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Abstract: The effect of partial lean pork-meat replacement by white Phaseolus vulgaris L. flour in
hybrid burgers was studied. A multivariate regression model was used to test different bean flour
levels (BF: 8–15 g/100 g) and water/bean flour ratios (W/BF: 1.2, 1.6, and 1.8 g/g). Process yield,
texture profile analysis, color parameters, thermal transitions, and microstructure of the systems were
analyzed. Respond Surface Methodology was used to model the response behaviors and optimization.
Burgers with BF showed yields higher than 88%. Hardness and cohesiveness decreased as the BF level
increased, with a more noticeable effect when the W/BF ratio became larger. Regarding color, the
higher the BF and the W/BF ratio in burgers, the higher the L* obtained. The desirability optimization
predicted an optimum formulation consisting of 15 g BF/100 g and 1.36 g/g W/BF with similar
attributes to a commercial pork burger. The thermal analysis showed an increase in the enthalpy
associated with the myosin denaturation and the interactions between meat proteins and BF led to
higher temperatures for the starch gelatinization and protein denaturation. The microstructure of BF
burgers presented a more stable coarse gel matrix derived from coagulated meat proteins combined
with the flour components. The mathematical procedure adequately predicted the hybrid burger
quality attributes.

Keywords: hybrid burgers; pulse flour; functional ingredients; alternative proteins

1. Introduction

Meat is recognized as the highest-quality protein source and is highly appreciated
for its taste. In addition, pork is the most widely eaten meat in the world, and several
investigations have found potential health benefits associated with its consumption [1,2].
Nevertheless, meat products may also contain added fat, saturated fatty acids, cholesterol,
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high levels of salt, etc., causing consumers to perceive them as unhealthy foods [3]. To
change this perception, different strategies for healthier product development must be
promoted. Some of them could study formulation or processing modifications to avoid or
restrict the presence of certain potential unhealthy compounds; others could evaluate the
incorporation of ingredients that have possible health-promoting effects [4,5].

Moreover, the worldwide consumption of meat is increasing, with adverse conse-
quences for the environment, global food security, and human health, which have triggered
calls for reduced meat consumption [6]. Therefore, there is an increasing consumer aware-
ness that linked the shift toward plant-based dietary patterns with health and environmen-
tal benefits [7,8].

In this sense, partial meat substitution through plant-based ingredients in popular
meat-based products is an emerging strategy to reduce the proportion of consumed meat [9].
The concept of a hybrid meat product has appeared in this context. Traditionally, several
functional ingredients (high carbohydrate and/or protein sources) have been added to
processed meats as extenders, fillers, or binders. However, hybrid meat products have a
favorable implication based on mixing plant and meat proteins, rather than the economic
or technological reasons that has driven their inclusion in the past. The primary purpose
of hybrid meat foods is to focus on a lower environmental impact, the product’s health
improvement, and the general idea of decreasing meat consumption [10].

Among different nutritious plants and alternative protein sources, legumes are pre-
sented as the most conventional, nutritious, and accessible protein sources [11]. Within
legumes, beans are a low-priced source of a high level of protein, amino acids, carbohy-
drates, dietary fiber, vitamins, phenolic acids, and flavonoids [12]. In addition, consistent
with Lin & Fernández-Fraguas [13], raw bean flours demonstrate better emulsifying prop-
erties than reported in lentil and chickpea flours [14] and close to bean protein isolates
behavior [15]. Therefore, bean flours could be functional ingredients in the development of
reformulated healthy meat products with fat replacement using pre-emulsified marine or
vegetable oils, where bean components could act as emulsifiers.

This work aimed to evaluate the effect of the partial replacement of pork meat with
white bean flour in hybrid burgers with pre-emulsified sunflower oil on the main quality
attributes and to find the level that optimizes its characteristics. Additionally, the thermal
and microstructural properties of hybrid products were evaluated.

