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Abstract: Making a reasonable and effective production plan is always an essential and challenging
task in industrial production. A joint optimization model of production and maintenance is proposed
in this paper, which considers the structural relationship between production units and the influence
of the unit state on demand. A three-unit series–parallel system is selected to calculate the steady-
state probability density function of the system, and the model is established by dividing different
maintenance situations in one cycle. By analyzing the composition of expected cost and expected time
in each situation, the expected cost rate is calculated by using renewal reward theory. The objective
function of the model is to minimize the expected cost rate. The genetic algorithm is improved
according to the model characteristics. The application of the model is illustrated by a case, and
the sensitivity analysis is set to show the influence of different parameters on the decision-making
results of the system, providing ideas for decision-makers. Finally, the contrast experiments show the
advantages of the proposed model and method.

Keywords: optimization; series–parallel production system; condition-based maintenance; lot sizing;
product quality

1. Introduction

Modern manufacturing enterprises are facing significant challenges, which are re-
flected by the rising production costs and equipment costs within the enterprise. At the
same time, the market has more stringent requirements for product quality than ever [1].
How to reduce costs and improve profits is an essential task for production enterprises at
this stage. The optimization of the production system includes two aspects of optimization:
production process, and maintenance process.

Currently, the optimization of the production process involves production planning
and production scheduling. Vogel et al. [2] and Rossi et al. [3] studied the production
plan or material demand plan at the system level. The conclusions provided guidance
for the long-term production of enterprises. For short- and medium-term production,
Guo et al. [4] established a multi-objective scheduling model to minimize total idle time,
total throughput time, and total tardiness and determined the optimal order scheduling
strategy. Hervert-Escobar et al. [5] considered the actual production constraints with
a practical case and proposed a method to solve the actual production and scheduling
problems. There are many enterprises for whom mass production is a reality. The traditional
Economic Production Quantity (EPQ) model was widely used in the industrial field, but it
ignored many practical factors in the actual production. Many scholars adjusted the EPQ
model according to the actual production situation, such as variable demand rate [6,7],
adjustable productivity [8], dynamic price [9], etc. The above articles ignored the objective
fact of equipment deterioration in the production system when considering short-term
production. In the actual production scene, the equipment will wear and tear, and the state
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of the equipment will deteriorate [10]. If the equipment’s state is not considered in the
production process, the probability of sudden failure of the equipment will be significant.
The equipment will fail when any critical component failure causes the equipment to stop
working [11]. Therefore, a good production plan should fully consider the deterioration of
the equipment and maintain the equipment in optimal operation.

