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Abstract: Considering the external disturbances, in this paper, the quasi-consensus of multiagent
systems is studied via event-triggered impulsive control. By designing a novel event-triggered
mechanism (ETM), sufficient conditions to realize leader-following quasi-consensus are derived with
event-triggered impulsive control. Additionally, Zeno behavior is also excluded. It is shown that
the event-triggered frequency is closely related to the parameters selected in the designed ETM, and
less conservative results can be obtained compared with the existing results. Finally, a simulation
example is given to demonstrate the effectiveness of our proposed results.

Keywords: external disturbances; leader-following quasi-consensus; event-triggered impulsive
control; Zeno behavior

1. Introduction

Owing to the wide applications of multiagent systems (MASs) in practice, its related
research has attracted great attention from scholars. Cooperative control technology is an
important issue of MASs, which are widely used in the fields of unmanned aerial vehicle
formation [1], power systems [2], cluster robots [3] and so on. Moreover, consensus is one
of the most popular issues of cooperative control technology, and the related research has
achieved fruitful results so far [4-7]. The general concept of consensus, however, cannot
tolerate any interference. To tackle the effect of external disturbance or attack, the quasi-
consensus is proposed. The concept of quasi-consensus is used to describe the effects
caused by the interference, and the error state is finally within a bound corresponding to the
interference above, instead of zero, as the time tends to infinity. It is great significance when
the MASs encounter some inevitable environmental or artificial disturbance in practical
applications. For example, Hu [8] studied the quasi-consensus of second-order MASs with
external disturbances, and Ma [9] studied the quasi-consensus of discrete-time time-varying
MASs with randomly occurring nonlinearities (RONs) and deception attacks, where the
RONSs were first studied in [10]. In MASs, according to whether there is a leader or not,
they can be divided into leader-following and non-leader-following consensuses. The
consensus of leader-following is closer to reality, which is a hot topic in the current research.
Almeida [11] studied the leader-follower consensus of fractional MASs, and Liu [12] studied
the leader-following consensus of MASs with switched networks.

It is worth noting that MASs are usually in a complex and changeable engineering
environment, and the evolution process of the system is affected by the surrounding
environment, such as the uncertainty of system parameters and the change in system
nonlinear dynamics caused by environmental impact. These objective phenomena may
seriously affect the evolution process of the system. Considering randomly occurring
uncertainties (ROUs) and RONSs, robustness of systems are discussed [13]. At present,
many scholars have studied MASs with ROUs and RONs and achieved many excellent
research results [14-17].
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Considering the communication load and control cost, the selection and design of
control strategy are very important in the research on the consensus of MASs. At the
beginning, scholars used continuous control to make the MASs realize consensus, such as
including control [18], adaptive control [19], pinning control [20], etc. Although continuous
control is relatively simple, continuous control requires the controller to work all the time,
which leads to a waste of resources. To solve this problem, scholars proposed impulsive
control, but the impulsive sequence is generally set and selected manually in advance.
Impulsive control has been widely used in the control field because of its low control
cost, strong robustness and good confidentiality. For examples, using impulsive control
method, Li [21] studied the stabilization of delayed systems; Zhang [22] investigated the
synchronization of delayed neural networks; and Yang [23] considered the consensus of
delayed MASs with random disturbances. However, because the impulsive sequence is
artificially set, it may be too conservative a lead to increase unnecessary control times.

To solve these shortcoming, the event-triggered mechanism (ETM) [24-27] was pro-
posed. The control sequence depends on some triggering conditions according to the
system state and so on. Compared with time-triggered impulsive control, event-triggered
impulsive control (ETIC) combines both the event-triggered strategy and impulsive control,
and hence, ETIC can effectively reduces the cost of control [28-31]. At present, scholars
attach great importance to the research of ETIC strategy. For instant, using ETIC, the con-
sensus of linear MASs [28] , synchronization of neural networks [30] and complex dynamic
networks [29] were investigated.

Inspired by the above discussion, based on the ETIC strategy, this paper studies the
quasi-consensus of nonlinear MASs with various obstructions (ROUs, RONs and external
disturbances). The main contributions are as follows:

¢ In this paper, various obstructions are considered. Compared with the works in [31],
the stochastic characteristics of uncertainties, i.e., ROUs and RONs, are considered.
Moreover, the external disturbances in the leader and followers here can be different.
Hence, the system model is more general and practical.

