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Abstract: Present-day smartphones provide various conveniences, owing to high-end hardware
specifications and advanced network technology. Consequently, people rely heavily on smartphones
for a myriad of daily-life tasks, such as work scheduling, financial transactions, and social networking,
which require a strong and robust user authentication mechanism to protect personal data and privacy.
In this study, we propose draw-a-deep-pattern (DDP)—a deep learning-based end-to-end smartphone
user authentication method using sequential data obtained from drawing a character or freestyle
pattern on the smartphone touchscreen. In our model, a recurrent neural network (RNN) and
a temporal convolution neural network (TCN), both of which are specialized in sequential data
processing, are employed. The main advantages of the proposed DDP are (1) it is robust to the
threats to which current authentication systems are vulnerable, e.g., shoulder surfing attack and
smudge attack, and (2) it requires few parameters for training; therefore, the model can be consistently
updated in real-time, whenever new training data are available. To verify the performance of the DDP
model, we collected data from 40 participants in one of the most unfavorable environments possible,
wherein all potential intruders know how the authorized users draw the characters or symbols (shape,
direction, stroke, etc.) of the drawing pattern used for authentication. Of the two proposed DDP
models, the TCN-based model yielded excellent authentication performance with average values
of 0.99%, 1.41%, and 1.23% in terms of AUROC, FAR, and FRR, respectively. Furthermore, this
model exhibited improved authentication performance and higher computational efficiency than
the RNN-based model in most cases. To contribute to the research/industrial communities, we
made our dataset publicly available, thereby allowing anyone studying or developing a behavioral
biometric-based user authentication system to use our data without any restrictions.

Keywords: mobile user authentication; behavioral biometrics; temporal convolution neural network;
recurrent neural network; sequence modeling

1. Introduction

In the hyper-connected world of today, everything is equipped with connectivity. Since
2010, the smartphone has become a key device for networking, and its rapid evolution has
provided us with improved quality of life. The smartphone’s personal assistant feature can
help users with almost everything in their daily lives. However, smartphones have access
to a considerable amount of private information of its owner/user; therefore, data privacy
and mobile security mechanisms have seen a manifold increase in order to protect the data
and privacy of the owner/user against various security attacks attempted by unauthorized
users [1]. To provide a safe and reliable mobile experience to users, numerous companies
have invested a large amount of capital in both hardware and software development to
enhance the security mechanisms for mobile devices.

Among the different layers of a mobile security system, user authentication is the
first and most important because a successful unauthorized access to the device would
be the worst possible compromise to the user’s data and privacy. Consequently, various
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studies have been conducted on user authentication for mobile devices [2]. Three well-
known user authentication methods for mobile devices with touchscreens are personal
identification number (PIN), password, and pattern lock [3]. These methods are known
to be vulnerable to certain threat scenarios, such as shoulder surfing attack (SSA) and
smudge attack (SA). For example, in SSA, the intruder snoops over the authorized user’s
shoulder while the user enters their PIN, and later unlocks the device with the same PIN [4].
To overcome the vulnerability of these static information-based user authentication meth-
ods, physical biometric-based, e.g., face-, fingerprint-, iris-, blood-vessel-, and voice-based
user authentication has been studied [5]. Although physical biometric-based authentication
methods reported excellent authentication performance in previous studies, they have
limited expandability because they require expensive additional hardware to be installed to
recognize the physical biometrics [6]. Moreover, it is well known that physical biometrics
can be spoofed; previous studies reported that techniques, such as printed face forgery,
copied fingerprint, and copied iris, were successful in gaining unauthorized access to an
authorized user’s device [7].

To address this problem, human behavioral biometric-based user authentication for
mobile devices has been studied. These studies employed various features of the built-in
smartphone sensors, such as pressure, velocity, acceleration, and keystroke [8]. However,
they have several limitations as follows. First, the authentication performance in them
relies considerably on handcrafted features. In other words, theirs is not an end-to-end
authentication model that is optimized for raw sequential data. Therefore, information
loss of human behavioral characteristics can occur [9]. Second, there are few studies
for human behavioral biometric-based user authentication with deep learning methods,
such as temporal convolution neural network (TCN) [10] and recurrent neural network
(RNN) [11] that have demonstrated outstanding performance for sequential data analytics.
Third, these studies demonstrated that the authentication performance decreased rapidly
in the case of intrusion attacks, such as SSA and SA.

To overcome the aforementioned limitations, in this study, we propose a draw-a-deep-
pattern (DDP) that is a deep learning-based end-to-end smartphone user authentication
method using sequential data obtained from drawing a character or freestyle pattern on a
smartphone touchscreen. Characteristics of the proposed DDP method are outlined below.
First, we used drawing patterns, which can significantly increase the number of input
attempts than the authentication types of PIN, 3× 3 grid pattern lock [12], and drawing PIN
number [13]. Second, we designed an end-to-end model that works with raw sequential
data instead of handcrafted features. This model could reduce the loss of behavioral
characteristics in each user’s raw data. Third, the proposed TCN-based DDP not only
yielded superior authentication performance but also significantly reduced both training
and inference times than the RNN-based model. Fourth, DDP can be fully implemented
through software. Therefore, it has less overheads in terms of physical space and costs
than those of physical biometric-based methods that generally require additional hardware.
Finally, based on our experimental results, it was observed that DDP can be extremely
robust to attack/threat mechanisms, such as SA and SSA. Another contribution of this
study is that we make our dataset publicly available to research/industrial communities.
Therefore, we hope that our experimental results and dataset will provide an impetus to
various research ideas in behavioral biometric-based user authentication in smartphones.

The remainder of this paper is organized as follows. In Section 2, we briefly review
related studies. In Section 3, we present the data collection, basic statistic of the collected
raw data, preprocessing methods, and authentication algorithms used in this study. In
Section 4, we describe the experimental design and discuss the experimental results. Finally,
we conclude our study by stating the limitations of the current study and future research
directions in Section 5.
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2. Related Work

Three well-known user authentication methods using the touchscreen on a smart-
phone are PIN, password, and pattern lock. These methods use a predefined key from
an authorized user, such as n-digit PIN and character password. The main drawback of
these methods is their inherent vulnerability to threats, such as SSA. Previous studies have
demonstrated that the vision algorithm as a function of the human eye can SSA during
the authentication process [14]. Moreover, it is possible to steal the predefined key even if
the unauthorized user does not watch the login process. For example, the unauthorized
user can obtain the trace of the authorized user’s fingertip by illuminating the smartphone
display [15]. Another drawback of these methods is the likely overhead of memorizing
a complicated pattern that is set to increase the level of security. A simple key pattern
can compromise the security during authentication within a small number of attempts,
whereas a complex pattern can prove burdensome on the user’s memory [16].

