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Abstract: To answer questions, visual question answering systems (VQA) rely on language bias but
ignore the information of the images, which has negative information on its generalization. The
mainstream debiased methods focus on removing language prior to inferring. However, the image
samples are distributed unevenly in the dataset, so the feature sets acquired by the model often
cannot cover the features (views) of the tail samples. Therefore, language bias occurs. This paper
proposes a language bias-driven self-knowledge distillation framework to implicitly learn the feature
sets of multi-views so as to reduce language bias. Moreover, to measure the performance of student
models, the authors of this paper use a generalization uncertainty index to help student models
learn unbiased visual knowledge and force them to focus more on the questions that cannot be
answered based on language bias alone. In addition, the authors of this paper analyze the theory
of the proposed method and verify the positive correlation between generalization uncertainty and
expected test error. The authors of this paper validate the method’s effectiveness on the VQA-CP v2,
VQA-CP v1 and VQA v2 datasets through extensive ablation experiments.

Keywords: visual question answering; self-knowledge distillation; language bias; generalized uncertainty

1. Introduction

Visual Question Answering (VQA) [1,2] is a cross-domain task of computer vision and
natural language processing, and it has become increasingly important in the research and
application of multimodal machine learning. In the past few decades, significant advances
have been made in computer vision and natural language processing, with an explosion
of visual and textual data to acquire and process. The most common VQA consists of an
image and a question to be answered by the machine. Compared with other computer
vision tasks, this model answers in real-time, not in advance. Moreover, the VQA model
is required to comprehend the multimodal information of images and texts in a more
artificially intelligent [3] way, leading to an in-depth understanding of vision and language.

VQA remains a challenging and open research topic. Recent research has focused
on how to solve language bias. Language bias [4–8] threatens the implementation of
VQA, which indicates that the current VQA model has an inadequate understanding of
multimodal information. Language bias seems to be caused by the uneven distribution of
datasets, a common problem in the real world. For example, if 90 percent of the bananas in
the training set are yellow, the model would ask, “what color the banana is” and answer,
“yellow” all the time, based on language bias. As shown in Figure 1, many VQA models
tend to answer “yes” or “no” directly. Take another typical example. For the question
“what color is the banana in the image?”, although the banana is green, the model still
tends to predict “yellow”.
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Figure 1. Example of the language bias in VQA. The output of the model is directly affected by the
question. For example, the model answers ‘‘yellow” to all the questions regarding the color of the
banana. If it is a yes-or-no question type, the model tends to simply answer “yes”.

With language bias, the model overly relies on the correlation between the question
and the answer while it ignores the information in the image. In essence, language bias
arises from data imbalance, which leads to over-fitting of the model; that is, the model fits
the head samples in the dataset [8]. The over-fitting of the model is an inherent problem
of the model itself. The deep neural network has a variance in the case of an individual
model, and the variance can be reduced by an ensemble or knowledge distillation [9–12]
(Over-fitting to the label imbalance may lead to some models not training very well). At the
feature level, the variance is caused by the incompleteness of the feature subgraph [12], so it
is easy to produce over-fitting. Recently, knowledge [13,14] distillation and self-knowledge
distillation [15,16] have been proven to be able to learn multi-view features and reduce
over-fitting [12,17,18].

Neural network analysis of information is multi-view; for the same object, its different
views have semantic consistency [19–21], and the multi-view structure can be ubiquitous
in the dataset and feature level [12]. Therefore, the model can give the prediction based on
a learned subgraph. However, if the subgraph is not comprehensive, the prediction can
be biased. As shown in Figure 2, for the same question, “what color is the banana?”, the
model learns the feature of yellow bananas while it ignores the feature of green bananas,
which are less frequent in the training set. In other words, the model ignores the view of
green bananas, causing visual bias, which further leads to language bias. Therefore, the
model needs to focus on the feature of the less distributed samples in the training set and
learn a comprehensive set of multi-view features so as to overcome VQA language bias
and over-fitting.

The paper discusses how to reduce the language bias of the VQA model via self-
knowledge distillation and proposes a new online learning framework, “language bias-
driven self-knowledge distillation (LBSD)”, for implicit learning of multi-view visual
features. Self-knowledge distillation enables the model to acquire more dark knowledge
and improves its generalization ability. In short, with self-knowledge distillation, the
model can have a more comprehensive understanding of view features. Online knowledge
distillation no longer uses teacher models but allows student models to learn from each
other by using KL divergence to uniformly constrain the output. It is worth mentioning
that the student network is actually equal to the teacher network; the two networks are the
same. However, the learning degree of student models cannot be described by using KL
divergence alone [22,23]. Therefore, the authors of this paper put forward the concept of
generalization uncertainty to help the model learn unbiased knowledge.
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Figure 2. The VQA-CP v2 dataset contains images with multi-view (features). The authors of this
paper visualize the features at the same layer in the neural network. For the same question, although
the images, views and features are different, the semantic information is the same. Broadly speaking,
this “multi-view” structure [12] exists both in the original data and the feature sets extracted from the
middle layer.

LBSD enables two debiased models to distill knowledge from each other to learn
more complete visual features. It distinguishes between debiased students and biased
students by calculating the generalization uncertainty of the prediction of student models
and reinforces the mutual learning of the two models about unbiased knowledge. The
paper also finds that heterogeneous student models can be used to reduce language bias.
LBSD enables the model to learn a more complete set of visual features and to focus on
the features of the less distributed samples in the training set by utilizing generalization
uncertainty, thus reducing the language bias of the model and improving the robustness of
the VQA model.

Contribution. In summary, the contributions of this paper are as follows:
(1) The authors of this paper propose a training framework (LBSD) based on online self-

knowledge distillation, which can considerably reduce the VQA language bias. Moreover,
the authors of this paper explore the different cases of student models (heterogeneous
networks). The authors of this paper verify the effectiveness of the LBSD method and
analyze the theory behind it.

(2) The authors of this paper propose a method to measure generalization uncertainty
based on Top-k information entropy, and use it to distinguish between debiased students
and biased students, so as to force the model to focus on the samples that cannot be directly
answered by language bias in the VQA datasets. The authors of this paper also prove the
proportional relationship between the generalized uncertainty and the expected test error.