2. Materials and Methods
2.1. Materials

Pork meat (top round cut including Adductor femoris and Semimembranosus muscles)
was obtained from a local supplier. White beans (Phaseolus vulgaris L.) were obtained
from Estación Experimental “Cerrillos” (INTA, Salta, Argentina), cleaned, and classified
to remove dirt and defective beans. A cyclonic mill (Udy Corporation, Fort Collins, CO,
USA) was used to ground whole bean seeds and a 1 mm stainless steel mesh to obtain the
final flour. Refined high oleic acid (HO) sunflower oil (82.6 g C18:1n-9/100 g; Granix S.A.,
Buenos Aires, Argentina) was used as the lipid source. Cold distilled water (4 ◦C) and
analytical-grade sodium tripolyphosphate (TPP) and NaCl (Anedra, Argentina) were used.

2.2. Experimental Design

The experimental design was developed to analyze the effect of water (W) and bean flour
(BF) contents on the quality of hybrid burgers. Two BF levels (8 and 15 g/100 g) and three
water/bean flour (W/BF) ratios (1.25, 1.6, and 2 g/100 g) were tested. A general constraint
that all BF-burger (BF-B) formulations kept an equal amount of pork meat + BF + W was
included (88.5 g/100 g; Table 1). The other ingredients (HO-sunflower oil, 10 g/100 g; NaCl,
1 g/100 g; TPP 0.5 g/100 g) were kept constant. Additionally, a control-burger formulation
(C-B) was included to evaluate the effect of incorporating bean flour into the system: a
laboratory-prepared burger with 78.5 g/100 g pork meat, 10 g/100 g HO-sunflower oil,
10 g/100 g water, and salts (NaCl 1 g/100 g; TPP 0.5 g/100 g).
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Table 1. Pork meat, bean flour (BF), and water/bean flour ratio (W/BF) to prepare 100 g of raw bean
flour pork burgers (BF-B).

BF-B Formulation Pork Meat (g/100 g) BF (g/100 g) W/BF Ratio

1 70.50 8 1.25
2 67.70 8 1.6
3 64.50 8 2
4 54.75 15 1.25
5 49.50 15 1.6
6 43.50 15 2

An available Argentinean commercial pork burger (COTO C.I.C.S.A, Buenos Aires,
Argentina) was used as a target for texture and color variables in the optimization stage.

2.3. Burger Manufacture

The excess fat and connective tissue were removed from pork muscles. Pork meat
passed through a grinder (80 mm diameter and 8 mm-thick plate with 21 holes of 95 mm
diameter) (Meifa 32, Cimbra; Buenos Aires, Argentina). Meat portions of 500 g were
vacuum-packed in bags (PO2: 19.6 cm3/m2.day.bar at 23 ◦C; Maraflex, Bemis., Buenos
Aires, Argentina), frozen, and stored at −20 ◦C until used (up to 3 weeks). Before use, the
meat was thawed (18 h, 4 ◦C).

Sunflower oil was incorporated into the burgers as a pre-emulsion using an aqueous
phase with a fixed ratio of flour/water (1 g/2 mL). Emulsification was done using a
handheld processor (Braun, Argentina) for 1.5 min. Lastly, the meat, emulsified oil, sodium
salts, and the additional flour or water according to the formulation were mixed in a food
processor (Universo, Rowenta, Germany) for 4 min. Batters were stored for 1 h at 4 ◦C.

Approximately 40 g (±1 g) of the formulation was used to mold each burger (height:
1.2 cm; diameter: 5 cm). Samples were wrapped separately in polyethylene film, frozen,
and stored at −20 ◦C until analysis (up to 21 days).

The manufacturing process of all burger formulations (nine samples/formulation)
was replicated (duplicate) on 2 different days, using different batches of meat.

The cooking process was carried out using a double-sided electric household grill (Oster,
Xiamen, China) at 210 ◦C for 3 min to assure an internal burger’s temperature of 71 ◦C [16].
The samples were then cooled immediately at room temperature over absorbent paper.

2.4. Process Yield

Process yield was determined according to Andrés et al. [17] as the percentage of
retained weight after the cooking treatment.