To solve the aforementioned problem, several previous studies have attempted to
enhance the PIN-based authentication methods. Ref. [17] proposed “draw a secret” (DAS)
that uses a freehand drawing on an N × N grid space, which is supposed to increase the
number of input attempts for an unauthorized user to compromise the authentication in
comparison with the typical PIN-based method. However, the innate problem in DAS
is that if the fingertip moves to the grid corner or line, a fuzzy situation that cannot be
accepted by the system occurs [18]. Ref. [19] proposed a shifted information-based PIN pad
instead of the typical PIN pad, ref. [20] proposed a dictionary-based PIN method, and [21]
proposed a spin dial-based PIN. Furthermore, ref. [22] proposed a multimodal-based user
authentication method that uses audio information in addition to PIN to protect users from
SA. However, these enhanced PIN-based methods have the following limitations. First,
these methods increase the complexity of the login process in comparison with typical PIN
methods. Second, they inherit the limitations of PIN-based methods, i.e., vulnerability to
SSA; if an unauthorized user obtains the authorized user’s PIN or rule, the authentication
mechanism fails.

To overcome these limitations, physical biometrics, such as iris-, face-, and fingerprint-
based user authentication methods, have been studied [13]. They are more robust to SSA
than key-based authentication methods, and they provide satisfactory performance [23].
However, they have several drawbacks as follows. First, they can be operated only when the
recognition hardware is installed, which increases the physical space and cost overheads.
Second, they are vulnerable to a fake iris, face, and fingerprint. Several studies have
demonstrated that spoofed physical biometrics can pass the physical biometric-based
authentication login process [24]. Third, privacy issues can eventually arise because no one
can change their own physical biometrics. Therefore, if an unauthorized user obtains the
authorized user’s physical biometric information through the aforementioned tricks, the
authorized user’s identity would be compromised [25].

To overcome the limitations of physical biometric-based authentication, human behav-
ioral biometric-based user authentication has been studied. Ref. [26] proposed multiclass
classification-based user authentication with 53 behavioral biometric variables that were col-
lected using a sensor glove and touchscreen. It yielded values of 4.66 and 0.13% for the false
acceptance rate (FAR) and false rejection rate (FRR), respectively. However, their method
required the extra hardware of a sensor glove in addition to a smartphone. Moreover, they
used the data of both authorized and unauthorized users for the multiclass classification
method, which is far from a real-world situation. Ref. [27] proposed an enhanced pattern
lock method with behavioral biometric features, such as pressure and velocity from a
built-in sensor in the smartphone. However, their approach yielded values of 19 and 21%
for FRR and FAR, respectively, which indicate a relatively low authentication performance.
Ref. [9] proposed a gesture-based user authentication scheme (GEAT) that uses a multitouch
gesture on a touchscreen. They obtained seven features that were derived from velocity,
acceleration, and touch stroke. Subsequently, they preprocessed the collected sequential
sensor data by using the root mean-squared error (RMSE). Finally, they used the radial
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basis function-based support vector distribution estimation for the user-authentication
model. The experimental results showed values ranging from 0.94 to 0.96 in terms of
area under receiver operating characteristic (AUROC) in 10 gestures. Furthermore, up
to 5% equal error rate (EER) was observed when they used 10 data samples. Although
they experimented in a real-world situation, their method had several drawbacks. First,
they used a statistical handcrafted feature derived from sequential data, which can lead
to loss of behavioral characteristics in sequential data. Second, theirs is not an end-to-end
authentication method that uses raw sequential data but uses handcrafted features instead.
Ref. [8] proposed an enhanced PIN-based authentication method. They built an authentica-
tion model that used Gaussian estimation, z-score, and standard deviation drift using the
collected n-graph-based time and touch features. According to the experimental results, the
proposed method yielded 6.81 and 5.59% average EER, while using 50 and 150 16-digit data
samples, respectively. Therefore, low authentication performance is a limitation of their
study. Ref. [28] proposed keystroke dynamics-based mobile user authentication. They used
accelerator and time-based features transformed by a di-graph and tri-graph. However,
their method yielded values of 40 and 7% for FRR and FAR, respectively, which indicate
low authentication performance. Ref. [13] proposed a two-stage drawing PIN-based au-
thentication that comprises the following steps. In the first step, they built a digit classifier
using k-nearest neighbors (k-NN) to recognize the predefined 4-digit PIN. The second step
comprises a template match-based user authentication using behavioral biometrics, such
as the coordinate, pressure, and size of the touch area. This can mitigate SSA, which is an
inherent drawback of the PIN method. Their method yielded an average EER of 4.84%
when an unauthorized user knew the predefined 4-digit PIN, which is commonly assumed
in a PIN attack scenario. However, for authentication in the imitation scenario, in which an
imposter knows both the predefined PIN and the hand movement, the EER increased to
14.11% on average, which is relatively lower than in the PIN attack scenario. Although they
experimented in a real-world scenario, their study had several drawbacks. First, if the PIN
numbers were misclassified in the first step, then an authentication failure occurred. Second,
they used a median-based similarity score for transforming raw sequential data. This can
lead to loss of behavioral characteristics in raw sequential data. Third, their method did
not provide sufficiently high authentication performance in the imitation attack scenario.

The previous studies on human behavioral biometric-based authentication using a
smartphone touchscreen had several drawbacks. First, their methods required a multistage
user-authentication process. In other words, they used handcrafted features instead of
raw sequential data, thereby causing loss of behavioral characteristics in the raw sequence
data. Second, few of these studies are based on deep neural network models that yield
excellent performance for sequential data. Third, their methods produced relatively low
authentication performance during threat scenarios, such as SSA. Therefore, we propose the
DDP method, which is a designed end-to-end authentication model using raw sequential
data instead of handcrafted features. It can mitigate the loss of behavioral characteristics
in raw sequential data. Second, we use the TCN-based anomaly detection that not only
provides superior authentication performance but higher computational efficiency than the
RNN-based model in most cases. Third, we demonstrate that the proposed DDP is robust
to threat scenarios and suitable for real-world scenarios.

3. Data Collection and Preprocessing

As illustrated in Figure 1, we collected the experimental data based on the developed
Android-based data collector. The experiment involved 40 participants, each of whom,
in a sitting position, drew 13 predefined patterns 20 times with both hands by using the
Samsung Galaxy S8 smartphone. The parameters of the experimental environment are
listed in Table 1. As presented in Table 2, the experimented drawing patterns comprised
five English, five freestyle, and three Korean patterns.
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Figure 1. Android application-based data collector. Menus in the guideline in Korean is some
supportive information when collecting keystroke data from each participant.

Table 1. Experimental environment.

Experimental Factor Value

Total number of participants 40
Number of drawing patterns 13

Repetition of each drawing pattern 20
Smartphone device Samsung Galaxy S8

Table 2. Details of drawing patterns used in this study.