Equipment maintenance includes preventive maintenance (PM) before failure and
corrective maintenance (CM) after failure [12]. Due to the development of modern sensor
technology and the cost of CM being generally far higher than that of PM, PM is more
common in contemporary research. Cassady et al. [13] studied the production scheduling
and PM decision-making process of a single piece of equipment. The optimal production
sequence and PM interval were obtained. Wang et al. [14] and Liao et al. [15] established a
joint model of regular PM and mass production to obtain optimal parameters for produc-
tion and maintenance plans. Some scholars proposed multi-objective models that allow
policymakers to seek optimal solutions between production and equipment maintenance
objectives [16–18]. Later, with the upgrading of production equipment, the component
structure became complicated, and it is more meaningful to study more practical equip-
ment. Many scholars extended their research objects into multi-unit systems. Tian et al. [19].
considered the economic dependency of multi-unit system maintenance and proposed
a numerical algorithm to accurately calculate the cost. In the study of multi-component
system maintenance operation, there is not only economic dependency but also structural
dependency between each unit. Do et al. [20] proposed a grouping maintenance strategy
for multi-component systems considering the structural dependency. On the basis of [20],
Vu et al. [21] measured the important role of the components in the system structure with
Birnbaum’s importance. Nguyen et al. [22] studied the condition-based maintenance deci-
sion of complex systems considering structural and economic dependency. Cheng et al. [23]
studied the joint optimization of production and maintenance of multi-component series–
parallel systems. The above articles reflect that the research on multi-unit systems is a
trend, and the structure of units in the system is an important factor affecting the mainte-
nance strategy. One point in common is that scholars formulate strategies by assuming the
deterioration of units before and after maintenance, and the deterioration of equipment
is described by setting the deterioration function. The deterioration function is obtained
according to the long-term data of the equipment, which is reasonable, but the function
will change when the equipment maintenance is considered. Zhang et al. [24] proposed
a deterioration state space partitioning (DSSP) method and established the maintenance
model of the multi-unit series system. The steady-state probability density function of the
system considering maintenance was derived and verified. The DSSP method was applied
to the joint optimization of maintenance and spare parts supply strategies to determine
the optimal maintenance and spare parts supply ordering activities [25–27]. Gan et al. [28]
studied the joint optimization of production scheduling and equipment maintenance using
the DSSP method. The DSSP method was extended, and various maintenance models
were established considering the maintenance characteristics of different systems [29]. A
question to be considered is that the system studied before by the DSSP method is a series
system. The structural relationship of critical components in many equipment is not a
simple series relationship but a complex series–parallel structure. At the same time, the
deterioration process of the units is affected by the relationship between the units in the
equipment [22]. Therefore, a method is proposed considering the structural correlation
between equipment units based on the DSSP method [24].

Based on the actual production situation, a three-unit series–parallel batch production
system is taken as the research object. The system produces products of a single variety
in large quantities. Units deteriorate in the production process, and the demand rate will
change with the change of the system state [30,31]. To avoid interfering with the normal
production process, maintenance activities are arranged after the end of the batch. Since
the structure of the three units in the system is not a simple series relationship, when the
necessary unit exceeds the fault threshold, the system needs to be maintained, but when the
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non-essential unit exceeds the fault threshold, the system does not need to be maintained.
Under the set strategy, there are 23 situations in production and maintenance actions. The
probability of each situation can be solved by using the extended DSSP method to analyze
the state probability of each unit. Considering the probability and cost of each situation,
a model with the long-term expected cost rate as the objective function is established.
The model is a complex nonlinear optimization problem with a large solution space. The
genetic algorithm is selected because of its simplicity and optimization ability in solving
production problems [32,33]. Finally, the proposed model is tested through a case study
and sensitivity analysis. The purpose is to reasonably arrange maintenance and production
plans to ensure that the system operates at low cost and high efficiency. In our view, there
are three main contributions of this paper.

(i) Considering the structural relationship between units, the maintenance group of
the system is divided, and the steady-state probability density function considering
structural importance is calculated based on extended DSSP.

(ii) The deterioration of each unit leads to a decline in product quality, thus affecting the
demand rate. The numerical relationship between each unit state and system demand
rate is extended to the three-unit system considering that part of the unqualified
products can be repaired.

(iii) The situation of the three-unit series–parallel system considering maintenance is
analyzed, and the overall expected cost rate in one cycle is calculated to formulate
a model.

The remainder of the paper is organized as follows: Section 2 describes the research
questions, proposes the model assumptions, and elaborates on the steady-state probability
density function and the quality-contingent demand. Section 3 describes the production
process and maintenance process. The model is formulized in Section 4. Section 5 introduces
the method of solving the model. Section 6 carries out numerical analysis, including
verification of steady-state probability density solution, case study, and sensitivity analysis.
Finally, the conclusion is given in Section 7.

2. Problem Description and Assumptions

To better describe the joint optimization strategy, this section is divided into four parts.
First of all, the research problem is described. Secondly, hypotheses are proposed for the
research system. In the third part, the steady-state probability density function considering
the structural relationship between units is described. Finally, unit deterioration in the
production process impacts product quality and is reflected in the demand rate. The
numerical relationship expression between the system state and demand rate is established.