2.5. Texture Measurements

Cooked specimens of each formulation were analyzed following the protocol previ-
ously adopted by Argel et al. [18]. Briefly, at least 10 samples with fixed dimensions were
taken from the center of the burgers (height—1.5 cm; diameter—1.7 cm) and compressed
twice to 30% of their original height to perform a Texture Profile Analysis (TAXT2i Texture
Analyzer, Stable Micro Systems, London, UK). Hardness, springiness, cohesiveness, chewi-
ness, and resilience were determined using a probe with a 75 mm diameter and a speed
test of 0.5 mm/s.

2.6. Color

The color was measured at room temperature on the internal surface of transversally
slices of cooked burger recently cut using a Chroma Meter CR-400 colorimeter (Minolta
Co., Osaka, Japan) and CIELAB parameters (L*, a*, and b*) were determined. A total of
10 measures were taken for each formulation.
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2.7. Thermal Analysis

To evaluate thermal transitions in the systems, raw and cooked burger formulations
of the extreme BF or W levels (1, 3, 4, and 6; Table 1) were analyzed using a Differential
Scanning Calorimeter (DSC, TA Instruments, New Castle, DE, USA). Additionally, to verify
the major burger ingredients on an individual basis, bean flour and a mix of pork meat
plus salt were studied.

Bean flour samples were evaluated according to Dolores-Alvarez et al. [19] and pork
meat plus salt and burgers were prepared according to Marchetti et al. [20]. All samples
were weighed into aluminum DSC pans and hermetically sealed, before being subjected to a
heating program over a temperature range from 25 to 120 ◦C and a heating rate of 10 ◦C/min.
The equipment was calibrated with indium (m.p. = 156.61 ◦C and ∆H = 28.54 J/g) and an
empty pan was used as a reference. At least two replicates were conducted for all samples.
Thermograms of different samples were obtained and data were analyzed with Universal
Analysis 2000 (TA Instruments, USA).

2.8. Microstructure Observation

A scanning electron microscope (SEM, FEI Quanta 200, Hillsboro, OR, USA) was used
to observe the microstructure of raw and cooked, control, and optimized burgers. Samples
were taken from the center and near the surface of raw or cooked products, fixed with
Carnoy fluid (60% ethyl alcohol, 30% chloroform, glacial 10% acetic acid, v/v) at 4 ◦C for
24 h. Then, serial dehydrations were carried out using increasing concentrations of ethanol
(70%, 12 h, 95%, 2 h, 100%, 2 h), and the critical point drying technique was applied before
any observation [21]. The samples were mounted on aluminum stubs using double-sided
sticky tape and vacuum coated with gold film. Two replicates of each formulation were
observed and at least five representative fields were obtained from each replicate.

2.9. Statistical Analysis

A second-order complete polynomial equation was used to fit the behavior of each
measured variable as a function of bean flour content (CB) and water/flour ratio (CW),
expressed as coded variables:

Ŷ = α0 + α1CB + α2CW + α11(CB)
2 + α22(CW)2 + α12CBCW (1)

where Ŷ corresponded to each response variable, α0 is the constant coefficient, α1 and
α2, corresponded to the linear terms, α11 and α22 are the quadratic coefficients, and α12
corresponded to the interaction term. A backward stepwise methodology was adopted to
determine the significant variables (p < 0.05) of each response. After the surface responses
were obtained, the “lack of fit” test and the “adequate precision” coefficient were chosen to
evaluate the acceptability of the model proposed [22].

After the textural and quality attributes were regressed as a function of BF and W/BF
ratio, the calculation of the optimal levels of ingredients was performed using the desirabil-
ity function [23]. This optimization method incorporates desires and priorities for each of
the variables, combined into an overall desirability function (D) defined as the geometric
mean of each individual desirability (di).

Optimization´s main objective was to determine the levels of the independent vari-
ables (formulation components) that would give the best product characteristics, consider-
ing the quality parameters of the commercial product as a target.

To validate the performance of the predictive equations, an additional batch of samples
with the target composition of the optimum BF-B was prepared. Process yield, color, and texture
were measured and statistically compared to the predicted values (Marchetti et al., 2015).