Drawing Category Number of Patterns

English 5
Freestyle 5
Korean 3

We set one of the most unfavorable experimental environments possible, for the
authorized users during the authentication process, wherein all potential intruders know
the authenticated user’s drawing pattern (e.g., shape, direction, and number of strokes),
as illustrated in Figure 2 (for complete information of the patterns used this study, refer
to Appendix A). Consequently, we assumed threat scenarios, such as SSA and SA, for our
experimental design.

Figure 2. Details of English, Freestyle, and Korean patterns.

The seven variables in the collected raw data are described in Table 3. Timestampt
denotes the absolute time at which data were collected at time at which data were collected
at time t. The unit of Timestampt is nanosecond (ns). Actt denotes the touch state at time t
and takes values of D (down), M (move), and U (up). D and U represent the states of contact
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and detachment, respectively, of the touch screen with the fingertip. If the fingertip moves
on the touchscreen at time t, Actt is represented as M. Xt and Yt denote the coordinates of
the x- and y-axes at time t, respectively. Axt, Ayt, and Azt denote the angular velocity for
the x-, y-, and z-axes at time t, derived from the accelerometer sensor.

Table 3. Description of seven raw data variables.

Name Description

Timestampt Absolute time (Unit: ns) at time t
Actt Touch state at time t

{D (Down), M (Move), U (Up)}
Xt Coordinate of x-axis at time t
Yt Coordinate of y-axis at time t

Axt Angular velocity of x-axis at time t
Ayt Angular velocity of y-axis at time t
Azt Angular velocity of z-axis at time t

Figure 3 illustrates a single line drawn by the participants on the touchscreen using
a fingertip. The collected sequential raw data from the single line example are listed in
Table 4. D and U are both collected once because of the action of drawing the line once.
Table 5 lists the data that transform two consecutive records from Table 4. T_Di f f(t,t−1) is
computed using Equation (1), and it refers to the time difference between t and t + 1. We
used the transformed data for building a user-authentication model.

𝑇𝑆1 0

𝑋1 55.12

𝑌1 65.48

𝐴𝑥1 -0.25

𝐴𝑦1 -0.21

𝐴𝑧1 -0.01

𝐴𝑐𝑡1 D

𝑇𝑆3 20

𝑋3 83.11

𝑌3 63.58

𝐴𝑥3 -0.16

𝐴𝑦3 -0.06

𝐴𝑧3 -0.02

𝐴𝑐𝑡3 M

𝑇𝑆5 40

𝑋5 115.6

𝑌5 66.12

𝐴𝑥5 -0.14

𝐴𝑦5 0.08

𝐴𝑧5 0.02

𝐴𝑐𝑡5 M

𝑇𝑆7 56

𝑋7 130.4

𝑌7 69.25

𝐴𝑥7 0.18

𝐴𝑦7 -0.10

𝐴𝑧7 -0.01

𝐴𝑐𝑡7 U

Down Move Up

Figure 3. Example of data collection (TS denotes timestamp).

Table 4. Sample of the collected raw data.

Timestamp Act X Y Ax Ay Az

0 D 55.12 65.48 −0.25 −0.21 −0.01
10 M 67.15 63.58 −0.63 0.06 0.02
20 M 83.11 63.58 −0.16 −0.06 −0.02
30 M 95.54 65.48 0.18 −0.21 −0.01
40 M 115.6 66.12 −0.14 0.08 0.02
50 M 128.4 67.25 −0.16 −0.05 −0.02
56 U 130.4 69.25 0.18 −0.10 −0.01
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Table 5. Data transformed from the collected raw data.

T_Di f f(t,t+1) Actt Xt Yt Axt Ayt Azt Actt+1 Xt+1 Yt+1 Axt+1 Ayt+1 Azt+1

10 D 55.12 65.48 −0.25 −0.21 −0.01 M 67.15 63.58 −0.63 0.06 0.02
10 M 67.15 63.58 −0.63 0.06 0.02 M 83.11 63.58 −0.16 −0.06 −0.02
10 M 83.11 63.58 −0.16 −0.06 −0.02 M 95.54 65.48 0.18 −0.21 −0.01
10 M 95.54 65.48 0.18 −0.21 −0.01 M 115.6 66.12 −0.14 0.08 0.02
10 M 115.6 66.12 −0.14 0.08 0.02 M 128.4 67.25 −0.16 −0.05 −0.02
6 M 128.4 67.25 −0.16 −0.05 −0.02 U 130.4 69.25 0.18 −0.10 −0.01

T_Di f f(t,t+1) = Timestampt+1 − Timestampt, (1)

As presented in Table 6, we used five combinations of the variable set to investigate the
effect of each variable category on authentication performance. To develop the sequential
model, we used the following input variables: (i) past-to-previous-time variables, Ax, Ay,
Az, X, and Y, and (ii) past-to-current-time variables, T_Di f f and Act. Then, we used the
following output variables from the current time: Ax, Ay, Az, X, and Y. Figures 4 and 5
depict the used variables based on the five combinations of the variable set for the forward
and backward sequential structures, respectively. Coordinate-A/B, Angular-A/B, and full
variable combination sets use the output variable coordinate-based feature (X,Y), angular
velocity-based feature (Ax, Ay, Az), and both, respectively.

Table 6. Five combinations of variable sets used in the study.

No Name Input Output

1 Coordinate-A T_Di f f , X, Y, Ax, Ay, Az, Act X, Y
2 Coordinate-B T_Di f f , X, Y, Act X, Y
3 Full T_Di f f , X, Y, Ax, Ay, Az, Act X, Y, Ax, Ay, Az
4 Angular-A T_Di f f , Ax, Ay, Az, Act Ax, Ay, Az
5 Angular-B T_Di f f , Ax, Ay, Az, Act Ax, Ay, Az

𝐴𝑥𝑡−1 𝐴𝑥𝑡 𝐴𝑥𝑡+1

𝐴𝑦𝑡−1 𝐴𝑦𝑡 𝐴𝑦𝑡+1

𝐴𝑧𝑡−1 𝐴𝑧𝑡 𝐴𝑧𝑡+1

𝑋𝑡−1 𝑋𝑡 𝑋𝑡+1

𝑌𝑡−1 𝑌𝑡 𝑌𝑡+1

𝐴𝑐𝑡𝑡−1 𝐴𝑐𝑡𝑡 𝐴𝑐𝑡𝑡+1

𝑇_𝐷𝑖𝑓𝑓(𝑡−1,𝑡) 𝑇_𝐷𝑖𝑓𝑓(𝑡,𝑡+1)