¢  The ETM designed in this paper is antidisturbance compared with the existing re-
sults [32-34]. Additionally, differently from the one in [31], the effects of disturbances
are intuitive, which makes it easier to adjust for various disturbances.

Notation 1. NT, R and R" are defined as the set of positive integers, the set of real numbers and
the n-dimensional Euclidean space, respectively. By A < B, we mean that A — B is a seminegative
definite matrix. AT denotes the transposition of matrix A, ® represents the Kronecker product, || - ||
represents both the induced matrix 2-norm and the usual Euclidean vector norm. Amax(A) stands
for the maximum eigenvalue of the matrix A. E[-] denotes the mathematical expectation and Pr{B}
is the probability of the event B. I, represents the n-dimensional identity matrix.

The rest of this paper is organized as follows. Preliminaries are given in Section 2.
The main results and the constructed ETM are established in Section 3. Section 4 gives an
example to verify the derived results, and Section 5 concludes this paper.

2. Preliminaries and Model Description
2.1. Graph Theory

In MASs, the communication among agents can be reflected by the graph. Each
agent can be seen as anode, and let V = {v1,vy,...,uN} be thenode set. Let EC V x V
be the edge set, and the undirected topology of MASs can be described by the graph
G = (V,E,C), where C = [a;j]nxN represents the adjacency matrix of G. If (i,j) & E, it
means that agents i and j do not communicate with each other, there are a;; = a;; = 0,
otherwise a;; = a;; = 1. Additionally, define a;; = 0. D = diag(dy, dy,...,dy) is defined
as the degree matrix of G, where d; = Z]-Z\ilr]-# ajj. L = [lij]NxN is called the Laplacian
matrix of G and L = D — C. The communication state between leader and followers are
represented by a matrix B = diag(by, by, ..., by). If the follower can communicate with the
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leader, then b; = 1, otherwise b; = 0. We call N; := {j|a;; > 0} the neighbor set of agent i.
Let H = L + B. N; is defined as the set of agents that communicate with the agent i. If a
node can reach any nodes in the graph, then the node is called the root, and the graph has
a spanning tree with the root.

2.2. The Mathematical Model of Leader-Following MASs

Consider the MASs consist of one leader and N followers, and each agent suffers
from the ROUs, RONs and external disturbance. The dynamics of the i-th (i = 1,2,...,N)
follower is:

M

{xi(t) = A()xi(t) + B(t) f(t,xi(t)) + wi(t) + ui(t), t = to,
xi(to) = @i,

where fy > 0 is the initial instant and ¢; € R" is the initial value of the i-th follower.
x;j(t) € R" is the system state, u;(f) € R" is the control input and w;(t) € R" denotes the
external disturbance. A(t) = A + a(t)MP(f)Q, where A, M and Q are suitable constant
matrices. P(t) is time-varying matrix and satisfies P(t)PT(t) < I,. f: Rx R" — R"isa
nonlinear function. A(t) f(-) and a(t) MP(t)Q are used to describe the uncertain information
of the system and nonlinearities that may occur randomly (i.e., RONs and ROUs) in practical
application, respectively. Additionally, assume that a(¢) and B(t) satisfy Assumption 2.
Let xo(f) € R" denote the state of the leader, whose dynamic is described as:

{xo(t) = A()xo(t) + B(E) F(t, x0(t)) 4+ wo(t), t > to,

2
xo(to) = ¢o, @

where ¢o € R" is the initial value of the leader.
To realize the quasi-consensus of the above MASs, the following impulsive protocol
is designed:

Zuk Y aij(x H() + bi(xi () — x0(4)))0(t — 1), 3)

k=1 JEN;

where i € R is the impulsive gain, and 4(¢) is the Dirac delta function which is used
to model the impulsive dynamic [35]. {#,k € N*} is the impulsive control sequence
generated by the ETM to be designed.