Regression analysis, response surfaces, and the corresponding optimization were
done using Design-Expert (Stat-Ease Inc., Minneapolis, MN, USA). ANOVA and pairwise
comparisons for thermal analysis using Tukey’s test were computed using the Infostat
software. Differences in means were considered significant when p < 0.05.
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3. Results and Discussion
3.1. Physicochemical Properties

Individual predictive equations were calculated (Equation (1)) and the model results
are shown in Table 2. It is important to notice that most of the proposed models showed
highly significant probability values (p < 0.0001). Additionally, the adequacy of the models
was corroborated with the non-significant lack of fit (p > 0.05) and the adequate precision
coefficient larger than 4 (Table 2). This statistical analysis indicates that the variations
observed can be well explained with the proposed equations and the model can be used to
navigate the design space, considering the significant model discrimination showed by the
adequate precision [22]. However, there was not a significant correlation (p > 0.05) between
independent variables and the burger´s redness (a*).

Table 2. Regression coefficients of the proposed model for the variables: process yield, texture
variables (hardness, cohesiveness, springiness, chewiness, resilience), and color parameters (L* and
b*) expressed in terms of the coded level of the bean flour (BF) and water/bean flour ratio (W/BF)
in the BF-burgers. Statistical significance of the models (P), lack of fit, and “adequate precision”
coefficient, are also included.

Regression
Coefficients

Process
Yield (%) Hardness (N) Cohesiveness Springiness Chewiness (N) Resilience L* b*

Constant 89.58 15.07 0.53 0.84 6.62 0.36 77.65 12.06
BF −0.12 −2.18 −0.013 −0.024 −1.17 −0.023 0.31 0.39

W/BF −1.16 −2.32 −7.90 × 10−3 −0.025 −1.23 −0.013 0.81 −0.21
BF × W/BF ---- −0.94 −4.41 × 10−3 ---- ---- ---- 0.271 ----

Significance of
the model (P) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Lack of fit (P) 0.137 0.385 0.911 0.922 0.300 0.165 0.995 0.446
Adequate
precision 11.57 14.46 16.49 15.30 15.05 19.70 8.04 8.08

Figure 1a–g show the representation of the predicted values of the response surface
models as 3D surfaces.

All BF-B process yields were higher than 88% (Figure 1a) regardless of the flour
content in the matrix. Response surface showed that process yield was mainly controlled
by the W/BF ratio showing a linear coefficient one order larger than the one for BF content
(−1.16 vs. −0.12). Both factors negatively affected the burger process yield, i.e., increasing
moisture content led to an increase in cooking losses. Conversely, an increase in the flour
level, at the same W/BF ratio, was accompanied by a decrease in moisture, and this had a
direct influence on the reduction in cooking loss (higher yields). It is interesting to point out
the low value of the coefficient of BF level since it shows that the partial replacement of the
pork meat with the bean flour did not produce a marked decrease in the burger cooking yield.

On the other hand, C-B that comprised meat + salt + oil presented the lowest process
yield (mean value 76.4 ± 0.6 %). A burger is generally composed of more or less intact meat
fibers and fiber bundles, randomly distributed [24]. Meat comminuting in combination
with salt addition resulted in some extraction into the water phase of myofibrillar proteins
that, with the subsequent heating, ended in a complex meat gel system together with other
burger components. As the C-B was prepared in an equivalent procedure to the BF-B, the
higher yields (lower cooking losses) of the latter would be related not only to the ability
of the extracted meat proteins to form a gel and the low shrinkage of whole or pieces of
fibers but principally with the BF components, chiefly fiber and starch, either alone or
in interaction with the meat protein that could form a network and prevent the liquid
losses [25]. These findings confirmed our previous studies in burgers with different pulse
flours [18], where pulse protein and starch could imbibe water and interact with the other
matrix components, while the pulse fiber could reinforce it by hydration and increasing
its viscosity.