(a) Coordinate-A

𝐴𝑥𝑡−1 𝐴𝑥𝑡 𝐴𝑥𝑡+1

𝐴𝑦𝑡−1 𝐴𝑦𝑡 𝐴𝑦𝑡+1

𝐴𝑧𝑡−1 𝐴𝑧𝑡 𝐴𝑧𝑡+1

𝑋𝑡−1 𝑋𝑡 𝑋𝑡+1

𝑌𝑡−1 𝑌𝑡 𝑌𝑡+1

𝐴𝑐𝑡𝑡−1 𝐴𝑐𝑡𝑡 𝐴𝑐𝑡𝑡+1

𝑇_𝐷𝑖𝑓𝑓(𝑡−1,𝑡) 𝑇_𝐷𝑖𝑓𝑓(𝑡,𝑡+1)

(b) Coordinate-B

𝐴𝑥𝑡−1 𝐴𝑥𝑡 𝐴𝑥𝑡+1

𝐴𝑦𝑡−1 𝐴𝑦𝑡 𝐴𝑦𝑡+1

𝐴𝑧𝑡−1 𝐴𝑧𝑡 𝐴𝑧𝑡+1

𝑋𝑡−1 𝑋𝑡 𝑋𝑡+1

𝑌𝑡−1 𝑌𝑡 𝑌𝑡+1

𝐴𝑐𝑡𝑡−1 𝐴𝑐𝑡𝑡 𝐴𝑐𝑡𝑡+1

𝑇_𝐷𝑖𝑓𝑓(𝑡−1,𝑡) 𝑇_𝐷𝑖𝑓𝑓(𝑡,𝑡+1)

(c) Full

𝐴𝑥𝑡−1 𝐴𝑥𝑡 𝐴𝑥𝑡+1

𝐴𝑦𝑡−1 𝐴𝑦𝑡 𝐴𝑦𝑡+1

𝐴𝑧𝑡−1 𝐴𝑧𝑡 𝐴𝑧𝑡+1

𝑋𝑡−1 𝑋𝑡 𝑋𝑡+1

𝑌𝑡−1 𝑌𝑡 𝑌𝑡+1

𝐴𝑐𝑡𝑡−1 𝐴𝑐𝑡𝑡 𝐴𝑐𝑡𝑡+1

𝑇_𝐷𝑖𝑓𝑓(𝑡−1,𝑡) 𝑇_𝐷𝑖𝑓𝑓(𝑡,𝑡+1)

(d) Angular-A

𝐴𝑥𝑡−1 𝐴𝑥𝑡 𝐴𝑥𝑡+1

𝐴𝑦𝑡−1 𝐴𝑦𝑡 𝐴𝑦𝑡+1

𝐴𝑧𝑡−1 𝐴𝑧𝑡 𝐴𝑧𝑡+1

𝑋𝑡−1 𝑋𝑡 𝑋𝑡+1

𝑌𝑡−1 𝑌𝑡 𝑌𝑡+1

𝐴𝑐𝑡𝑡−1 𝐴𝑐𝑡𝑡 𝐴𝑐𝑡𝑡+1

𝑇_𝐷𝑖𝑓𝑓(𝑡−1,𝑡) 𝑇_𝐷𝑖𝑓𝑓(𝑡,𝑡+1)

(e) Angular-B

Figure 4. Input and output variables at time t based on five combinations of variable sets for the
forward sequence (blue and yellow denote input and output variables, respectively).

𝐴𝑥𝑡−1 𝐴𝑥𝑡 𝐴𝑥𝑡+1

𝐴𝑦𝑡−1 𝐴𝑦𝑡 𝐴𝑦𝑡+1

𝐴𝑧𝑡−1 𝐴𝑧𝑡 𝐴𝑧𝑡+1

𝑋𝑡−1 𝑋𝑡 𝑋𝑡+1

𝑌𝑡−1 𝑌𝑡 𝑌𝑡+1

𝐴𝑐𝑡𝑡−1 𝐴𝑐𝑡𝑡 𝐴𝑐𝑡𝑡+1

𝑇_𝐷𝑖𝑓𝑓(𝑡−1,𝑡) 𝑇_𝐷𝑖𝑓𝑓(𝑡,𝑡+1)

(a) Coordinate-A

𝐴𝑥𝑡−1 𝐴𝑥𝑡 𝐴𝑥𝑡+1
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(c) Full

𝐴𝑥𝑡−1 𝐴𝑥𝑡 𝐴𝑥𝑡+1

𝐴𝑦𝑡−1 𝐴𝑦𝑡 𝐴𝑦𝑡+1
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𝑌𝑡−1 𝑌𝑡 𝑌𝑡+1

𝐴𝑐𝑡𝑡−1 𝐴𝑐𝑡𝑡 𝐴𝑐𝑡𝑡+1

𝑇_𝐷𝑖𝑓𝑓(𝑡−1,𝑡) 𝑇_𝐷𝑖𝑓𝑓(𝑡,𝑡+1)

(d) Angular-A

𝐴𝑥𝑡−1 𝐴𝑥𝑡 𝐴𝑥𝑡+1

𝐴𝑦𝑡−1 𝐴𝑦𝑡 𝐴𝑦𝑡+1

𝐴𝑧𝑡−1 𝐴𝑧𝑡 𝐴𝑧𝑡+1

𝑋𝑡−1 𝑋𝑡 𝑋𝑡+1

𝑌𝑡−1 𝑌𝑡 𝑌𝑡+1

𝐴𝑐𝑡𝑡−1 𝐴𝑐𝑡𝑡 𝐴𝑐𝑡𝑡+1

𝑇_𝐷𝑖𝑓𝑓(𝑡−1,𝑡) 𝑇_𝐷𝑖𝑓𝑓(𝑡,𝑡+1)

(e) Angular-B

Figure 5. Input and output variables at time t based on five combinations of variable sets for the
backward sequence (red and yellow denote input and output variables, respectively).
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4. Data Partition and Modeling
4.1. Data Partition

We divided the collected raw data for each pattern into 10 sets of training and test
data each. The average and standard deviation obtained from the length of each drawing
pattern and the p-value obtained from the two-sided paired t-test are presented in Table 7.
The p-value result indicates that there was no statistically significant difference between
the lengths of the training and test datasets. In this study, we used the training data
of 10 authorized users to build a user-authentication model. Then, we authenticated
400 test datasets based on the trained user-authentication model for each pattern, which
comprised 10 authorized users’ test data and 390 intruders’ test data (10 test data from 39
participants each).

Table 7. Statistics pertaining to training and test data from each collected drawing dataset.