2.1. Problem Description

The proposed system is a three-unit series–parallel production system that integrates
batch production and preventive maintenance. The system produces only one kind of
product. Our goal is to develop a reasonable production and maintenance model for the
three-unit series–parallel production system to ensure the lowest cost rate by analyzing the
various costs existing in the cycle. The decision variables are the production lot size and
the preventive maintenance threshold of each unit.

Each unit in the proposed production system is in a new state at the initial production.
With the progress of production, each unit has different degrees of deterioration. The
deterioration process is represented by a gamma distribution, widely used for maintenance
modeling [34]. Due to the deterioration of the system, a reasonable arrangement of unit
maintenance actions can ensure the efficient work of the production system. Detection
and maintenance activities are carried out at the end of production. The corresponding
maintenance operation is required when the unit state detection reaches the threshold.
For example, preventive maintenance operations are required when the state of unit 1 is
greater than or equal to the preventive maintenance threshold at detection, and failure
maintenance is required when the state is greater than or equal to the failure threshold.
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Normally, the cost of failure maintenance is much higher than preventive maintenance.
In order to reduce the amount of failure maintenance, preventive maintenance should be
increased, but excessive preventive maintenance will waste resources and increase costs.
Therefore, it is necessary to set a reasonable preventive maintenance threshold. Each unit
has different states at the end of the cycle, and the unit of the system is not a simple series
relationship in reality. Some unnecessary units even exceed the failure threshold but do
not affect the normal operation of the system. This paper studies the joint optimization
of production and maintenance of a three-unit system with a series–parallel relationship.
The relationship between units will determine whether the system can run normally, and
the state of each unit will determine the maintenance operation at the end of the cycle.
If the structural relationship between units is not taken into account, some unnecessary
maintenance will be likely to happen. With the decline of the equipment state, the quality
of the product decreases, and the proportion of low-quality products increases, which
ultimately affects the demand rate. If the actual demand rate is lower than the maximum
demand rate for a long time, excess production will occur. Considering the impact of the
system state on the demand rate can better serve to formulate the production plan. The
internal relationship diagram of the production system is shown in Figure 1. The relevant
parameters and explanations are shown in Table 1.

Figure 1. The internal relationship of the proposed three-unit production system.

Table 1. Parameters and explanation.

Parameters Explanation

Q Economic production quantity, decision variable
xi State of unit i

D(i)
p Preventive maintenance threshold of unit i, decision variable

D(i)
f

Failure threshold of unit i

pr Production rate of the system
dr Demand rate of the system
θ1 The ratio of low-quality products in qualified products
θ2 The ratio of repairable products in unqualified products

cSet The setting cost of single maintenance
cI Inventory cost per unit product
cR Repair cost per unit product
cS Shortage cost per unit time
cP Punishment cost

c(i)PM
Preventive maintenance cost of unit i

c(i)CM
Corrective maintenance cost of unit i

g(i)1 (tpm) The probability density function of PM time tpm of unit i

g(i)2 (tcm) The probability density function of CM time tcm of unit i
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2.2. Assumptions

• Demand is periodic, production is continuous, and the production rate is always
higher than the demand rate in the production cycle;

• Demand rate is variable, only related to product quality, and unchanged in one cycle;
• A part of the unqualified products can be repaired and completed instantly. The

repaired part is all low-quality qualified products, and the unrepairable products are
disposed after the end of the cycle;

• The production equipment has no sudden failure, and the equipment state is as new
after maintenance;

• If multiple maintenance operations are carried out simultaneously, the setting cost is
set only once [35];

• Only consider a single repair technician. That is to say, when the maintenance activities
are carried out simultaneously or separately, the total maintenance time remains
unchanged [20];

• The system can meet production requirements when the system does not need maintenance.