2. Related Work
2.1. Language Bias in VQA

The language bias [8] in VQA has a negative impact on the general application of
the model in real-world scenarios. The reason behind it is that there is often a strong
correlation between questions and answers. Moreover, the questions tend to concern
conspicuous objects in the image. In VQA v1 [1] and v2 [7], a positive answer or a question-
related answer tends to have higher accuracy. When the questions and answers in the
training set and the test set are distributed inconsistently, this language bias is obvious.
Therefore, the VQA-CP v2 dataset was recently proposed to evaluate the language bias.
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Train and test splits of the VQA-CP v2 have different question-answer distributions. The
current approach to language bias can be divided into (1) Strengthening visual informa-
tion: AttAlign [24], HINT [24], SCR [25], ReGAT [26], ESR [27], VGQE [28] and so on;
(2) Weakening language priors: AdvReg [29], GRL [30], RUBi [31], LM [32], LMH [32],
Bias-Product (POE) [32], RMFE [33], CF-VQA [34] and GGE-DQ [35]; (3) Using various
data enhancement: CSS [36], CL-VQA [37], GradSup [38], Loss-Rescaling [39], Mutant [40],
RandImg [41], Unshuffling [42], ADA-VQA [43] and X-GGM [44].

2.2. Knowledge Distillation

In recent years, knowledge distillation [45–48] has been widely used in deep learning to
transfer knowledge between different models. Hinton et al. [13] used knowledge distillation
for model compression; that is, moving knowledge from powerful but complex models
(teacher models) to simple models (student models). By minimizing the Kullback–Leibler
(KL) divergence loss of the categorical output probability, the student can imitate the output
of the teacher model. In addition, some new knowledge transfer goals have been proposed,
such as intermediate feature maps [49], attention maps [50], second-order statistics [46],
contrastive features [51,52] or structured knowledge [53–55].

However, these methods require a distinction between the roles of the teacher and the
student and are typically distilled offline. Online knowledge distillation is a knowledge
distillation based on a series of student (generally two) models by eliminating cumbersome
teacher models. Based on the Kullback–Leibler divergence, Zhang et al. [16] proposed a
technique for deep mutual learning (DML) in which pair-wise students learn from each
other using a mimicry loss. By adding distillation loss after updating enough steps, co-
distillation [15] (similar to DML) enables student networks to sustain their diversity for a
longer time. However, KL divergence alone cannot capture the learning degree of student
models. The authors of this paper put forward the notion of generalization uncertainty as a
way for the model to learn unbiased knowledge.

3. Methods

In order to reduce VQA language bias, the authors of this paper consider making the
model focus on the less distributed samples in the training set to learn a more complete
set of multi-view features. To this end, the authors of this paper propose a new online
self-knowledge distillation learning framework (LBSD) for implicit learning of multi-view
visual feature sets to alleviate language bias. The methods are divided into: (1) language
bias-driven self-knowledge distillation and (2) using generalization uncertainty to help
student models learn unbiased visual knowledge. In the following sections, the authors
of this paper explain the workflow of LBSD and analyze the theory behind it. The block
diagram of the method presented in this paper is shown in Figure 3 and Algorithm 1.

Figure 3. The flowcharts of the language bias-driven self-distillation framework, including: (1) lan-
guage bias-driven self-knowledge distillation and (2) using generalization uncertainty to help student
models learn unbiased visual knowledge.
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Algorithm 1: Language Bias-Driven Self-Distillation

Input: Training set I ,Q (X ), label set A (Y), learning rate γ1,t and
γ2,t.
Initialize: Debiased Models N1 and N2 (different initial conditions
or models).
Repeat :

t = t + 1
Randomly sample data Ii, Qi from I ,Q.
1: Update the predictions p1 and p2 of Ii, Qi for the current

mini-batch
2: Compute the stochastic gradient and update N1 by equation (13) :

N1 ← N1 + γ1,t
∂LN1

∂N1

3: Update the predictions p1 of Ii, Qi.
4: Compute the stochastic gradient and update Θ2 :

N2 ← N2 + γ2,t
∂LN2

∂N2

5: Update the predictions p2 of Ii, Qi.
Until : convergence

3.1. Preliminaries

To tackle the multi-class classification problem in VQA field, the general form of VQA
is: A dataset is given D = {Ii, Qi, ai}N containing N triplets of images Ii ∈ I , questions
Qi ∈ Q and answers ai ∈ A.

The aim of the VQA task is to learn a mapping function fvqa:I ×Q→ [0, 1]|A|, which
generates the answer distributions for any given image-question pair. The authors of this
paper omit subscript i in the following.

For each question Q and image I, the Bottom-Up Top-Down (UpDn) [56] model uses a
question encoder eq and an object detector separately iq to extract a set of word embeddings
Q and a set of visual object embeddings V . The model is fed both V and Q to get the
joint feature mm(V, Q). Then, the joint features are fed into the classifier C to get the
final predictions.

Pvqa(a|I, Q) = fvqa(V , Q) = C(mm(V, Q)) (1)

For fair comparisons, the authors of this paper use the Bottom-Up Top-Down (UpDn)
model [56], which is mainly used by many researchers as the backbone network.

3.2. Language Bias-Driven Self-Distillation

The method aims to learn unbiased visual knowledge via the mutual learning of two
debiased models so as to reduce VQA language bias. The training strategy, which can
be integrated with the current debiased methods, consists of the mutual learning of two
debiased models. A dataset is given D = {Ii, Qi, ai}N containing N triplets of images
Ii ∈ I , questions Qi ∈ Q and answers ai ∈ A, it can be input into two identical models
with different random initializations, N1 and N2, and two probability vectors p can be
predicted by the model, z means Softmax output.

pk
1(Ii, Qi) =

exp
(

zk
1

)
∑K

k=1 exp
(
zk

1
) (2)

where k represents the number of outputs or classes of the neural network.
At the same time, the VQA model is generally defined as multi-type. Therefore, for

multiple types, the objective function of the training network N1 is defined as the cross-
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entropy error between the prediction and the correct label, as shown as follows, K means
samples, M means classes and LC means the cross entropy error:

LC = −
K

∑
i=1

M

∑
m=1

I(ai, m) log(pm
1 (Ii, Qi)) (3)

In order to allow the two student models to learn unbiased visual features from each
other (similar to self-knowledge distillation), the authors of this paper use KL divergence
to constrain all the predictions, thus distilling the unbiased knowledge of the two models.
The formula of KL divergence between N1 and N2 is shown as follows:

DKL(p2‖p1) =
K

∑
i=1

M

∑
m=1

pm
2 (Ii, Qi) log

pm
2 (Ii, Qi)

pm
1 (Ii, Qi)

(4)

The two student models simultaneously start parameter optimization, and the opti-
mization loss is shown as follows. The consistency constraint of the predictions of the two
models can realize the mutual learning of unbiased knowledge between the two models.