Combining (1) and (3), one can obtain that

4i(t) = A()xi(t) + B(O)f (8, xi(1)) +wilt), t# 1,
Axi(t) = xi(t) — (f;Z)

=iy a(xi(t) = xj(b)) + mbi(xi(b) —xo(t)), t=t, )
JEN;

xi(to) = @i,
where x;(t) at fy is right continuous, with x;(t;) = x;(t) being assumed. Ax;(f;) represents

the jump value at t = ;.
Then, according to (4), we construct the following error system:

¢i(t) = A(t)ei(t) + p(H)g(t ei(t)) +wi(t), ¢ # 1,
Aei(te) = ei() —ei(ty)

kY ailei(ty) —ej(b) + pbiei(t ),  t=ty, ®)
JEN;

ei(to) = @i — @o,
where ¢;(t) = x;(t) — xo(t), @;(t) = w;(t) —wo(t), g(t, ei(t)) = f(t, x;i(t)) — f(t, x0(t)).
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Let e(t) = [eF(D),el(t),.. LT, Glte(t) = [gT(ter(t)), g (tea(t)), ..,
gh(t,en(t)]T, @(t) = [@] (t), W1(t),..., @ (+)]" and 1y be the N-dimensional vector with
all elements equal to one. Using the Kronecker product, the error system (5) can be rewritten
as the following compact form:

é(t) = (In®@ A(t))e(t) + B(1)G(t,e(t)) + @(t), t# b,
Ae(ty) = p(H® Ip)e(t, ), t=t, (6)
e(to) = In ® (9i — ¢o),

2.3. Some Definitions, Lemmas and Assumptions

Definition 1 ([31]). The leader-following MASs consist of (1) and (2) is said to achieved quasi-
consensus if e(t) converges into a bounded set B as t — 400,

B = {e(t) e RN"| E[|e(t)|2) < 1}, )
where x > 0 is called the error bound.

Definition 2 ([36]). Given a function ¢ : R — R, define the upper-right-hand Dini derivative of

(p(t+1) — ()
l :

DT ¢(t) = limsup

-0+
Lemma 1 ([15]). Forany p,q € R" and y > 0, the following inequality holds:
pla+alp<np'p+n'q'q.
Assumption 1. The nonlinear function f in (1) and (2) satisfies the following Lipchitz condition:

1t p) = fE )l < TP —al, ®)

where p,q € R", and | € R"*" is a constant matrix.

Assumption 2. The time-varying parameters p(t) and a(t) in system (1) are independent of each
other and obey the Bernoulli distribution, meeting the following conditions: E[a(t)] = & and
E[B(t)] = B, where &, B € [0,1].

Assumption 3. The communication topology of MASs has a spanning tree with the leader as the
root node.

Assumption 4. @(t) in (6) is bounded and it satisfies sup;, || @(t) | < w < +oo.

3. Main Results

In this section, we derive some sufficient conditions to ensure the quasi-consensus of
the considered MASs using ETIC strategy. Additionally, we show that Zeno behavior is
excluded. First, the ETM is designed as follows:

tk = min{t;;, i'k,1 + Tsup}r

9
t = inf{t > te_1|E[V(e(t)] = e M5 E[V (e(t_1))] +vw2}, ©)
where Tgyp > 0 is the maximum allowable event-trigger interval to be designed; [ > 0,
ke Nt,v>1and A > 0. V(e(t)) is the Lyapunov function to be defined with respect
toe(t).
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Remark 1. With the help of impulsive control, information transmission in the designed ETM can
only activate at triggered instants. In other words, there is no need for any information transmission
during the event-triggered interval, which can effectively reduce the communication cost.

Remark 2. Compared with the anti-disturbance ETM in [31], where the effects of disturbances are
hidden in some parameters, they are intuitive in our designed ETM. The sensitivity of the ETM (9) to
disturbances can be adjusted by the parameter v. Moreover, the measuring error, i.e., e(t) — e(ty_1)
forany t € [ty_1,t;) , k € Nt used in [31] is no longer needed, which can also cut down the
communication or computing resources in some sense.

Remark 3. The forced impulse generated by the event ty_1 + Tsup is to ensure the existence of the
maximum allowable event-trigger interval. Note that it is important for achieving quasi-consensus
of MASs, since one can always derive an upper bound of Tsup by the following theorem.

Theorem 1. Suppose that Assumptions 1-4 are satisfied. If there exist constants 1,172 > 0

such that
Inc

Tsup

O<o<l, 6=

+p<0, (10)

where _
o= /\max(A) + 2/3H]H + 12,

A=Iy®(A+ AT +apMMT + a7 1QTQ),
o= sup /\max((kaT ® Ly + Ing) (ke H ® I + INn)).
keNT
Then, under the impulsive controller (3), the leader-following MASs consisting of (1) and (2)
achieve quasi-consensus with the estimated error bound:

4u?