Appl. Sci. 2022, 12, 7571 6 of 14
Appl. Sci. 2022, 12, 7571 6 of 15 
 

 
Figure 1. Contour plots of the variation of (a) process yield (g/100 g); (b) hardness (N); (c) 
cohesiveness; (d) springiness; (e) chewiness (N); (f) resilience; (g) lightness (L*); (h) yellowness (b*), 
as a function of bean flour (BF) level (g/100 g) and water/bean flour ratio (W/BF) of BF-burgers. 
Darker colors indicate lower values of the modeled responses. 

On the other hand, C-B that comprised meat + salt + oil presented the lowest process 
yield (mean value 76.4 ± 0.6 %). A burger is generally composed of more or less intact 
meat fibers and fiber bundles, randomly distributed [24]. Meat comminuting in 
combination with salt addition resulted in some extraction into the water phase of 
myofibrillar proteins that, with the subsequent heating, ended in a complex meat gel 
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As can be seen in the coefficients in Table 2, the behavior of hardness and cohesiveness
was controlled both by the main effects of the W/BF ratio and BF content and also by the
interaction between them, with coefficients higher in magnitude for hardness. Therefore,
hardness and cohesiveness response surfaces showed similar trends concerning the ingre-
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dient levels (Figure 1b,c): the 3D surfaces plot showed that both parameters decreased as
BF level increased, with a more noticeable effect when the W/BF ratio became larger. This
effect was previously observed when different pulse flours were used in pork burgers [18].
These results were consistent with studies that had shown that some meat substitutes
resulted in minced meat products with better texture characteristics because they were dis-
solved in the meat protein matrix, absorbed water, and resulted in softener products [26,27].
In this sense, Baugreet et al. [28] attributed the softening of beef burgers to the rapid
hydration of the lentil flour particles with low density.

When analyzing the different BF-burgers, a very good positive correlation was ob-
served between pork meat content and hardness (R2 = 0.85). However, when evaluating
the hardness of the C-B, a drastic reduction in its value was observed that did not fit to
previous regression for the other burgers (Figure 2a). The spatial arrangement of the fibers
is of utmost importance for the textural behavior of the meat. Minced meat is constituted by
disintegrated muscle bundles and fibers of different sizes. These components are arbitrarily
scattered in the matrix together with cracks between them, and are held together by the
extracted myofibrillar mass [24]. Thus, the differences between BF-B and C-B hardness
could be attributed to a structural change in the matrix. It could be inferred that the BF
components would be interacting with the meat proteins, reinforcing the meat gel.
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A similar result was obtained by Tahmasebi et al. [29], who found significantly higher
values of hardness when pigeon pea flour was added to sausages, and Choi et al. [30], who
reported that the addition of fiber increased the hardness in comparison to controls with
only meat.

On the other hand, the cohesiveness of the C-B showed a higher value than those
observed in BF-B (Figure 2b). This could imply that although the interaction between the
meat proteins and the flour components could increase the hardness, it would reduce the
tighter connections that occurred among meat particles, leading to a less dense and uniform
structure, decreasing the burger’s cohesiveness [31]. Similar results were found with rice
bran fiber that significantly decreased the cohesiveness of a meat system [32] and with
quinoa seed flour in goat meat nuggets [33].

Concerning chewiness, springiness, and resilience, linear models were fitted (Table 2).
The three parameters were negatively correlated with BF level and W/BF ratio, but among
them, chewiness showed a larger dependence on both factors.

Regarding color parameters, lightness (L*) was dominated by the BF level, the W/BF
ratio, and also the interaction between them, while for the yellowness (b*), the interaction
was not significant. As can be seen in Figure 1f, the higher the BF level and the W/BF ratio
in the burger formulation, the higher the L* obtained. This increase could be explained
in terms of the lightness of white bean flour and the higher water amount in the burgers.
Similar results were reported in pork sausages containing starch when the water content
was increased in the formulation [34,35]. In addition, compared with the control (C-B,
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L* = 66.0), white bean flour inclusion resulted in burgers with higher lightness (L* ranged
between 77.1 and 78.3). This could also be attributed to the milky appearance imparted by
the oil emulsification process which was also reported by other authors [36,37].