LN1 = LC1 + DKL(p2‖p1)

LN2 = LC2 + DKL(p1‖p2)
(5)

Since KL divergence is asymmetric, it can be replaced by Jensen–Shannon (JS) diver-
gence (a variation of KL divergence) to ensure the consistency constraint between the two
student models. Such replacement will not affect the final precision of the model.

LJS(p1‖p2)
=

1
2

KL
(

p1‖
p1 + p2

2

)
+

1
2

KL
(

p2‖
p1 + p2

2

)
(6)

Moreover, all the current self-knowledge distillation models use student models with
different random initializations. The strategy is effective because the model learns more
complete sets of multi-view features. The authors of this paper also explore the case where
two heterogeneous student networks serve as the student models. The heterogeneous
networks have the same feature extraction structure, but they have different loss functions
and network branches.

3.3. Debiased Mutual Students

As mentioned above, the language bias of datasets is, in essence, the distribution bias
of image samples. For the same input image/text sample pair, the two student networks
may have different outputs because of an inconsistent random seed, order of data reading
or even network structure.

As shown in Figure 4, for more-distributed image/text sample pairs in the dataset,
the model can simply answer the question through language bias, and the confidence
of the answer is very high. The different student models tend to have the same answer.
For the gradient update of neural networks, the cross-entropy loss and KL divergence
loss of image/text samples that can answer the question by language bias are minimal.
However, for the less-distributed samples, the model is more likely to have different
answers. Therefore, the different answers can be measured and analyzed to help the model
focus more on the samples that cannot be directly answered by language bias so as to
reduce language bias.
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Figure 4. Examples used to show the difference between KL divergence and uncertainty.

In general, the current self-distillation methods only use KL divergence for the mutual
distillation of knowledge. As KL divergence is not commutative, it cannot be understood
as “distance”, which measures the information loss between two distributions. Simply
constraining the KL divergence of the two student models cannot figure out the difference
between the output and help the two models learn from each other with more precision.
As shown in Figure 4, KL divergence for different distributions and consistency constraints
is not always consistent with our expectations. For this reason, the authors of this paper
consider using information entropy to evaluate the output uncertainty of the two models
and evaluate the output difference based on the uncertainty.

As shown in Figure 4, although information entropy H is a common method to mea-
sure information uncertainty, the output is not always consistent with our understanding.
For p1 = [0.5, 0.25, 0.25] and p2 = [0.5, 0.5, 0], the formula leads to H(pa) > H(pb). For
general classification scenarios, it is clear that pb is less certain than pa, and the confidence
of predictions is extremely low. Therefore, in order to describe the prediction uncertainty,
the authors of this paper adopt a simple and improved version: Top-k information entropy.

Suppose that p1, p2, . . . , pk are k values with the highest probability, the following
formula can be obtained:

Hnoraml(p) = −
m

∑
i=1

pi log pi (7)

Htop−k(p) = −
k

∑
i=1

p̃i log p̃i (8)

p̃i = pi/
k

∑
i=1

pi (9)

C = Htop- k(p)/ log k (10)

By using the above formula, the authors of this paper can get a result in the range of 0
to 1 and take C as the final uncertainty measure.

In order to measure the output difference between the two student models, for the
uncertainty C1 and C2, the output difference can be defined as |C1− C2|. In order to
enhance the mutual learning of the two student models in the case of output difference
(questions that cannot be answered directly with language bias), the authors of this paper
define a generalization uncertainty index GU to represent the intensity. The formula is
GU = e|C1−C2|, and the final loss function of the generalization uncertainty index can be
obtained. The formula is as follows:

Lreg = Fscale (GU, DKL) = e|C1−C2|DKL(p2‖p1) (11)

LN1 = LC1 + Lreg (12)
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In the next section, the authors of this paper will prove that the generalization un-
certainty index GU of the two student models can be used to estimate the test error of
the model.

3.4. Theoretical Analysis
3.4.1. Theoretical Analysis of Generalization Uncertainty (GU)

In this section, the authors of this paper demonstrate that the generalized uncertainty
index between two student models can be used to estimate the model test error on image-
text sample pairs. Thus, generalized uncertainty is used in the training process to help
students learn unbiased knowledge. Following the research of Nakkiran and Bansal [57],
Jiang et al. [58] and others [59–61], the authors of this paper use class-segregated calibration
(or class-wise calibration) [58,62–66] to prove the proportional relationship between the
generalized uncertainty and the test error.

Notation 1. The authors in this paper define two neural networks trained from different random
seeds as n, n′. The data of this model include K categories with input Ii, Qi and label ai (Y). The
model is parameterized by stochastic learning. The probability expression of the predicted output of
the model is p(â | I, Q). Dvqa is the distribution map from Ii, Qi × [K], and p(ω) is the sample
estimate for the different parameter distribution of models. The parameters of the model can be
defined as Ω. The 1[. . .] function is the indicator function, which means the prediction is true
or otherwise.

Definition 1. The model N (p(â, ω | I, Q)) satisfies the generalization uncertainty proportional
(GUP) on the distribution Dvqa if:

TestErrDvqa(n)EDvqa [1|n(I, Q) 6= a] ∝
GUErrDvqa(n, n′)(TopK)EDvqa [1|n(I, Q) 6= n′(I, Q)]

(13)

Definition 2. The self-knowledge distillation model N (n, n′) satisfies class-wise calibration (or
class-segregated calibration) on Dvqa if any kind of confidence value q falls in [0, 1] and for any class
k falls in [K],

p(a = k | ñk(I, Q) = q) = q (14)

∑K−1
k=0 p(a = k, ñk(I, Q) = q)

∑K−1
k=0 p(ñk(I, Q) = q)

= q (15)

Theorem 1. If the self-knowledge distillation model N (n, n′) satisfies class-wise calibration (or
class-segregated calibration) on Dvqa, then N satisfies the generalization uncertainty proportional
(GUP) on Dvqa.