1Blon

X:

Proof. Select the following Lyapunov function:

V(e(t)) = el (t)e(t). (11)
The derivative of (11) along (6) can be obtained
DFV(e(t) = e (£)é(t) + ¢ (te(t)
= el (1)[(In @ A(1)" + (Iy ® A(t))]e(t)

HG(te(t)) + el (Hw(t) + @ (He(t)  (12)

According to Lemma 1 and Assumption 1, we obtain:

2T (1) [In @ a(t)MP(t)Q] e(t)
= 2e1(t)[Iy @ &RMP(t)Q] e(t) + 2eT (£)[In ® (a(t) — &) MP(t)Qle(t)
<e'(O[Iv@a(mMMT + 5, 1QTQ)e(t)

+2e"()[In ® (a(t) — &) MP(£)Qle(t),

(13)

and
2B8(1)G(t,e(t))e(t) 4+ el ()w(t) + @' (t)e(t)
=2BG(t,e(t))e(t) +2(B(t) — B)G(t,e(t))e(t) + et (1) (t) + DT (t)e(t) (14)
< (2Bl +m2)e" (te(t) +ny ' a" ()@ (t) +2(B(t) — B)GT (¢ e(t))e(t)
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Combining (12)—(14), we have

D*V(e(t)) <e"(1)[Iny @ (A+ AT)le (f) +&e ( )In ® (MM + 13,1 QTQ)e(t)

+2eT () [In ® (a(t) — )Qle(t) +2(B(t) — B)GT (t,e(t))e(t)
+ BITI + m2)e ()e(t)+772 @' ()w(t) (15)
<pV(e(t) +my '@ (H@(t) + 2" (1) [In @ (a(t) — &) MP(t)Qle(t)

(
+2(B(t) — B)GT (¢ e(t))e(t).
When t € [tp_1,#),k € NT, V(e(t)) is continuous, the following equation holds:
E[V(e(t))] = DTE[V(e(t))],
which indicates that:
E[V(e(t))] < pE[V(e(t))] + 1y '@ (a(1), (16)
where p = Amax(A) +2B||J|| +72,and A = Iy ® (A + AT +ag MMT + a5, 1QTQ). Then,

integrating both sides of (16), for t € [t;_1, ), one has

E[V(e(t))] et 51 E(V(e(tr_1))) + 115" / t @' (s)w(s)eP =5 ds. (17)

1

When t = t;, k € NT, we have

E[V(e(t))] = Ele’ (t)e(t)]
= E[(ue(H ® In) + Ina)e(ty) % (uu(H @ ) + I ()] (18)
= E[e" () (ue(H @ In) + Inn) " X (e (H © L) + I )e(t)]
S OE[V(e(t)],

where 0 = sup;+ )Lmax((kaT ® Ly + Inn) (icH® I, + INn)).

In the following, we show the boundedness of the selected Lyapunov function by
mathematical induction.
For t € [ty, t1), it follows from (18) that:

EIV(e()] <! OEV(e())] + 15" [ @ ()a(s)ertt s, (19)

According to (18), for t = t1, we can further obtain the following inequality:

E[V(e(t1))] <CE[V(e(t;))]

<ot V()] +ony [T aet s
Similarly, for t € [f1, ), we have:
EIV (o) et WEV (elt)] 45" [ @7 ()ale)er s
<ot WE elto)] 4o [ @Gt

t
+1,! /t] @7 (s)w(s)ePt5)ds,
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and for t = t,, we have
E[V(e(t2))] <0E[V(e(t;))]
ty

<22 E[V (e(tg))] + 02;72—1/ @' (s)w(s)el 2% ds

fo (22)
£
+ Ur}{l / 2 ZET(S)ZD(s)eP(tZ*S)dS.
ty
By iteration calculation, for t € [#;_1, ), we can finally obtain that
t
E[V(e(t)] <o* e EV (e(to))] + 17, ! / @ (s)w(s)e ) ds
te—1
(23)

+ thk My / (s)ePt=3)ds.

Note that ¢ € (0,1), according to Definition 2 and (23), for any t > ¢, the following
inequality holds:

ELV(e(t)] <oM e EY e(ta))) + 17 || NN (s)n(s)ert s

t=ty 4 t=s 1
<o PR E[V (e(t))] + 175 ! / o @l (s)w(s)ePds  (24)
to

<o 1 IUIEV (e(to))] + oy /t: @7 (s)w(s)e? =5 ds,

where r —1 < N(t,tp) is used and N(t, ty) denotes the number of events in (f, t].