2.3. Steady-State Probability Density Function

According to the series–parallel production system shown in Figure 1, whether each
unit needs maintenance is considered by using the DSSP method [24]. The division results
are shown in Figure 2. For a piece of production equipment, the key components are
different, and the threshold of each unit described in Figure 2 is different. The deterioration
state space is divided into six maintenance groups according to Figure 2. (1) M (0) represents
that no unit needs maintenance. (2) M (1) represents that only unit 1 needs maintenance.
(3) M (1,2) represents that unit 1 and unit 2 need maintenance. (4) M (1,3) represents that
unit 1 and unit 3 need maintenance. (5) M (2,3) represents that unit 2 and unit 3 need
maintenance. (6) M (1,2,3) represents that unit 1, unit 2, and unit 3 need maintenance. Since
each unit has different importance in the equipment, the maintenance combination of only
maintenance unit 2 and only maintenance unit 3 does not exist.

Figure 2. Deterioration state partition diagram of three-unit series–parallel equipment.

It is assumed that the deterioration of each unit follows a gamma distribution. That
is, the deterioration increment ∆x between two consecutive time units of unit t follows
Γ(αi, βi), and the increment ∆xt of t units of time follows Γ(αit, βi) [24]. The probability
density function can be expressed as:

fi(x) =
βαitxαit−1e−βix

Γ(αit)
, x > 0 (1)

Each unit in the device has a state transition, as shown in Figure 3. When unit i
was maintained in the previous cycle, the initial state of the cycle is 0. When unit i was
not maintained in the previous cycle, the initial state of the cycle is yi. After a period of
deterioration, the state of unit i is xi.
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Figure 3. State transition diagram of unit i.

Combined with the above six maintenance groups and Figure 3, the probability of
different maintenance groups and the probability of state deterioration to (x1, x2, x3) are
obtained, as shown in Table 2. The probability density function of the joint distribution
of system state s(x1, x2, x3) is simplified to s(X). Y = (y1, y2, y3) and s(Y) represent the
steady-state probability density function.

Table 2. The probability of maintenance groups.

Maintenance Group Number Probability of Maintenance Group Deterioration Probability of
Component State

(1) M (0)
∫ min(x1,D(1)

p )
0

∫ ∞
0

∫ min(x3,D(3)
p )

0 s(Y)dy1dy2dy3

+
∫ min(x1,D(1)

p )
0

∫ min(x2,D(2)
p )

0
∫ ∞

D(3)
p

s(Y)dy1dy2dy3

f1(x1 − y1) f2(x2 − y2) f3(x3 − y3)

(2) M (1) ∫ ∞
D(1)

p

∫ min(x2,D(2)
p )

0
∫ min(x3,D(3)

p )
0 s(Y)dy1dy2dy3

f1(x1) f2(x2 − y2) f3(x3 − y3)

(3) M (1,2) ∫ ∞
D(1)

p

∫ ∞
D(2)

p

∫ min(x3,D(3)
p )

0 s(Y)dy1dy2dy3
f1(x1) f2(x2) f3(x3 − y3)

(4) M (1,3) ∫ ∞
D(1)

p

∫ min(x2,D(2)
p )

0
∫ ∞

D(3)
p

s(Y)dy1dy2dy3
f1(x1) f2(x2 − y2) f3(x3)

(5) M (2,3) ∫ min(x1,D(1)
p )

0
∫ ∞

D(2)
p

∫ ∞
D(3)

p
s(Y)dy1dy2dy3

f1(x1 − y1) f2(x2) f3(x3)

(6) M (1,2,3)
∫ ∞

D(1)
p

∫ ∞
D(2)

p

∫ ∞
D(3)

p
s(Y)dy1dy2dy3 f1(x1) f2(x2) f3(x3)

According to Table 2, the steady-state probability density function expression of the
system can be described as follows:

s(Y) =
∫ min(x1,D(1)

p )

0
∫ ∞

0

∫ min(x3,D(3)
p )

