Su et al. [27] propose a
data processing framework that uses a long short-term memory (LSTM) model coupled
with an attention mechanism to predict the deformation response of a dam structure. The
results of the case study show that, of all tested methods, the proposed coupled method per-
forms best. In addition, it was found that temperature and water level both have significant
impacts on dam deformation and can serve as reliable metrics for dam management.

Zhao et al. [28] use a sparrow search algorithm to improve a backpropagation NN,
and an Elman NN and support vector regression models to predict the thickness of an
excavation damaged zone. The proposed model can provide a reliable reference for the
thickness prediction of an excavation-damaged zone and is helpful in the risk management
of roadway stability. Ma et al. [29] investigate the performance of the extreme gradient
boosting (XGboost) method in predicting multiclass of clay sensitivity, and the ability of the
synthetic minority over-sampling technique (SMOTE) in addressing imbalanced categories
of clay sensitivity. The results reveal that XGBoost shows the best performance in the
multiclassification prediction of clay sensitivity.

In transportation engineering, Xiang et al. [30] propose a two-phase approach in an
effort to predict highway passenger volume. The datasets subsume highway passenger
volume and impact factors of urban attributes. The findings provide useful information
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for guiding highway planning and optimizing the allocation of transportation resources.
Cheng et al. [31] use smartcard data from the bus system to identify important variables
that affect passenger flow. These data are combined with other influential variables to
establish an integrated-weight time-series forecast model. The results show that the model
can improve passenger flow forecasting based on three bus routes with three different
series of time data.

2.6. Other AI-Based Methods, Formulations, and Applications

Kruachottikul et al. [32] aim to improve collaboration on bridge inspections that
typically require the involvement of many people, personal judgement, and extensive travel
to survey bridges across the country of Thailand. One major challenge is to standardize
human judgement. To address this, the authors develop a user-centric bridge visual defect
quality control mobile application to improve collaboration and assist field technicians to
conduct visual defect inspections. Based on nonlinear finite element numerical simulation
and synergistic theory, the cooperative control problems of the bridge–subgrade transition
section are studied in the work by Zhang et al. [33]. Huang et al. [34] propose a data-
driven reinforcement-learning (RL)-based approach to achieve automatic bucket-filling.
An automatic bucket-filling algorithm based on Q-learning is developed to enhance the
adaptability of the autonomous scooping system. A nonlinear, non-parametric statistical
model is also built to approximate the real working environment using the actual data
obtained from tests.

Chen et al. [35] summarize the main factors affecting the large deformation of soft rock
tunnels, including the lithology combination, weathering effect, and underground water
status, by reviewing the typical cases of largely-deformed soft rock tunnels. The method
can be used to invert the geological parameters of the surrounding rock mass for a certain
point, which can provide important mechanical parameters for the design and construction
of tunnels. Lin et al. [36] introduce a modern space remote sensing technology, InSAR, as a
direct observable for the slope dynamics. The InSAR-derived displacement fields and other
in situ geological and topographical factors are integrated, and their correlations with land-
slide susceptibility are analyzed. Moreover, multiple ML approaches are applied with the
goal to construct an optimal model between these complicated factors and landslide suscep-
tibility. Zenkour et al. [37] introduce the thermoelastic coupled response of an unbounded
solid with a cylindrical hole under a traveling heat source and harmonically altering heat.
A refined dual-phase-lag thermoelasticity theory is used for this purpose. A generalized
thermoelastic coupled solution is developed by using Laplace’s transforms technique.

Heo et al. [38] highlight that many human resources are needed on the research and
development (R&D) process of AI and discuss factors to consider in the current method of
development. Labor division of a few managers and numerous ordinary workers as a form
of the light industry appears to be a plausible method of enhancing the efficiency of AI R&D
projects. Inspired by the powerful ability of NNs in the field of representation learning,
Xie et al. [39] design a hierarchical generative embedding model (HGE) to map nodes
into latent space automatically. Then, with the learned latent representation of each node,
they propose an HGE-GA algorithm to predict influence strength and compute the top-K
influential nodes. Extensive experiments on real-world attributed networks demonstrate
the outstanding superiority of the proposed HGE model and HGE-GA algorithm compared
with the state-of-the-art methods, verifying the effectiveness of the proposed model and
algorithm. Xie et al. [40] incorporate a co-embedding model for KG embedding, which
learns low-dimensional representations of both entities and relations in the same semantic
space. To address the issue of neglecting uncertainty for KG components, they propose a
variational auto-encoder that represents KG components as Gaussian distributions.
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