Since 6 < 0 (see (10)), then

t
limsup E[V(e(1))] <o 7'yt lim wT(s)w(s)e9<f—s>ds
t—+-o00 t—+o00
4 (25)
—0 2 =X.
‘9| 172

According to Definition 1 and (25), the MASs (1) and (2) realize the quasi-consensus
under the ETIC protocol (3), and x = ‘4‘“’ . The proof is completed. [

Remark 4. Note that the RONs and ROUs are assumed to exist synchronously in the above
systems, but this assumption is further relaxed. Suppose the randomly occurring terms of each
follower and the leader are asynchronous. In that case, instead of a(t) and B(t) modeled in the
above systems, there exist some a;(t) and B;(t) for any j = 0,1,...,N, such that they can be
different and independent of each other but satisfy the Bernoulli distribution with E[a;(t)] = &;
and E[Bj(t)] = Bj. Then, we can always set & = diag{a; — ag, &2 — to, ..., &N — &g} and
B = diag{B1 — Bo, B2 — Bo,-- -, BN — Bo}- We have slightly abused the notation by using & and B
to denote both scale-valued and matrix-valued. Clearly, Theorem 1 can still handle this asynchronous

case when slightly modified.
Next, we exclude Zeno behavior.

Theorem 2. For MASs (1) under control protocol (3), the parameters of ETM (9) satisfy:

I —Inv >0, keNT, (26)

lim Z (I; = Inv) = Hoo, (27)

k—)oo



Appl. Sci. 2022,12, 7580

8 of 14

then, the interval of event-trigger impulsive control exists clearly, and ty — +o0 as k — +oo.
In other words, there is no Zeno behavior for MASs (1) under the event-trigger mechanism (9).

Proof. The following proof is divided into three scenarios according to the characteristics
of the designed ETM (9). Assume that N := {f;,k € NT} is the generated impulsive
sequence by ETM (9).

Scenario 1: N completely consists of forced impulses
In this scenario, Zeno behavior is excluded naturally since t; — t;_1 = Tsup, k € N +.

Scenario 2: N is completely independent of forced impulses
Once any event is triggered, it follows from (9) and (17) that

E[V (e(t))] =€l M hVE[V (e(t1))] + vw?
t 28
<OV (et oyt [ S et O
tk—1
In this scenario, we further discuss the effects caused by p, as shown in the following
three cases: p < 0, p = 0and p > 0.

Case 1: p < 0. It follows from (28) that

A E[V (e(te_1))] + vw? < BB DE[V (e(t_1))] + At — ti1) ; 1) w?,  (29)
2

which implies that min{ek A —f-1), v} < max{ef(t—t-1), W}

() eP(—t-1) > %. Note that v > 1 > eP(ti—t-1) and el—Mbi—t-1) < eP(ti—tk-1)
with p > —A, and thus t; — t,_1 > pi—"/\ > 0. By simple deduction, it follows from (26) and
(27) that

li
p+A

k
lim (. — o) > 1 = . 30
kg{}o( x— to) kg{}ol; +oo (30)

(ii) eP(—t1) < 4“";%1). When e/t A—t-1) > ¢ we obtain v < %, ie., tp —

te_1 = % > 0, thus t;, — tg > %. When eli—AMt—t-1) < v, we obtain t — t_1 > l"f/%nu >

k
0,thusty —tg > Y ¢ If (26) and (27) are held, we have ¢, — t) — 400 as k — 400
i=1
When gP(tk*tk—l) < 4(tk;tk71) .
2

Case 2: p > 0. It follows from (28) that
4(epti—te-1) — 1)

A E[V (e(t_q))] 4 vw? < BT E[V (e(te_q))] + o w?, (31)
2

) 4(€p(tk7tk—1) _1) }

which implies that min{ef A —f-1), v} < max{ef (k-1 o

plte—tp—_1) _ _ P2
(i) ePlti—ti1) < w,i.e.,o < pyp < 4. We canobtain ty — ty_q > —w >
_ P2
0, im (t; —tp) > lim BEL U o NS

p(te—te—1) _
w_ When elt—Atc—tk-1) > v, we have v < ep(tk—tk,l)’

ie, ty —t_q1 = 1“7" > 0, thus t;p — tg > kl;”; when elk—At—t1) < p, we have e —te_q =