EΩ,Ω′
[
GUErrDvqa

(
n, n′

)]
∝ EΩ[TestErr Dvqa(n)

]
(16)

Proof. The authors in this paper define the Expected Test error as TE (Test error). The
TOP-K error of the two-student model with generalized uncertainty is fixed at GUE. By
simplifying the two errors, the following results can be obtained, and the proportional
relationship (GUP) between them can be obtained. Since K previously represented the
number of categories, for this reason, the authors of this paper represent J as the K term in
TOP-K, i as the corresponding prediction at the sample of J-th value.

TE =
∫

q∈[0,1]
q(1− q)

K−1

∑
k=0

p(ñk(I, Q) = q)dq (17)
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GUE =
J

∑
j=0

1/pi

K−1

∑
k=0

∫
q∈[0,1]︸ ︷︷ ︸

swap

p(ñk(I, Q) = q)q(1− q)dq

=
J

∑
j=0

1/pi

∫
q∈[0,1]

q(1− q)
K−1

∑
k=0

p(ñk(I, Q) = q)dq ∝ TE.

(18)

The detailed proof of generalization uncertainty can be found in Appendix A.

3.4.2. Theoretical Analysis of Debiased Self-Distillation

In this section, the authors of this paper demonstrate that self-knowledge distillation
and generalized uncertainty can enable models to learn more complete multi-view feature
sets and reduce language bias in VQA. The authors of this paper followed the research of
Allen Zhu and Zhiyuan Li [12,19].

Notation 2. Let us set up a model whose dataset contains K categories, p-input patch s and the
ReLU function. The model input is Ii, Qi and the label is ai. To simplify the problem, the authors of
this paper assume that each category contains related features that are orthogonal to each other. The
authors of this paper define these features as vectors of vqaj,1, vqaj,2.

Following the settings of Zhu et al.’s research. The authors of this paper get the
definitions as follows. The set of all features:

Xvqa
def
=
{

vqaj,1, vqaj,2
}

j∈[k] (19)

vqaj,` ⊥ vqaj′ ,`′when(j, `) 6= (j′, `′) (20)

Definition 3. (Data distribution) The authors of this paper define the multi-view and single-view
distribution Dvqam and Dvqas, D ∈ Dvqam/s, and (Ii, Qi, ai) ∼ D. Sample features with probability
s/k, s ∈

[
1, k0.2]. The coefficients zp, np,vqa′ is the feature noise, ξp is the random Gaussian noise.

For each p ∈ [P]\P(Ii, Qi), the authors of this paper set:

xp = zpvqa + ∑
vqa′∈Xvqa

np,vqa′vqa′ + ξp (21)

Definition 4. (The final data distribution D and the training dataset Sd. Suppose D contains
1− µ Dvqam and µ Dvqas. For N samples in D, the training dataset Sd = Sdm ∪ Sds. (Ii, Qi, ai)

random sampling from the set Sd. µ = 1
poly(k) , and N = k1.2/µ.

Definition 5. The authors of this paper define a network VQA(Ii, Qi) with a cross-entropy loss
function using a stochastic learning algorithm as follows:

L(VQA) = E(Ii ,Qi ,ai)∼Sd
[L(VQA; Ii, Qi, ai)] (22)

The logits function of the single model (η ≤ 1
poly(k) ,T =

poly(k)
η ) can be defined as

logiti(VQA, I, Q)
def
=

eVQAi(I,Q)

∑j∈[k] eVQAj(I,Q)
(23)

The logits function of the model using knowledge distillation can be defined as

logitτ
i (VQA, I, Q) =

emin{τ2VQAi(I,Q),1}/τ

∑j∈[k] emin{τ2VQAj(I,Q),1}/τ
(24)
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Theorem 2. For the single model, the authors of this paper use the prediction error as follows,
∃i ∈ [k]\{a}:

Pr
(I,Q,a)∼D

[
VQA(T)

a (I, Q) < VQA(T)
i (I, Q)

]
∈ (0.5± 0.01)µ (25)

Theorem 3. For self-knowledge distillation with the generalization uncertainty model, λ (λ > 1) is
the gain from generalized uncertainty. The authors of this paper use the prediction error as follows,
∃i ∈ [k]\{y}:

Pr
(I,Q,a)∼D

[
VQA(T+T′)

a (I, Q) < VQA(T+T′)
i (I, Q)

]
≤ 0.26µ/λ (26)

The authors of this paper find that when comparing Theorems 2 and 3, the prediction error of the
model decreased. That means the LBSD method can reduce language bias. The detailed proof can be
found in Appendix A.

4. Settings, Results and Discussion

In this section, the authors of this paper evaluate the effectiveness of all the LBSD
methods in the three mainstream datasets (VQA-CP v2, VQA-CP v1 and VQA v2), carry
out an ablation experiment with the typical debiased method and compare the performance
of the LBSD methods and that of the latest method. Table 1 shows the statistics of all
the datasets.

Table 1. Statistics of VQA-CP v2, VQA v2 and VQA-CP v1.

Dataset
VQA-CP v2 [67] VQA-CP v1 [67] VQA v2 [7]

Train Test Total Train Test Total Train Test Total

Images 121 K 98 K 219 K 118 K 87 K 205 K 440 K 214 K 654 K
Questions 438 K 220 K 658 K 245 K 125 K 370 K 83 K 41 K 124 K
Answers 4.4 M 2.2 M 6.6 M 2.5 M 1.3 M 3.8 M 4.4 M 2.1 M 6.5 M

4.1. Experimental Settings Setup
4.1.1. Datasets and Backbone

The paper uses the standard VQA evaluation metric [1] to evaluate the performance
of the model on the VQA-CP v2 [67], VQA-CP v1 [67] and VQA v2 [7] datasets. For
fair comparisons, all the methods are based on the UpDn model, and their best-recorded
performance is compared. The experiment trains and tests the models on two Titan
Xp GPUs.