0 s(Y) f1(x1 − y1) f2(x2 − y2) f3(x3 − y3)dy1dy2dy3

+
∫ min(x1,D(1)

p )

0
∫ min(x2,D(2)

p )

0
∫ ∞

D(3)
p

s(Y) f1(x1 − y1) f2(x2 − y2) f3(x3 − y3)dy1dy2dy3

+ f1(x1)
∫ ∞

D(1)
p

∫ min(x2,D(2)
p )

0
∫ min(x3,D(3)

p )

0 s(Y) f2(x2 − y2) f3(x3 − y3)dy1dy2dy3

+ f1(x1) f2(x2)
∫ ∞

D(1)
p

∫ ∞
D(2)

p

∫ min(x3,D(3)
p )

0 s(Y) f3(x3 − y3)dy1dy2dy3

+ f1(x1) f3(x3)
∫ ∞

D(1)
p

∫ min(x2,D(2)
p )

0
∫ ∞

D(3)
p

s(Y) f2(x2 − y2)dy1dy2dy3

+ f2(x2) f3(x3)
∫ min(x1,D(1)

p )

0
∫ ∞

D(2)
p

∫ ∞
D(3)

p
s(Y) f1(x1 − y1)dy1dy2dy3

+ f1(x1) f2(x2) f3(x3)
∫ ∞

D(1)
p

∫ ∞
D(2)

p

∫ ∞
D(3)

p
s(Y)dy1dy2dy3

(2)

2.4. Quality-Contingent Demand

With the progress of production, the equipment state change affects the quality of
products. When the equipment state is worse, the defective rate of the product is higher,
and the relationship between them is as shown in Equation (3) [36]. When the defective
rate increases, considering product repair, the ratio of low-quality products increases, and
the demand rate decreases. The relationship between the demand rate and the ratio of
low-quality products is shown in Equation (4) [31].

p(x) = p0 + η(1− exp(−αxβ)) (3)
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dr = dmax × (1− µ× ρ) (4)

where p0 is the defective rate when the equipment is completely new, η is the boundary of
quality deterioration, α and β are parameters obtained according to historical data, dmax
represents the demand rate when all products are high-quality products, µ is the mediation
coefficient, 0 < µ ≤ 1, and ρ is the low-quality qualified product rate in a production cycle,
that is, the proportion of low-quality qualified products in the total number of products.

There are two types of low-quality products in a cycle; one is a certain proportion of
low-quality products in qualified products, and the other is that unqualified products can
be repaired and become low-quality products. The quantity calculation of these two kinds
of low-quality products is shown in Equations (5) and (6). Since the proposed equipment is
three-unit,

∫ tn
0 p(x)dt represents the defective rate of the system from 0 to tn.

• The number of low-quality qualified products in qualified products is:

N1 = θ1 ×Q× (1−
∫ tn

0
p(x)dt) (5)

• The number of low-quality qualified products repaired by unqualified products is:

N2 = θ2 ×Q×
∫ tn

0
p(x)dt (6)

According to Equations (5) and (6), the ratio of low-quality qualified products in a
production cycle is:

ρ =
N1 + N2

Q
(7)

Combining Equations (4) and (7), the demand rate can be obtained as follows:

dr = dmax × (1− µ× (θ1 × (1−
∫ tn

0
p(x)dt) + θ2 ×

∫ tn

0
p(x)dt)) (8)

3. Model Description
3.1. Production Description

The production rate of the system is pr, and the demand rate dr remains constant
in a cycle. The product lot size in one cycle is Q, and the production time is tn, that is,
Q = pr × tn. At the end of each production cycle, each unit in the system is tested to deter-
mine the state and arrange reasonable maintenance activities. For each unit, corresponding
maintenance is required when the state reaches the specified threshold. When the system is
shut down for maintenance, the external demand is provided by the inventory. However,
when the maintenance time is too long, the shortage cost exits. The possible inventory
situation is shown in Figure 4.