Concerning b*, a linear relationship for yellowness (b*) was observed for BF (positively)
and W/B ratio (negatively). As it was mentioned before, it was not possible to establish a
mathematical model for a*, finding an average redness value of a* = 3.23 ± 0.08.

3.2. Optimization and Validation of Pork Burger Formulation

Product optimization allows setting conditions that simultaneously satisfy the require-
ments placed on each of the responses and conditions. To obtain simultaneous optimization,
individual parameters can be maximized, minimized, or set within limits. Particularly, for
this hybrid burger system, the optimization criteria used are shown in Table 3. Bean flour
level and process yield were maximized, while significant dependent factors such as texture
and color parameters were fixed in the range of the values determined for commercial pork
burgers. Within the studied response variables of the hybrid burgers, those that resulted
significantly (p < 0.05) and with an adequate fit were selected for simultaneous optimization.
Therefore, the a* parameter was not included. In addition, L* was not considered due to the
corresponding value of the commercial product (70.08) being out of the observed range for
the hybrid burgers (74.75–81.45). Concerning chewiness and resilience parameters, because
they presented similar tendencies to hardness and springiness they were not included.

Table 3. Optimization criteria and predicted and experimental values of process yield, hardness,
cohesiveness, springiness, and yellowness (b*) obtained for the optimized BF-burger.

Response
Variable

Optimization
Criteria

Predicted
Values

Experimental

Mean Confidence
Interval (α = 0.05)

BF Maximum 15 – –
Process yield (%) Maximum 90.29 90.40 (0.5) 88.40–92.17

Hardness (N) 12 15.23 12.5 (0.8) 10.49–19.97
Cohesiveness 0.545 0.536 0.513 (0.004) 0.51–0.55
Springiness 0.81 0.832 0.76 (0.01) 0.78–0.89

b* 13 12.60 12.8 (0.1) 11.30–13.89

According to the results, the optimal formulation of a BF-burger consisted of BF at
15 g/100 g and a W/F ratio of 1.36 g/g. Individual desirability functions led to an overall D
value of 0.756, which was considered satisfactory since it is close to the maximum (D = 1). It is
important to point out that BF-burgers with a similar level of bean flour had been sensorial
analyzed with adequate acceptability [18].

Table 3 also shows the predicted values using the mathematical model for textural
and quality properties for the optimal formulation and the experimental results of the
same sample prepared as an external validation of the mathematical model. Both predicted
and measured results were not statistically different (p > 0.05) for all the analyzed vari-
ables. Therefore, it may be concluded that the chosen mathematical procedure adequately
predicted the quality attributes of the bean flour-added pork burger.

3.3. Thermal Properties

To evaluate the effect of composition on the thermal properties of BF-burgers, thermo-
grams corresponding to formulations in extreme BF or W/BF levels (1, 3, 4, and 6) were
analyzed. All formulations exhibited five endothermic transitions without significant dif-
ferences among their peak temperatures (Tp): 54.56 ± 0.08 ◦C; 67.3 ± 0.2 ◦C; 73.7 ± 0.1 ◦C;
80.6 ± 0.2 ◦C; and 96.4 ± 0.2 ◦C. As an example, Figure 3 shows one of the thermograms. To
assign thermal transitions with the different components in the burger, differential scanning
calorimetry was also performed on pork meat/salts mix and bean flour (Figure 3).
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The three first transitions (A, B, and C in Figure 3) were also observed in the pork
meat/salts mix thermogram at similar Tp (p > 0.05) and could be associated with the denatura-
tion of different pork meat protein fractions in presence of salt [38], corresponding as follows:
A to myosin (Tp = 54.14 ◦C), B to sarcoplasmic proteins and collagen (Tp = 66.34 ◦C), and C to
actin (Tp = 73.42 ◦C). To analyze the effect of bean flour in the enthalpies associated with these
thermal transitions, after peak integration, ∆H were corrected to express all per gram of
pork meat. Results showed that the addition of bean flour produced a significant increase
(p < 0.05) in the energy required to make myosin denaturation, which was increased when
comparing the BF-burgers formulations with lower (1 and 3) and higher (4 and 6) flour
levels. Enthalpies were 0.52, 0.64, and 0.95 W/g pork meat for 0, 8, and 15 g BF/100 g,
respectively. The second transition enthalpy did not show significant differences and for
the third peak enthalpy was difficult to measure due to a noticeable overlapping with the
fourth transition.