Currently, for the VQA language bias issue, researchers evaluate the performance of
the proposed models on the VQA-CP v2 dataset and conduct auxiliary verification on the
VQA v2 dataset. Most findings test the models on VQA-CP v2 and VQA v2 and calculate
the gap index [36] as an auxiliary index to verify the robustness of the model.

VQA-CP v2. The researchers propose the VQA-CP v2 dataset, which is derived from
the re-classification of the samples in the VQA v2 dataset, to measure language bias. The
VQA-CP v2 and VQA-CP v1 datasets are the only open-source datasets for language bias
evaluation. The questions and answers in the training and testing sets are distributed in
considerably different ways. In other words, for the same type of questions, the answers in
the training set and testing set are distributed very differently. Therefore, the VQA-CP v2
dataset is suitable for measuring the language bias of the models. The training set consists
of 121 K images, 438 K questions and 4.4 million answers, and the testing set consists of
98 K images, 220 K questions and 2.2 million answers.

VQA-CP v1. The VQA-CP v1 dataset, the first version of the VQA-CP dataset, is the
first-ever dataset for language bias evaluation. It is derived from the re-classification of the
VQA v1 [1] dataset. The VQA-CP v1 training set consists of 118 K images, 245 K questions
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and 2.5 million answers, and the VQA-CP v1 testing set consists of 87 K images, 125 K
questions and 1.3 million answers.

VQA v2. The VQA v2 dataset is the second version of the VQA dataset. The training
set consists of 82,783 images, 443,757 questions and 4,437,570 answers. The testing set
consists of 40,504 images, 214,354 questions and 2,143,540 answers. The VQA v2 dataset is
double the VQA v1 dataset in size.

4.1.2. Experimental Details

For LBSD, the k in generalization uncertainty is set at 3, and the KL divergence
coefficient is set at 2 or 3. The basic VQA network UpDn uses a pre-trained Faster-RCNN to
extract image features, a pretrained model GloVe (300 dimensions) to extract text features
and a single-layer GRU to obtain question-embedded vectors (512 dimensions). Finally, the
joint embedding is 2048 dimensions. In addition, the batch size is set at 512 and trained and
tested on two Titan Xp GPUs. Because VQA-CP v1 and v2 lack validation datasets, VQA v2
datasets generally display results on validation datasets. In order to select the parameters
of the model, the authors of this paper divide 10% of the samples from the test datasets or
the validation datasets to act as the validation dataset, select the parameters of the model
on the validation datasets and then test the precision of the model on the test datasets. The
results of our experiments are based on the results of the original published papers, and for
experiments that were not performed in the original papers, we reproduced them using
the official code, and for the results that we reproduced, we put an asterisk in the upper
right-hand corner. With regard to run time, the proposed method runs 30 epochs for 15 h
in a 256 GB memory and two Titan XP GPUs environment. For the statistical analysis, we
performed multiple experiments with a confidence of 95% for the experimental results,
and for the purpose of fillability of the experimental results, we selected the median of the
results of multiple experiments as the final result, the final precision and the precision of
each index are filled in the table.

4.2. Ablation Studies

To verify the effectiveness of LBSD, the authors of this paper conduct an ablation
experiment on every aspect. For fair comparisons, the authors of this paper select the
mainstream VQA network UpDn as the skeleton and carry out ablation experiments
on typical debiased methods such as Bias product, Reweight and LMH. In these tables,
* indicates the results of our reimplementation from the official code.

4.2.1. Architecture Agnostic

Since LBSD is irrelevant to the model, it can be integrated into various VQA networks.
To evaluate the performance of LBSD on debiased methods, the authors of this paper
combine it with other typical methods and baseline, including UpDn, Bias product (Product
of Experts), reweight and LMH. Reweight, a non-ensemble method, encourages the model
to focus on the samples that are predicted erroneously by the language bias model. While
Bias product and LMH are ensemble models. Compared with these, the LBSD-integrated
models have higher precision.

The authors of this paper conduct ablation experiments on the VQA-CP v2 and VQA-
CP v1 datasets. As shown in Table 2, for typical debiased methods, including ensemble
and non-ensemble methods, LBSD improves the precision of the model on the VQA-
CP v2 dataset. For example, the performance of reweighting (non-ensemble) and LMH
(ensemble) improves by 1.26% and 2.22%, respectively. Even for UpDn without debiased
methods, LBSD improves the precision by 0.25%, which demonstrates that LBSD reduced
the language bias from the perspective of feature learning. As shown in Table 3, for reweight
(non-ensemble) and bias product (ensemble), LBSD improves the performance by 2.2%
and 0.58% (“NUM” index has been improved by 7.51%), respectively, on the VQA-CP v1
dataset.
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Table 2. VQA-CP v2: Ablation experiments of the LBSD method on the VQA-CP v2 dataset. * indi-
cates the results from our reimplementation using officially released codes.

Model Overall Yes/No Num Other

UpDn [56] 39.74 42.27 11.93 46.05
+LBSD 39.99 42.76 12.36 46.12

Bias Product 39.93 – – –
Bias Product * 39.86 41.96 12.59 46.25

+LBSD 40.47 44.28 12.28 46.21

Reweight 40.06 – – –
Reweight * 40.02 45.09 12.30 44.96

+LBSD 41.28 47.07 12.30 46.20

LMH 52.05 69.81 44.46 45.54
+LBSD 54.27 75.49 44.02 45.96

Table 3. VQA-CP v1: Ablation experiments of the LBSD method on the VQA-CP v1 dataset. * indi-
cates the results from our reimplementation using officially released codes.

Model Overall Yes/No Num Other

UpDn [56] 37.87 42.58 14.16 42.71
+LBSD 38.55 43.29 12.90 44.13

Bias Product * 38.81 42.96 13.34 44.91
+LBSD 39.39 45.07 13.08 44.32

Reweight * 41.46 61.52 13.02 32.94
+LBSD 43.66 66.63 12.23 33.45

LMH 55.27 76.47 26.66 45.68
+LBSD 55.93 75.43 34.17 45.28

4.2.2. Effectiveness of GU

To verify the effectiveness of generalization uncertainty in the reduction of language
bias, the authors of this paper conduct ablation experiments on VQA-CP v2. Two debiased
methods, including Reweight (non-ensemble) and LMH (ensemble), are selected for ver-
ification. As shown in Table 4, the results show that, compared with LBSD without the
generalization uncertainty constraint, LBSD with the generalization uncertainty constraint
improves the performance by 0.27% and 0.63%, respectively, on Reweight and LMH. For
the question types “YES/NO” and “Other” that are highly dependent on language bias,
the generalization uncertainty constraint can be added to reduce the language bias of these
question types.