Figure 4. Possible inventory situation.
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According to Figure 4 and the production process, the maximum inventory Imax is
described as follows:

Imax =
Q
pr
(pr − dr) (9)

Maintenance time is a random variable, and it is assumed that there is only one
repair technician. The shortage time of preventive maintenance alone t(1)spm or corrective

maintenance alone t(1)scm of unit 1 can be calculated as Equations (10) and (11).

t(1)spm =
∫ ∞

Q(pr−dr)
prdr

(tpm −
Q(pr − dr)

prdr
)g(1)1 (tpm)dtpm (10)

t(1)scm =
∫ ∞

Q(pr−dr)
prdr

(tcm −
Q(pr − dr)

prdr
)g(1)2 (tcm)dtcm (11)

The corresponding maintenance time of unit 2 and unit 3 can be obtained by the same
process. Then, t(2)spm, t(3)spm, t(2)scm, t(3)scm can be calculated.

3.2. Maintenance Situation Description

To reduce the probability of equipment failure in the production process, each unit of
the system is detected at the end of each production lot size Q. The appropriate maintenance
strategy is determined according to the unit state and the structural characteristics of the
unit. In the proposed system, due to the parallel relationship between unit 2 and unit 3,
when only unit 2 or unit 3 fails, the whole system is still in regular operation at this time,
and there is no need for a maintenance operation. Considering different operations at the
end of the cycle, the system has the following twenty-three situations shown in Figure 5. In
Figure 5, N represents no maintenance, P represents preventive maintenance, C represents
corrective maintenance, and the subscript i represents unit i. For example, P1C2 represents
that unit 1 needs preventive maintenance, unit 2 needs corrective maintenance, and unit 3
does not need maintenance.

Figure 5. Division of maintenance situations.

According to Figure 5, the probability of each maintenance situation can be calculated.
For example, the situation N contains three areas. The first is{
(x1, x2, x3)

∣∣∣x1 ∈
[
0, D(1)

p

)
, x2 ∈ (0, ∞), x3 ∈

[
0, D(3)

p

)}
, in which the system can maintain

regular work and does not need maintenance regardless of the state of unit 2. The second is{
(x1, x2, x3)

∣∣∣x1 ∈
[
0, D(1)

p

)
, x2 ∈

[
0, D(2)

p

)
, x3 ∈

[
D(3)

p , D(3)
f

)}
, in which the system is reg-

ular even if the state of unit 3 exceeds the preventive maintenance threshold. Similarly,
the third is

{
(x1, x2, x3)

∣∣∣x1 ∈
[
0, D(1)

p

)
, x2 ∈

[
0, D(2)

p

)
, x3 ∈

(
D(3)

f , ∞
)}

. Its probability is
described as

p(N) =
∫ D(1)

p

0

∫ ∞

0

∫ D(3)
p

0
s(X)dx1dx2dx3 +

∫ D(1)
p

0

∫ D(2)
p

0

∫ D(3)
f

D(3)
p

s(X)dx1dx2dx3 +
∫ D(1)

p

0

∫ D(2)
p

0

∫ ∞

D(3)
f

s(X)dx1dx2dx3. (12)
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Similar to Equation (12), the probability of each situation can be calculated to prepare
for modeling.

4. Model Formulation

According to the above description of the production and maintenance process, the
model is established with the minimum expected cost rate. The expected cost rate in
infinite time can be expressed as the expected cost rate in a single renewal cycle, according
to renewal reward theory [37].

EC = EC∞ =
expected cost o f a renewal cycle
expected time o f a renewal cycle

=
E(C)
E(T)

(13)

The expected cost of a renewal cycle is the sum of the expected cost of all possible
events multiplied by their corresponding probabilities, as shown in Equation (13). The defi-
nition of expected time is the same. According to Figure 5, there are 23 different situations,
simplified as event A1, A2, · · · , Ak, · · · , An, and event A1, A2, · · · , Ak, · · · , An forms all
possible complete maintenance events in a renewal cycle with positive probability. Suppose
event A1 represents that the system does not need maintenance and A1 = A11 ∪ A12, where
A11 represents that the one of unit 2 or unit 3 fails. The expected cost can be described as
Equation (14), and the expected time E(T) can be described using the same method.