The fourth and fifth transitions in BF-B (D and E in Figure 3) were associated with
bean flour components as they were similar to those in the bean flour thermogram (located
at 77.5 ± 0.2 ◦C and 90.1 ± 0.3 ◦C). The fourth transition (D) was attributed to starch
gelatinization and the latter (E) related to protein denaturation [39,40]. The shift of these
peak temperatures would be attributed to the disruption of starch crystallites that may
form complexes with other molecules in the meat system [41] or to the presence of salt and
the influence of a protein network system [42].

Thermal transitions in the cooked BF-B were also analyzed, both in the center and
on the surface. No peaks were observed in the thermograms of the surface of the cooked
BF-B (figure not shown). Conversely, thermograms of the center of cooked BF-burgers
showed one transition at 85 ◦C (Figure 3). As the burger center reached 71 ◦C during
the cooking process, meat proteins were almost denaturized, but the bean starch would
not gelatinize and persist natively in the cooked product. Probably, as a consequence
of the lower water availability or/and stronger interactions with the system, the starch
gelatinization temperature was observed at higher values.
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3.4. Microstructure Observation

SEM images with different magnifications of both raw and cooked C-B and optimized
BF-burger are shown in Figures 4 and 5, respectively. As can be seen at 1000× magnifica-
tion the raw and cooked matrix appearances of both products were noticeably different
(Figures 4a,c and 5a,c,e). In C-B, a coarse, smooth, and scaly protein matrix was observed,
which was more notorious with cooking and probably related to the low yields. On the
contrary, BF-B showed a stable coarse gel matrix derived from coagulated meat proteins
combined with the BF components that when cooked could give a firm, viscoelastic, and
smooth texture to this product, associated with higher yields and lower hardness.
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Figure 4. Scanning electron micrographs of the control burger (C-B): raw (a,b) and cooked (c,d).
OD: oil droplet.

Embedded in the BF-B protein matrix, for both raw and cooked samples, some oil
droplets could be found, the result of the HO–sunflower oil emulsification, and their
retention by the matrix. Although in the C-B the same oil level was added, very few oil
droplets were found in raw burgers and were very difficult to observe when cooked. In
addition, in BF-B, a high number of starch granules could be observed that were integrated
into the protein-aggregated matrix. Native starch granules with ovoid shapes could be
seen in raw BF-B (Figure 5a,b). Some of those granules persisted in the cooked burger
ungelatinized, retaining their appearance in the center (Figure 5c,d) but with some shape
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distortion in the burger surface (Figure 5e,f). Corresponding DSC data (Figure 3) were
consistent with these facts.
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4. Conclusions

This study demonstrated that through an adequately chosen mathematical procedure,
the quality attributes of a low-fat pork burger with bean flour as a partial replacement of
meat could be predicted and an optimal formulation could be proposed. Although the bean
flour and water contents affected the product properties, the thermal analysis demonstrated
that their relative levels were not the significant factor, as the bean flour added to the meat
system and the possible interactions among its components with the protein meat matrix.

Both from a textural point of view and through thermal and microstructural tests it
was possible to infer the existence of interactions between the bean flour and the meat
proteins. The incorporation of BF led to products with higher cooking yield and greater
hardness; both factors allow the incorporation of higher water content in the formulation
to achieve a hybrid meat product with characteristics similar to those available on the
market made with 100% pork. Further studies are necessary to characterize the nutritional
and compositional characteristics of reformulated hybrid burgers, as well as carry out the
sensory evaluation to corroborate the acceptance of this product by the consumer.
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