Table 4. VQA-CP v2: Ablation experiments of the generalization uncertainty method on the VQA-CP
v2 dataset. * indicates the results from our reimplementation using officially released codes.

Model Overall Yes/No Num Other

Reweight 40.06 – – –
Reweight * 40.02 45.09 12.30 44.96

+LBSD
without GU 40.99 46.34 12.55 45.98

+LBSD with
GU 41.28 47.07 12.30 46.20

LMH 52.05 69.81 44.46 45.54
+LBSD

without GU 53.64 75.44 40.19 45.91

+LBSD with
GU 54.27 75.49 44.02 45.96
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4.2.3. Heterogeneous Student Networks

Generally, the student models of self-knowledge distillation have identical network
structures. The authors of this paper also explore heterogeneous student networks, where
the two student models are not identical. The authors of this paper select two debiased
methods based on the UpDn model to verify the effectiveness of heterogeneous student
networks. As shown in Table 5, heterogeneous student networks can have similar effects to
homogeneous student networks. Moreover, the precision of the two heterogeneous student
models is improved.

Table 5. VQA-CP v2: Heterogeneous student networks. * indicates the results from our reimplemen-
tation using officially released codes.

Model Overall Yes/No Num Other

Bias Product * 39.86 41.96 12.59 46.25
+LBSD-with

LMH 40.06 43.31 12.41 45.94

+LBSD-same
stu 40.47 44.28 12.28 46.21

Reweight * 40.02 45.09 12.30 44.96
+LBSD-with

LMH 40.60 44.92 12.56 46.03

+LBSD-same
stu 41.28 47.07 12.30 46.20

LMH 52.05 69.81 44.46 45.54
+LBSD-with

Bias product 53.89 75.25 43.58 45.52

+LBSD-with
Reweight 53.82 75.56 41.79 45.73

+LBSD-same
stu 54.27 75.49 44.02 45.96

4.3. Comparisons with State-of-the-Arts

To evaluate the performance of LBSD, the authors of this paper carry out an experiment
on VQA-CP v2, VQA-CP v1, and VQA v2 and compare it with the state-of-the-art method.
In these tables, * indicates the results of our reimplementation from the official code.

4.3.1. Performance on VQA-CP v2

Setting. The authors of this paper combine LBSD with LMH and name it LBSD-LMH.
For fair comparisons, the authors of this paper choose the debiased method based on UpDn.
According to the principles of reducing language bias, the authors of this paper divide the
methods into groups: (1) Strengthening visual information [24,25]. (2) Weakening language
priors [29,31,32]. (3) Using various data enhancement and data balance [36,68].

Since LBSD improves the performance by enabling the model to focus more on visual
information and difficult samples (the model cannot answer based on language bias), the
authors of this paper compare other methods with those in the first and second groups.
Moreover, according to the experiment settings of CSS [36], the authors of this paper test
and calculate the gap index as an auxiliary index on VQA v2 to verify the robustness of
the model.

Results. Comparisons are reported in Table 6. As shown in Table 6, compared with
other methods with UpDn as the standard VQA model, LBSD improves the performance
on VQA-CP v2. The gap index has also been improved (“All” and “Other”). The results
show that the proposed LBSD can reduce language bias in VQA. For individual items, such
as Num, yes/no and others, CFVQA is slightly higher than our method in num index; it is
an ensemble method based on causal inference. Similar to boosting, CFVQA uses more
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ensemble networks as additional information than ours. Therefore, it is unfair to compare
directly on small indices.

Table 6. Performance comparison (Accuracies (%)) on the VQA-CP v2 test set and the VQA v2 val
set of state-of-the-art models. The gap means the performance difference between VQA v2 and
VQA-CP v2.

Model Venue VQA-CP v2 Test ↑ VQA v2 val ↑ Gap∆↓
All Yes/No Num Other All Yes/No Num Other All Other

GVQA [67] CVPR’18 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65 16.94 12.51
UpDn [56] CVPR’18 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66 23.74 9.61

methods based on strengthening visual information

AttAlign [24] ICCV’19 39.37 43.02 11.89 45.00 63.24 80.99 42.55 55.22 23.87 10.22
HINT [24] ICCV’19 46.73 67.27 10.61 45.88 63.38 81.18 42.99 55.56 16.55 9.68
ReGAT [26] ICCV’19 40.42 – – – 67.18 – – – 26.76 –
VGQE [28] ECCV’20 48.75 – – – 64.04 – – – 15.29 –
ESR [27] ACL’20 48.9 69.8 11.3 47.8 62.6 – – – 13.70 –
KAN [69] TNNLS’20 42.60 42.12 15.52 50.28 – – – – – –

methods based on weakening language priors:

AReg [29] NeurIPS’18 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16 21.58 19.68
GRL [30] ACL’19 42.33 59.74 14.78 40.76 51.92 – – – 9.59 –
RUBi [31] NeurIPS’19 45.23 64.85 11.83 44.11 50.56 49.45 41.02 53.95 5.33 9.84
LM [32] EMNLP’19 48.78 72.78 14.61 45.58 63.26 81.16 42.22 55.22 14.48 9.64
LMH [32] EMNLP’19 52.05 69.81 44.46 45.54 61.64 77.85 40.03 55.04 9.59 9.50
CF-VQA [34] CVPR’21 53.55 91.15 13.03 44.97 63.54 82.51 43.96 54.30 9.99 9.33
LBSD-LMH Ours 54.27 75.49 44.02 45.96 57.95 69.22 38.19 54.63 3.68 8.67

methods based on data argumentation

RandImg [70] NeurIPS’20 55.37 83.89 41.60 44.20 57.24 76.53 33.87 48.57 1.87 4.37
CVL [68] CVPR’20 42.12 45.72 12.45 48.34 – – – – – –
LMH+CSS [36] CVPR’20 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11 0.96 6.90
LMH+CSS+CL [37] EMNLP’20 59.18 86.99 49.89 47.16 57.29 67.27 38.40 54.71 1.89 7.55
Unshuffling [42] ICCV’21 42.39 47.72 14.43 47.24 61.08 78.32 42.16 52.81 18.69 5.57

X-GGM [44] ACM
MM’21 45.71 43.48 27.65 52.34 – – – – – –

4.3.2. Performance on VQA-CP v1

Settings. The authors of this paper compare the state-of-the-art methods to LBSD-
LMH and VQA-CP v1. According to the principle and method of reducing language
bias, the authors of this paper divide them into groups: (1) Strengthening visual informa-
tion [24,25]. (2) Weakening language priors [29,31,32]. (3) Using various data enhancement
and data balance [36,68]. Moreover, the authors of this paper conducted another experiment
based on the official codes of the methods, as the results of some methods on VQA-CP v1
were not shown.