Pattern Name Stroke Count Avg. Sequence of
Training Set

Std. of
Training Set

Avg. Sequence of
Test Set

Std. of
Test Set p-Value

English 1 4 59.63 11.37 59.52 11.88 0.88
English 2 4 75.94 13.12 75.98 13.33 0.96
English 3 5 61.27 10.43 61.16 10.36 0.87
English 4 4 69.65 10.51 69.38 10.29 0.68
English 5 4 69.19 11.83 69.01 12.21 0.81

Freestyle 1 4 82.54 16.88 82.78 17.23 0.82
Freestyle 2 2 52.88 13.47 52.85 13.31 0.98
Freestyle 3 5 92.58 21.47 92.68 21.00 0.94
Freestyle 4 2 67.78 14.46 67.77 14.75 0.99
Freestyle 5 6 124.70 25.87 124.69 26.24 1.00
Korean 1 4 41.47 6.99 41.34 6.97 0.78
Korean 2 5 70.23 14.16 70.22 14.03 1.00
Korean 3 5 60.90 10.00 61.03 10.24 0.84

4.2. Modeling
4.2.1. TCN

TCN has demonstrated excellent performance with sequential data in various stud-
ies [29]. Especially, it exhibited superior performance in sequence classification, such as
vision, natural language processing (NLP), and music fields, in comparison with Vanilla
RNN, gated recurrent unit, and long short-term memory (LSTM) [10]. In this study, we
used dilated causal 1D convolution [30] for DDP to use the available information up to
the current time. The 1D dilated causal convolution, which is computed by Equation (2),
is illustrated in Figure 6, where s, d, and k denote 1D sequence input, dilation rate, and
filter size, respectively. Furthermore, F(t) denotes the result of the convolution operation
at time t.

0 0 0 0 1 1 1 1 1

1 2 3

3 3 5 5 6

Filter

Output

Input

Figure 6. Example of 1D dilated causal convolution (filter size = 3, stride = 1, dilation rate = 2, zero
padding = 4).
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F(t) = (x ∗ d f )(t) =
k−1

∑
j=0

f (j) · st−d·j. (2)

The proposed TCN-based DDP model is illustrated in Figure 7. If we use the FULL
variable combination set, the variables input (I(t,t−1)) and output (Ot) at time t for the
forward structure are represented by Equations (3) and (4), respectively.

I(t,t−1) = {Actt, Actt−1, Xt, Yt, Axt, Ayt, Azt, T_Di f f(t,t−1)}, (3)

O(t) = {Xt, Yt, Axt, Ayt, Azt}. (4)
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F
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F

𝑂9
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𝑂10
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F

…
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F

Input

Hidden1

Hidden2

Hidden3

Hidden4

d=1

d=1

d=2

d=4

Input

Hidden1

Hidden2
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Hidden4

d=4

d=2

d=1

d=1

𝐼(1,2) 𝐼(2,3) 𝐼(3,4) 𝐼(4,5) 𝐼(5,6) 𝐼(6,7) 𝐼(7,8) 𝐼(8,9) 𝐼(9,10) 𝐼(10,11) 𝐼(𝑡−2,𝑡−1)…

𝐼(3,2) 𝐼(4,3) 𝐼(5,4) 𝐼(6,5) 𝐼(7,6) 𝐼(8,7) 𝐼(9,8) 𝐼(10,9) 𝐼(11,10) 𝐼(12,11) 𝐼(𝑡,𝑡−1)…

𝑂

Concatenate

Fully connected

Output node

C

Forward input node

Backward input node

Zero pad for forward

Zero pad for backward

Figure 7. Proposed TCN-based DDP model.

The proposed TCN-based DDP model comprises forward and backward sequential
structures. We set four convolution layers with dilation rates of 1, 1, 2, and 4 for the
forward and backward structures. After each convolution layer, layer normalization [31] is
performed and the rectified linear unit (ReLU) [32] is used as the activation function. The
parameter details of this model are summarized in Table 8. The parameters kernel size,
kernel depth, and fully connected (FC) hidden nodes are set to 3, 20, and 64, respectively.
We use concatenated output features calculated from the second, third, and fourth hidden
layers to use the FC input features. One of the characteristics of the calculated output
features by dilated 1D convolution is that the output features from a higher hidden layer
have a larger receptive field than those obtained from the lower hidden layer. Therefore,
the designed concatenated output vector for FC input features can optimize both short-
and long-term dependency simultaneously. The number of proposed TCN parameters for
the five combinations of the variable set used are listed in Table 9, which confirms that the
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proposed networks have about 17k parameters according to the number of input (nI) and
output variables (nO).

Table 8. Network parameters for proposed TCN-based DDP model.

Forward Backward

1D Conv3 20 (d = 1) 1D Conv3 20 (d = 1)
1D Conv3 20 (d = 1) 1D Conv3 20 (d = 1)
1D Conv3 20 (d = 2) 1D Conv3 20 (d = 2)
1D Conv3 20 (d = 4) 1D Conv3 20 (d = 4)

Concatenate
FC-64
FC-nO

Table 9. Number of TCN parameters according to five combinations of variable sets.

Method Coordinate-A Coordinate-B Full Angular-A Angular-B

nI 12 9 12 12 10
nO 2 2 5 3 3

Total 16,674 16,314 16,869 16,739 16,499

4.2.2. RNN

RNN has provided excellent performance in various sequential data applications, such
as NLP, voice, and time-series signals [33]. In this study, we used a basic LSTM cell for the
authentication model because its performance is the same as that of the other variants of
the RNN cell [34]. The LSTM cell is illustrated in Figure 8, and Equations (5)–(10) provide
the computation of each component in the figure. The line on the top denotes the cell state,
which is the internal memory, whereas that on the bottom indicates the hidden state. We
denote the cell and the hidden state by c and h, respectively. The input gate, i, forget gate, f ,
output gate, o, and internal hidden state, g, are the distinctive features of LSTM, and they
are designed to prevent the vanishing gradient problem [35]. During training, the weights
and bias in each gate are trained. The forget gate, ft, can control how much the previous
hidden state, h(t−1), should be preserved in the current state, whereas the input gate, it, can
control how much the current input, xt, should be reflected in the current state. The output
gate, ot, regulates the amount of hidden state, h(t−1), in the next sequence and the internal
hidden state, gt, is calculated from the input, xt, and the previous hidden state h(t−1).

sigm sigm tanh sigm

tanh

𝒉𝒕−𝟏

𝒙𝒕

𝒇𝒕

𝒄𝒕−𝟏 𝒄𝒕

𝒉𝒕

𝒊𝒕

𝒈𝒕
𝒐𝒕

Figure 8. LSTM cell.
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ft = σ(W f ∗ [ht−1, xt] + b f ), (5)

it = σ(Wi ∗ [ht−1, xt] + bi), (6)

ot = σ(Wo ∗ [ht−1, xt] + bo), (7)

gt = tanh(Wg ∗ [ht−1, xt] + bg), (8)

ct = (ct−1 ⊗ ft)⊕ (gt ⊗ it), (9)

ht = tanh(ct)⊗ ot. (10)

The RNN-based DDP model used in this study is illustrated in Figure 9, and its
parameter details are provided in Table 10. The number of hidden nodes of LSTM and
FC are set to 33 and 64, respectively. The number of RNN parameters for the used five
combinations of the variable set is presented in Table 11, which confirms that most networks
have 17k parameters, which is similar to the case of TCN models.