(i) ef(t—tk1) >

k
l"_% > 0,thust —tg > Y. # According to (26) and (27), we can obtaint; — ty — +o0
i=1
(et tk-1) 1)

as k — +oo when eP(fk—fk-1) > o
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Case 3: p = 0. It follows from (28) that
4
e MEE[V (e(tq))] + vw? < E[V(e(t—1))] + ;w%tk — 1), (32)
2

which implies that min{ek*—f-1), v} < max{1, %(tk —t_1) )

k
WD (e —tq) =1, ie, b — g = %2 > 0, we have lim (¢t — tp) > lim ) % =
2 k—ro0 k—o0j—1
—+o00.
(ii) %(tk —t_1) < 1.Since 1 < v, thus e M—t1) < 1,0, f — g > % > 0. We

k
have lim (t; — ty) > lim ) ZX’ = +o00, from which (27).
k—ro0 k—yo0 j—1

Based on the above d;scussion, for any p, Zeno behavior is excluded in this scenario
and fp — +o0ask — +oo.

Scenario 3: N is generated by both forced impulses and other events

In this scenario, suppose that T; > t( is the Zeno time and there exist infinitely many
events which happened in the interval [Ty, T;) with Tp = Ty — TSEP , where T > 1. With the
assumption above, there then exists, and only exists, one impulse as the forced impulse,
and we assume that it occurs at t = f. Hence, impulses are generated by f; = t; in (9) for
any t € (f,T;). However, one can obtain the fact that Zeno behavior is excluded in Scenario
2, and thus, it is a contradiction. Therefore, Zeno behavior is also excluded in this scenario.

The proof is completed. [

Remark 5. Under the impulsive controller (3) and ETM (9), Theorem 1 gives the sufficient
conditions for quasi-consensus of MASs, and Theorem 2 gives the sufficient conditions for no Zeno
behavior of MASs. In the ETM (9), it should be noted that the changes of I, A and v affect the
trigger interval. ly and v may affect the boundedness of e~ M=%V E[V (e(ty_1))] + vw?, and A
is the attenuation index of the two trigger times. Furthermore, one can observer that the effect of Ij.
and A are opposite: if we choose a bigger value of Iy, then the trigger interval is enlarged, which leads
to fewer trigger instants, while if we choose a bigger value of A, then the trigger interval becomes
smaller and the trigger instants increase as well.

Remark 6. Additionally, based on (10), the maximum allowable event-trigger interval can also
be different at each event-triggered interval as the one considered in [31], i.e., the forced impulse
is generated by the event ty_q + Ty, where T € [Ting, Tsup) With 0 < Ting < T < Toup. Similarly,
the Zeno behavior can also be excluded because it is naturally avoided by the above condition in
Scenario 1 while setting Ty = Ty — %,T > 1 in Scenario 3.

4. Numerical Examples

This section verifies the main results through a simulation example.
Consider the leader-following MASs, which consist of one leader and four follow-
ers; their topology is shown as Figure 1. According to Figure 1, we have:

2 -1 -1 0 1 3 -1 -1 0
-1 2 0 -1 0 -1 2 0 -1

L= -1 0 1 0|’ b= 1 , H= -1 0 2 0|
0 -1 0 1 0 0 -1 0 1
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Figure 1. Communication topology of the system.

Itis assumed that the MASs model is described as (1) and (2). Moreover, let f (¢, x;(t)) =
0.25tanh(x;(t)), and thus ||J|| = 0.25. The controller u;(t) is designed as (3). Choosing
E[a(t)] = E[B(t)] = 0.5. A(t) = A+ a(t)MP(t)Q, where M = Q = I3, and

—1.87 0 0 0.2 cos(t) 0 0
1 -1 1|, P()= 0 —0.5sin(t) 0o |

0 -082 0 0 0 0.4sin(t)

A:

In addition, setting

[wo(t), w1 (t),wa(t), w3 (t), wy(t)]
05 05 01 03 05
=|-01 01 —02 05 —02| xsin(t),
03 04 03 04 03

and we have w = 0.8.
Let the initial value of the leader and four followers be as follows:

(90, 91,92, 93, ¢4

1.5 05 —-05 -1 1
=|-1 2 -1 -2 -15],

2 =25 25 2 1

Selecting 171 = 12 = 1 and y; = 0.1, one can obtain that p = 3.8177,0 = 0.1658 and
Tsup < 0.0881. Then, we choose Tsup = 0.05, and 6 = —14.1537 < 0. Hence, the conditions
in Theorem 1 are satisfied, and the quasi-consensus can be achieved with the error bound
x = 1.0446. Moreover, setting Iy = 1.2 and v = 1.2, one can check that conditions in Theo-
rem 2 are also met, and Zeno behavior can be excluded. Let A = 1, the trajectories of error
states and event-triggered instants under ETM (9) are shown as Figure 2a,b, respectively.
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. Forced impulses
181 < Eventimpulses | |

Trajectories of error states
Event-triggered instants
-

L L L L L L L L L
0 02 04 06 08 1 1.2 14 16 18 2
(a) (b)

Figure 2. Trajectories of error states and event-triggered instants under ETM (9). (a) Trajectories of
error states; (b) event-triggered instants.

To highlight the superiority of the obtained results in this paper, the results (Theorem 2)
in [31] are considered, where their ETM is designed as follows (the fixed maximum allow-
able event-trigger interval p; = psyp case is considered):

t = min{t;, t_1 + Psup}/

= inf {t > 1 In(0)] > wallelte 1)) + A0, )
where 7(t) = e(t) —e(ty_1),k € NT and a1, 25, A > 0.

Neglecting the delay considered in [31], a set of feasible solutions for LMIs in
(Theorem 2 in [31]) are obtained by setting ¢; = 1,8} = 2 and i = 0.8. Then, one has
B2 > 1.3934 and psyp < 0.0595 with B, = 1.4. Choose psup = 0.05, a1 = 0.5,a = 1,1 = el
and K = 0.11y; itis calculated that the error bound under (33) is x = 1.6378 with @ = 1.2 and
n = 1.0623. With the parameters above, the trajectories of error states and event-triggered
instants under ETM (9) are shown as Figure 3a,b, respectively.

6 T T T 2 T T T T T T T T T
. Forced impulses
18 «  Eventimpulses | ]|

16

@

IS
g
IS

T

=
N
T

o
©
T

Trajectories of error states
N w

Event-triggered instants
-

o
o

I
IS
T

02

(a) (b)

Figure 3. Trajectories of error states and event-triggered instants under ETM (33). (a) Trajectories of
error states; (b) event-triggered instants.

Compared with the performance of both ETM (9) and (33), one can find that the error
bound y is smaller, and the triggered instants are fewer under ETM (9) than those under
ETM (33). Hence, less conservative results can be obtained with the ETM designed in
this paper.
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Setting A = 2 and A = 0.1, the event-triggered instants of the system are shown as
Figure 4a,b, respectively. By assigning different values of the parameter A, we can obviously
observe that the larger A leads to more event-triggered instants generated by t;.

Moreover, when the external disturbances are ignored (w;(t) = 0,i = 0,1,2,3,4),
the consensus can be achieved as shown in Figure 5, i.e., the case that x = 0 in Definition 2.

2

18

Event-triggered instants
-

T T T T
*  Forced impulses
*  Eventimpulses 18r

16

2

Event-triggered instants
<) o <) P =
2 o ® +» N

T T T T

o
N

T T T T
*  Forced impulses
*  Eventimpulses | |

o
o

0 0.2 04 06 08 1 12 1.4 1.6 18 0.2 04 06 0.8 1 12 1.4 1.6 1.8 2

o

() (b)

Figure 4. Event-triggered instants with different A under ETM (9). (a) Event-triggered instants with
A = 2; (b) Event-triggered instants with A = 0.1.

6
/ Ile,®I12
51 lle,0112|
2
" Ile;ll
Q U 2
g Ile, 1l
© 4
% 4T 1
S
b5
5 3 -
1%} \
Qo
6 j
g
Q2 4
S
=
1 KL B
— L
0 L P_R 17\"“7 L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

Figure 5. Trajectories of error states without external disturbances under ETM (9).

5. Conclusions

This paper investigated the quasi-consensus of nonlinear MASs with external dis-
turbances via ETIC. The ETM designed here relies on the Lyapunov function and the
compared exponential-like function with tunable parameters. To avoid Zeno behavior,
Theorem 2 shows that the tunable parameters cannot be assigned arbitrarily but with
some easy-to-check conditions. Meanwhile, an example verifies the obtained results. It is
shown that our results are less conservative compared with the existing results. However,
the considered MASs are free of time delays [37]; thus, an interesting research topic for
further study is to consider time delays in the systems.
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