Results. As shown in Table 7, compared with the methods in group 1 and group 2,
LBSD realizes the best performance on VQA-CP v1. In particular, LBSD improves the
performance of LMH and Reweight by 0.66% and 2.2%, respectively. The results show that
the proposed method is effective for different datasets and is effective for different types of
debiased methods. The results verify the effectiveness of LBSD.
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Table 7. Performance comparison (Accuracies %) with the state-of-the-art model’s accuracy on the
VQA-CP v1 test. * indicates the results from our reimplementation using officially released codes.

Model All Yes/No Num Other

GVQA [67] 39.23 64.72 11.87 24.86
UpDn [56] 37.87 42.58 14.16 42.71

Group 1

Reweight * [32] 41.46 61.52 13.02 32.94
LBSD-

Reweight 43.66 66.63 12.23 33.45

Group 2

AReg [29] 41.17 65.49 15.48 35.48
RUBi [31] 44.81 69.65 14.91 32.13
LMH [32] 55.27 76.47 26.66 45.68

LBSD-LMH 55.93 75.43 34.17 45.28

Group 3

CSS [36] 60.95 85.60 40.57 44.62
CSS+GS [38] 58.05 78.50 37.24 46.08

4.4. Qualitative Examples

In order to better show the results, the authors of this paper conduct a visualization
analysis of some representative findings of the model from the perspective of qualitative
analysis and compare it with other methods. Figure 5 shows that our method is superior to
the baseline method.

Figure 5. Qualitative examples of VQA-CP v2 (test set). The wrong and right answers are highlighted
in red and green.

5. Conclusions

This paper discusses how to reduce the language bias of the VQA model via self-
knowledge distillation and proposes a new online learning framework, “language bias-
driven self-knowledge distillation (LBSD)”, for implicit learning of multi-view visual
features. Moreover, in order to help student models learn unbiased visual knowledge, the
authors of this paper propose generalization uncertainty to measure the learning results
of student models and use KL divergence to reinforce the debiased mutual learning of
student models. In this way, the student model can learn unbiased knowledge from
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each other through the output of Top-K information entropy. In addition, the paper also
discusses the effect of the heterogenous student models on the reduction of language
bias. The experiment proves that even the heterogeneous student model can improve the
unbiased learning ability through the LBSD method. Extensive experiments and ablation
experiments on the VQA-CP v2, VQA-CP v1 and VQA v2 datasets verify the effectiveness
of the proposed method. In the future, we will continue to explore how to better define
the concept of unbiased knowledge, such as using multimodal knowledge graphs to help
the model understand the type of knowledge in the dataset and how to optimize the loss
function to enable the model to distinguish biased and unbiased knowledge, so as to reduce
the experimental bias against language.
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Appendix A

Appendix A.1. Detailed Proof

Appendix A.1.1. Proof of Generalization Uncertainty (GU)

Proof. Predicting generalization and Calibration. It is found that the distribution over
predicted classes and ground truth labels match each other within a set of confidence levels;
a measure of disagreement between an ensemble and the ensemble itself boils down to
measuring disagreement against the ground truth.

Recall Theorem 1. The authors of this paper can express the expected disagreement
rate between two debiased students as an integral over the confidence values.

In order to simplify the expected TOP-K disagreement rate (GU), the authors of this
paper will first simplify the expected test error (TE) as follows.

TE , En∼HA [p(n(I, Q) 6= a | n)]
= En∼HA

[
E(I,Q,a)∼D[1[n(I, Q) 6= a]]

]
= E(I,Q,a)∼D

[
EHA [1[n(I, Q) 6= a]]

]
= E(I,Q,a)∼D[1− ña(I, Q)].

(A1)

Deal with integrals, and define ñk(I, Q) as qk, (1− ñk(Ii, Qi)) as fk, the authors of this
paper can get:

TE =
K−1

∑
k=0

∫
Ii ,Qi

fk p(I, Q = Ii, Qi, a = ak)d(Ii, Qi) (A2)

=
∫

q∈∆K

K−1

∑
k=0

∫
Ii ,Qi

fk p(I, Q = Ii, Qi, a = ak, ñ(I, Q) = q)d(Ii, Qi)dq (A3)

=
∫

q∈∆K

K−1

∑
k=0︸ ︷︷ ︸

swap

p(a = ak, ñ(I, Q) = q)(1− qk)dq. (A4)
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=
K−1

∑
k=0

∫
q∈∆K

p(a = ak, ñ(I, Q) = q)(1− qk)dq (A5)

=
K−1

∑
k=0

∫
qk

p(a = ak, ñk(I, Q) = qk)(1− qk)dqk (A6)

=
∫

q∈[0,1]

K−1

∑
k=0

p(a = ak, ñk(I, Q) = q)(1− q)dq (A7)

Using the calibration in aggregate assumption, the authors of this paper can get:

TE =
∫

q∈[0,1]
q(1− q)

K−1

∑
k=0

p(ñk(I, Q) = q)dq (A8)

As defined in Section 3.4.2, the authors of this paper need to prove a direct relationship
between GU error and TE. Different from the method proposed by Jiang et al., the GU can
provide more soft information than the hard target. Similar to the definition of TE, the
authors of this paper can get:

GUerror , TopkEn,n′∼HA

[
p
(
n(I, Q) 6= n′(I, Q) | n, n′

)]
= TopkEn,n′∼HA

[
E(I,Q,a)∼D

[
1
[
n(I, Q) 6= h′(I, Q)

]]]
= TopkE(I,Q,a)∼D

[
En,n′∼HA

[
1
[
n(I, Q) 6= n′(I.Q)

]]] (A9)

Similar to the simplified proof of TE, the authors of this paper can get:

GUerror =
J

∑
j=0

1/pi

K−1

∑
k=0

∫
q∈[0,1]︸ ︷︷ ︸

swap

p(ñk(I, Q) = q)q(1− q)dq

=
J

∑
j=0

1/pi

∫
q∈[0,1]

q(1− q)
K−1

∑
k=0

p(ñk(I, Q) = q)dq ∝ TE.