F

𝐼(3,2) 𝐼(4,3) 𝐼(5,4) 𝐼(6,5) 𝐼(7,6) 𝐼(8,7) 𝐼(9,8) 𝐼(10,9) 𝐼(11,10) 𝐼(12,11) 𝐼(𝑡,𝑡−1)…

𝑂

Concatenate

Fully connected

Output node

Backward LSTM cell

Forward LSTM cell

C

L L L L L L L L L L L L

L

Backward input node

Forward input node

L

Input

Hidden1

𝐼(1,2) 𝐼(2,3) 𝐼(3,4) 𝐼(4,5) 𝐼(5,6) 𝐼(6,7) 𝐼(7,8) 𝐼(8,9) 𝐼(9,10) 𝐼(10,11) 𝐼(𝑡−2,𝑡−1)…

L L L L L L L L L L L L

Input

Hidden1

C

F F F F F F F F F F F F

𝑂2 𝑂3 𝑂4 𝑂5 𝑂6 𝑂7 𝑂8 𝑂9 𝑂10 𝑂11 … 𝑂𝑡−1

Figure 9. Structure of RNN-based DDP model.

Table 10. Network parameters for the proposed RNN-based DDP model.

Forward Backward

LSTM-33 LSTM-33
Concatenate

FC-64
FC-nO

Table 11. Number of RNN parameters according to five combinations of variable sets.

Method Coordinate-A Coordinate-B Full Angular-A Angular-B

nI 12 9 12 12 10
nO 2 2 5 3 3

Total 16,434 15,642 16,629 16,499 15,971
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4.2.3. Training Details

We use standardization for the continuous variables based on the training dataset;
additional training guide details are provided in Table 12. We used Huber loss [36] with
δ = 1 for the loss function because it is less sensitive to outliers than the mean squared error
(MSE). The Huber loss equation is expressed as Equation (11). The learning rate starts at
10−1 and decays by 101 for every 100 iterations with the RMSProp optimization. We set the
variables batch size, total number of iterations, and weight initialization method to 10, 300,
and He initialization [32], respectively.

Table 12. Training guide details.

Loss Batch Size Learning
Rate

Optimization
Method

Initialization
Method

Number of
Iterations

Huber loss 10 10−2–10−5 RMSProp He 300

Lδ(y, f (x))

{
1
2 (y− f (x))2, if |y− f (x)| ≤ δ,
δ|y− f (x)| − 1

2 δ2, otherwise.
(11)

4.2.4. Novelty Score and Performance Measure

As shown by Equation (12), the novelty score that we used is the average Huber loss
of all sequences:

Novelty score = ∑T
t=1 Lδ(yt, f (xt))

T
. (12)

To compare the performance of the TCN- and RNN-based DDP models, we used
AUROC [37]. AUROC, which is depicted in Figure 10a, is commonly adopted as a cut-
off-independent performance metric. To obtain the true positive rate (TPR) and the false
positive rate (FPR), we use the best cut-off value when the maximum Youden index is
obtained [38]. The Youden index, J, which is expressed by Equation (13), is illustrated in
Figure 10b.

J = TPRcut−o f f − FPRcut−o f f . (13)

False Positive Rate (FPR)

True

Positive

Rate

(TPR)
The area under

the ROC curve

(AUROC)

(a)

False Positive Rate (FPR)

True

Positive

Rate

(TPR)

𝐽

(b)

Figure 10. Two types of performance indices. (a) AUROC; (b) Youden index (J) by threshold.

5. Experimental Results

The average and standard deviation of AUROC for TCN and RNN are presented in
Tables 13 and 14, respectively. The following observations can be made from these tables.
First, the Coordinate-A-based model (estimating the x and y coordinates based on the
available time, x and y coordinates, and angular information) produced the best result
for both TCN and RNN for all cases except one (Korean 3). Furthermore, the TCN model
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based on the FULL method produced average AUROC of 0.001 greater than that of the
Coordinate-A-based TCN model. In the case of Korean 3, the difference in the performance
of the aforementioned models is extremely small. Second, by comparing the performance
of the two models, Coordinate-B, i.e., excluding the angular velocity-based features, and
Angular-B, i.e., excluding the coordinate-based features, we confirmed that the former
exhibited relatively superior performance for all cases.

µTCN > µRNN (14)

Table 13. Average AUROC result obtained by the TCN model. Numbers in parentheses denote
standard deviation and the text in bold denotes the best performance for each drawing pattern. E, F,
and K denote English, freestyle, and Korean patterns, respectively.

Model Feature E1 E2 E3 E4 E5 F1 F2 F3 F4 F5 K1 K2 K3

TCN Coordinate-A 0.997
(0.008)

0.997
(0.007)

0.997
(0.006)

0.990
(0.021)

0.995
(0.02)

0.989
(0.025)

0.989
(0.022)

0.997
(0.007)

0.992
(0.015)

0.992
(0.018)

0.990
(0.017)

0.996
(0.011)

0.993
(0.015)

TCN Coordinate-B 0.985
(0.028)

0.990
(0.017)

0.986
(0.022)

0.976
(0.036)

0.988
(0.025)

0.979
(0.035)

0.978
(0.030)

0.989
(0.019)

0.981
(0.024)

0.976
(0.040)

0.978
(0.033)

0.980
(0.032)

0.984
(0.028)

TCN Full 0.995
(0.015)

0.990
(0.020)

0.991
(0.022)

0.988
(0.023)

0.991
(0.021)

0.984
(0.025)

0.983
(0.030)

0.982
(0.036)

0.980
(0.039)

0.972
(0.044)

0.986
(0.030)

0.994
(0.015)

0.994
(0.013)

TCN Angular-A 0.983
(0.037)

0.965
(0.082)

0.981
(0.041)

0.968
(0.066)

0.957
(0.094)

0.961
(0.066)

0.967
(0.050)

0.957
(0.083)

0.964
(0.064)

0.941
(0.112)

0.965
(0.103)

0.981
(0.044)

0.988
(0.021)

TCN Angular-B 0.947
(0.111)

0.938
(0.143)

0.950
(0.089)

0.940
(0.103)

0.929
(0.147)

0.925
(0.141)

0.925
(0.143)

0.934
(0.100)

0.942
(0.112)

0.919
(0.144)

0.951
(0.116)

0.960
(0.124)

0.961
(0.114)

Table 14. Average AUROC result obtained by RNN model. Numbers in parentheses denote standard
deviation and the text in bold denotes the best performance for each drawing pattern. E, F, and K
denote English, freestyle, and Korean patterns, respectively.