(A10)

Proof finished.

Appendix A.1.2. Proof of Debiased Self-Distillation

Proof. Referring to the research work of Allen Zhu, the authors of this paper use the same
lottery winning theory and other lemmas to prove it. Refer to Allen Zhu’s research for the
details of the lemma. The authors of this paper expand the research to VQA with GU.

For the single model. For every t < T, according to the noise lower bound and
multi-view error claim, the authors of this paper can get:

T

∑
t=T0

E(I,Q,a)∼Sdm

[
1− logita

(
VQA(t), I, Q

)]
≤ Õ

(
k
η

)
(A11)

T

∑
t=T0

E(I,Q,a)∼Sds

(
1− logita

(
VQA(t), I, Q

))
≤ Õ

(
N

ηρq−1

)
(A12)

The training objective is:

L
(

VQA(t)
)
= E(I,Q,a)∼Sd

[
− log logita

(
VQA(t), I, Q

)]
(A13)

For every data:
1. If logita

(
VQA(t), I, Q

)
≥ 1

2 :
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− log logita

(
VQA(t), I, Q

)
≤ O

(
1− logita

(
VQA(t), I, Q

))
(A14)

2. If logita

(
VQA(t), I, Q

)
≤ 1

2 :a naive bound,

− log logita

(
VQA(t), I, Q

)
∈ [0, Õ(1)] (A15)

Therefore, the authors of this paper can get, that when T ≥ poly(k)/η:

1
T

T

∑
t=T0

E(I,Q,a)∼Sd

[
− log logita

(
VQA(t), I, Q

)]
≤ 1

poly (k)
(A16)

However, the objective value does not increase monotonically, as the authors of this
paper are using gradient descent and using O(1)-Lipscthiz continuous as the objective
function, the authors of this paper define E(I,Q,a)∼Sd

as Ed, and get:

Ed

(
1− logita

(
VQA(T), I, Q

))
≤ Ed

[
− log logita

(
VQA(T), I, Q

)]
(A17)

E(I,Q,a)∼Sd

[
− log logita

(
VQA(T), I, Q

)]
≤ 1

poly(k)
(A18)

As a result, during training, the accuracy is perfect. The accuracy of the single-view
test is as follows:

VQA(T)
a (I, Q) ≤ max

j 6=y
VQA(T)

j (I, Q)− 1
poly log(k)

(A19)

For the single-view Ds, the authors of this paper can get
∣∣MVQA

∣∣ ≥ k(1− o(1)) and
the prediction error with a probability of at least 1

2 (1− o(1), so the authors of this paper
can get Theorem 2.

For self-knowledge distillation with the generalization uncertainty model.
The logits function of the model using knowledge distillation can be defined as

logitτ
i (VQA, I, Q) =

emin{τ2VQAi(I,Q),1}/τ

∑j∈[k] emin{τ2VQAj(I,Q),1}/τ
(A20)

Similar to the proof of knowledge distillation (from Allen Zhu) and Theorem 1. For a
network with (i, `) ∈ M, the authors of this paper can get:

Si,`
def
= E(I, Q, a) ∼ Sdm

1a=i ∑
p∈Pvqai,` (I,Q)

zq
p

 (A21)

M def
=

{
(i, `∗) ∈ [k]× [2] | Λ(0)

i,`∗ ≥ Λ(0)
i,3−`∗

(
Si,3−`∗

Si,`∗

) 1
q−2
(

1 +
1

log2(m)

)}
(A22)

Assume that the distribution of ∑p∈Pvqa(I,Q) zq
p for vqa ∈ {vqaa,1, vqaa,2} are the same.

The authors of this paper can get:

MVQA1
def
=

{
(i, `∗) ∈ [k]× [2] | Λ(0)

i,`∗ ≥ Λ(0)
i,3−`∗

(
1 +

2
log2(m)

)}
(A23)

Similar to the single model, for every (Ii, Qi, ai) ∈ Sdm, the authors of this paper
can get:
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∀(i, `) ∈ MVQA1:
If vqai,`,is in Xvqa(I, Q) :

logitτ
i (VQA1, I, Q) ≥ 1

s(I, Q)
− k−Ω(log k) (A24)

If vqai,` is in Xvqa(I, Q):

logitτ
i (VQA1, I, Q) = k−Ω(log k) (A25)

∀i ∈ [k]:
If vqai,`, is in Xvqa(I, Q) :

logitτ
i (VQA1, I, Q) ≤ 1

s′(I, Q)
+ k−Ω(log k) (A26)

If neither vqai,1 or vqai,2 not in Xvqa(I, Q):

logitτ
i (VQA1, I, Q) = k−Ω(log k) (A27)

Similar to the proof of the ensemble model, at the end of self-knowledge distillation,
in multi-view data, the network should provide the same (near-perfect) accuracy. With the
generalization uncertainty, the test accuracy has been improved by λ.

Therefore, with
∣∣MVQA1

∣∣ ≥ k(1− o(1)) and
∣∣MVQA2

∣∣ ≥ k(1− o(1)), additionally,
they are totally independent random sets, and the authors of this paper can obtain that∣∣MVQA1 ∪MVQA2

∣∣ ≥ 3
2 k(1− o(1)). That means the model with self-distillation has an

accuracy of ≥ 3
4 λ(1− o(1)). Therefore, the authors of this paper can get:

Pr
(I,Q,a)∼D

[
∃i ∈ [k]\{a} : VQA(T+T′)

a (I, Q) < VQA(T+T′)
i (I, Q)

]
≤ 0.26µ/λ (A28)

Proof finished.
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