Model Feature E1 E2 E3 E4 E5 F1 F2 F3 F4 F5 K1 K2 K3

RNN Coordinate-A 0.998
(0.005)

0.994
(0.013)

0.996
(0.010)

0.987
(0.022)

0.993
(0.019)

0.992
(0.011)

0.988
(0.024)

0.992
(0.012)

0.986
(0.027)

0.990
(0.014)

0.990
(0.022)

0.996
(0.009)

0.990
(0.020)

RNN Coordinate-B 0.977
(0.034)

0.982
(0.025)

0.977
(0.029)

0.970
(0.036)

0.978
(0.039)

0.972
(0.027)

0.971
(0.034)

0.978
(0.025)

0.963
(0.039)

0.958
(0.049)

0.963
(0.044)

0.968
(0.035)

0.975
(0.034)

RNN Full 0.988
(0.026)

0.982
(0.030)

0.986
(0.028)

0.980
(0.034)

0.974
(0.054)

0.967
(0.047)

0.959
(0.070)

0.972
(0.040)

0.966
(0.052)

0.960
(0.055)

0.980
(0.040)

0.990
(0.023)

0.990
(0.018)

RNN Angular-A 0.981
(0.041)

0.956
(0.090)

0.980
(0.037)

0.960
(0.065)

0.951
(0.093)

0.943
(0.083)

0.946
(0.091)

0.956
(0.063)

0.946
(0.087)

0.941
(0.076)

0.974
(0.049)

0.974
(0.050)

0.982
(0.036)

RNN Angular-B 0.956
(0.087)

0.934
(0.139)

0.949
(0.083)

0.938
(0.077)

0.915
(0.155)

0.919
(0.111)

0.901
(0.163)

0.934
(0.063)

0.910
(0.133)

0.896
(0.111)

0.941
(0.135)

0.952
(0.130)

0.961
(0.091)

Based on these results, it can be concluded that coordinate-based features are more
suitable than angular velocity-based features for user authentication. Third, although all
participants knew the authenticated user’s drawing pattern (e.g., shape, direction, and
number of strokes) in our experimental design, the Coordinate-A-based model yielded
higher than 0.990 average AUROC regardless of the algorithm or pattern type used in this
study. Therefore, it can be confirmed that the proposed DDP is robust to threat scenarios,
such as SSA and SA. Moreover, we can expect superior user-authentication performance in
real-world scenarios than that shown by our experimental results, because the authenticated
user’s drawing pattern may not be available to the intruders in the former. Fourth, in
most cases, the TCN-based model exhibited better authentication performance than the
RNN-based model. Table 15 presents the p-value of the paired t-test for the hypothesis
shown in Equation (14). In most cases, the p-value is less than or equal to 0.05, which
indicates that the authentication performance improvement of the TCN-based model and
the RNN-based model is statistically significant in general.
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Table 15. p-value of one sided paired t-test of average AUROC of TCN and RNN models. Text in
bold denotes p-value less than or equal to 0.05. E, F, and K denote English, freestyle, and Korean
patterns, respectively.

Feature E1 E2 E3 E4 E5 F1 F2 F3 F4 F5 K1 K2 K3

Coordinate-A 0.60 0.03 0.23 0.22 0.07 0.80 0.39 0.00 0.05 0.30 0.46 0.59 0.07
Coordinate-B 0.00 0.00 0.00 0.05 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.02

Full 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.01
Angular-A 0.20 0.01 0.44 0.04 0.14 0.00 0.01 0.47 0.02 0.49 0.77 0.09 0.07
Angular-B 0.87 0.21 0.48 0.43 0.02 0.29 0.00 0.49 0.00 0.10 0.00 0.00 0.52

The average AUROC for the TCN- and RNN-based models according to the lengths
of the used 13 patterns and for the 5 combinations of the variable sets are depicted in
Figures 11 and 12, respectively. It can be observed that for both TCN and RNN, the
authentication performance of the angular feature-based models (Angular-A and Angular-
B) deteriorates when the pattern length increases. In contrast, the coordinate-based models
were relatively less affected by this trend. This is because the gyroscope in the smartphone
that measured the angular velocity is relatively less precise that the touch sensor that
captured the coordinate features. Hence, angular-based features were more likely to be
affected by the noise when the sequence length increased. Among them, the Coordinate-A-
based model exhibits the best user-authentication performance and the best robustness to
pattern length in comparison with other variable combination sets.
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Figure 11. Average AUROC according to sequence length for each variable combination set by TCN
(x-axis: sequence length, y-axis: AUROC).
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Figure 12. Average AUROC according to sequence length for each variable combination set by RNN
(x-axis: sequence length, y-axis: AUROC).

The training and inference time consumption while using Coordinate-A-based TCN
and RNN models are presented in Tables 16 and 17, respectively. The main difference
between these two models is that TCN conducts convolutional operations simultaneously
but RNN conducts the LSTM operation sequentially. Therefore, when longer sequential
data are used, RNN required considerably more time than TCN to process the entire data.
Therefore, in all experimental cases, both the training and inference times for TCN are
relatively smaller than those for RNN. Based on the experimental results, the minimum
and maximum values of the ratio of RNN’s consumption of training time to that of TCN are
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4.66 and 11.89, respectively. Furthermore, the minimum and maximum values of the ratio
of RNN’s consumption of inference time to that of TCN are 5.25 and 12.66, respectively.

Table 16. Time consumption during 300 iterations for training each algorithm based on Coordinate-A
method (unit of time: seconds, batch size = 10, measurement by RTX 2080-Ti GPU). E, F, and K denote
English, freestyle, and Korean patterns, respectively.

E1 E2 E3 E4 E5 F1 F2 F3 F4 F5 K1 K2 K3

Sequence length 59.63 75.94 61.27 69.65 69.19 82.54 52.88 92.58 67.78 124.70 41.47 70.23 60.90
TCN 4.58 4.57 4.58 4.66 4.57 4.62 4.55 4.66 4.61 4.61 4.55 4.69 4.54
RNN 30.10 36.70 30.44 33.99 32.80 37.35 25.72 40.71 31.07 54.88 21.19 31.46 28.30

Time ratio
RNN over TCN 6.58 8.03 6.65 7.29 7.18 8.08 5.65 8.73 6.73 11.89 4.66 6.71 6.23

Table 17. Time consumption during an iteration of inference for each algorithm based on Coordinate-
A method (unit of time: milliseconds, batch size = 10, measurement by RTX 2080-Ti GPU. E, F, and K
denote English, freestyle, and Korean patterns, respectively).

E1 E2 E3 E4 E5 F1 F2 F3 F4 F5 K1 K2 K3

Sequence length 59.52 75.98 61.16 69.38 69.01 82.78 52.85 92.68 67.77 124.69 41.34 70.22 61.03
TCN 7.46 7.92 7.01 7.16 7.35 8.51 7.56 6.56 6.76 7.28 7.11 7.46 7.50
RNN 53.87 72.80 57.92 63.31 56.20 64.73 46.81 64.26 59.61 92.18 37.33 52.17 50.20

Time ratio
RNN over TCN 7.23 9.19 8.27 8.84 7.64 7.61 6.19 9.80 8.82 12.66 5.25 7.00 6.69

The bubble plot in Figure 13 illustrates the time consumption for different patterns. It
can be observed that the processing time based on the TCN structure is not significantly af-
fected by the pattern length; however, that based on the RNN structure is highly dependent
on the pattern length—the longer the pattern, the longer the processing time. This indepen-
dence on the patten length of TCN can be a significant advantage when an authentication
algorithm is implemented in an edge device with an insufficient computational capacity.
Figure 14 illustrates the time consumption ratio of RNN to TCN with respect to the average
sequence length of a pattern. It is clearly seen that the processing time for RNN rapidly
increases in comparison with that of TCN; therefore, the ratio on the y-axis increases when
the pattern length increases.
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Figure 13. Training and inference time consumption for each length of each drawing pattern. Bubble
size corresponds to the length of sequence. E, F, and K denote English, freestyle, and Korean patterns,
respectively.
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Figure 14. Training and inference time ratios of RNN to TCN by sequence length.

The average FAR and FRR values obtained by the proposed TCN-based DDP model for
the used 13 patterns are listed in Table 18. The average FAR and FRR values of this model
are in the ranges of 0.67–2.38% and 0.50–2.25%, respectively, and the total average FAR
and FRR values are 1.41 and 1.23%, respectively. Therefore, this model exhibits fairly good
user-authentication performance, even if all potential intruders know the authenticated
user’s drawing pattern. Therefore, it can prove to be robust to threat scenarios, such as SSA
and SA.

Table 18. Average FAR and FRR values obtained from proposed TCN-based DDP model for each
pattern based on the Coordinate-A method (E, F, and K denote English, freestyle, and Korean patterns,
respectively, and AVG denotes average value).

Valid Index E1 E2 E3 E4 E5 F1 F2 F3 F4 F5 K1 K2 K3 AVG

FAR 0.81 0.76 2.02 0.93 1.15 1.73 1.86 1.08 2.38 1.22 2.77 0.93 0.67 1.41
FRR 0.50 0.75 0.50 2.25 0.75 1.25 2.25 0.75 1.00 1.75 1.75 0.75 1.75 1.23
AVG 0.66 0.76 1.26 1.59 0.95 1.49 2.06 0.92 1.69 1.49 2.26 0.84 1.21 1.32

In conclusion, the proposed TCN-based DDP model provides statistically superior
authentication performance and higher computational efficiency than the RNN-based
model in most cases. Moreover, the time consumption ratios from RNN to TCN for
training and inference increase linearly with the sequence length. Therefore, the TCN-
based DDP model is more suitable than the RNN-based DDP model for smartphone user
authentication using drawing patterns. From the perspective of computational time for
real-world implementation, the proposed model requires a training time of less than 5 s
and inference time of less than 9 ms, which is acceptable in a real-time service scenario.

6. Conclusions

In this study, we propose DDP—a deep learning-based end-to-end smartphone user
authentication method using sequential data obtained from drawing a character or freestyle
pattern on a smartphone touchscreen. The proposed method uses raw sequential human
behavioral data instead of handcrafted features. The behavioral data are transformed using
a statistical method. We collected raw data from 40 participants who drew 13 patterns
each 20 times. The patterns comprised five English, five freestyle, and three Korean
patterns. We set one of the most unfavorable experimental environments possible for the
user-authentication process, wherein all potential intruders know the authenticated user’s
drawing pattern. In other words, we assumed threat scenarios such as SSA and SA for our
experimental design.
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Based on the experimental results, it was observed that the Coordinate-A-based
user-authentication model yielded the best authentication performance in most cases.
Additionally, the Coordinate-A-based TCN model produced excellent user-authentication
performance, i.e., 0.99%, 1.41%, and 1.23% in terms of average AUROC, FAR, and FRR,
respectively. We expect superior user-authentication performance in real-world user-
authentication scenarios than that shown by our experimental results, because in the former,
the authenticated user’s drawing pattern may not be known to the intruder. In other words,
the unauthorized user’s login attempts can be blocked if the number of attempts for the
pattern strokes exceeds its maximum allowable threshold. Based on the result, it can
be seen that the Coordinate-A-based TCN model exhibited superior user-authentication
performance and robustness for threat scenarios, such as SSA and SA.

Next, we compared the authentication performance between the TCN- and RNN-based
models. The experimental results demonstrated that the proposed TCN-based DDP model
provided statistically superior authentication performance than the RNN-based model
in most cases. Additionally, both training and inference time consumption for the TCN-
based model were relatively smaller than those for the RNN-based model. Therefore, the
proposed TCN-based DDP model not only exhibited superior authentication performance
but proved to be more computationally efficient than the RNN-based model in most cases.
Finally, we made our dataset publicly available to research and industrial communities.
Therefore, we hope that the results of our study and the shared data will contribute to
further research in behavioral biometric-based user authentication for smartphones.

Despite the promising experimental results, the current study faces the following
limitations that lead us to future research directions. First, although the proposed model
has a sufficiently small number of parameters, it is beneficial to compress the network
without performance loss. Second, this study used 10 training datasets for building an
authentication model. Therefore, whether high performance can be preserved even with
fewer training data for the purpose of user convenience must be studied. Third, we used
the coordinates of the touchscreen, angular velocity, and time-based features. Therefore,
whether performance improvement can be achieved when data from other built-in sensors
are used must be studied.

Author Contributions: J.K. initiated the research idea and carried out the experiment. He also wrote
the draft of the paper. P.K. wrote and finalized the paper. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (NRF-2022R1A2C2005455). This work was also supported by
Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No. 2021-0-00471, Development of Autonomous Control Technology
for Error-Free Information Infrastructure Based on Modeling & Optimization).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figures A1–A3 show the drawing patterns of ‘English’, ‘Freestyle’, and ‘Korean’ used
in our study.
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(a) English 1

(b) English 2

(c) English 3

(d) English 4

(e) English 5

Figure A1. Drawing patterns of the ‘English’ drawing pattern used in this study.
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(a) Freestyle 1 (b) Freestyle 2

(c) Freestyle 3 (d) Freestyle 4

(e) Freestyle 5

Figure A2. Drawing patterns of the ‘Freestyle’ drawing pattern used in this study.
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(a) Korean 1

(b) Korean 2

(c) Korean 3

Figure A3. Drawing patterns of the ‘Korean’ drawing pattern used in this study.
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