E(C) = E(C|A1 )p(A1) + E(C|A2 )p(A2) + · · ·+ E(C|An )p(An) (14)

The probability of each situation can be obtained as Equation (12). Combining
Equations (13) and (14), the expected cost rate in a renewal cycle can be described as

EC =
E(C|A11 )p(A11) + E(C|A12 )p(A12) + E(C|A2 )p(A2) + · · ·+ E(C|An )p(An)

E(T|A1 )p(A1) + E(T|A2 )p(A2) + · · ·+ E(T|An )p(An)
(15)

4.1. Cost in a Renewal Cycle

The proposed system describes the joint optimization problem of production and
maintenance, taking into account possible costs, including setting cost CSet, inventory
cost CI , repair cost CR, shortage cost CS, punishment cost CP, preventive maintenance
cost CPM, and corrective maintenance cost CCM. The setting cost cSet is a constant. For
any maintenance event Ak, let UPM(Ak) be the set of preventive maintenance units and
UCM(Ak) be the set of corrective maintenance units. Figure 5 shows the state of each unit
when the system does not need maintenance. The punishment cost cP exists when unit 2
or unit 3 exceeds the failure threshold, and the system does not need maintenance. In this
case, although the system has no fault, unit 2 or unit 3 fails, and another unit without faults
in parallel may need to undertake additional work, which may cause losses. The existing
costs are calculated below.

• inventory cost CI According to the change of inventory level in the cycle described in
Figure 4, the expected inventory level in a cycle can be represented by the area of the
triangle in the inventory graph. The inventory cost CI can be described as

CI = cI ×
Q2(pr − dr)

2prdr
(16)

• repair cost CR The number of repairable unqualified products is obtained by Equation (6),
and the repair cost can be described as

CR = cR × θ2 ×Q×
∫ tn

0
p(x)dt (17)

• shortage cost CS The shortage cost is generated only when the system is maintained,
and it is related to the maintenance time. The calculation is divided into two parts.
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The first is that the shortage occurs when the system needs preventive maintenance,
and the other is when the system needs corrective maintenance. The shortage time
is shown as Equations (13) and (14), and the shortage cost CS of event Ak can be
described as

CS(Ak) = cS × dr × ( ∑
i∈UPM(Ak)

t(i)spm + ∑
i∈UCM(Ak)

t(i)scm) (18)

• Only when the one of unit 2 or unit 3 exceeds failure threshold does the punishment
cost exists. The punishment cost CP of event Ak:

CP(Ak) =

{
cP, Ak = A11
0, else

(19)

• Preventive maintenance cost CPM of event Ak:

CPM(Ak) = ∑
i∈UPM(Ak)

c(i)PM (20)

• Corrective maintenance cost CCM of event Ak:

CCM(Ak) = ∑
i∈UCM(Ak)

c(i)CM (21)

The expected cost of event Ak can be described as:

E(C|Ak ) = cSet + CI + CR + CS(Ak) + Cp(Ak) + CPM(Ak) + CCM(Ak) (22)

4.2. Time in a Renewal Cycle

The expected time of a production cycle consists of production inventory consumption
time and shortage time.

• Inventory consumption time:

TC =
Q
dr

(23)

• Shortage time of event Ak:

TS(Ak) = ∑
i∈UPM(Ak)

t(i)spm + ∑
i∈UCM(Ak)

t(i)scm (24)

The expected time of event Ak can be described as:

E(T|Ak ) = TC + TS(Ak) (25)

The process of calculating the probability of occurrence of event Ak is similar to
Equation (12). According to Equations (12)–(25), the model with the minimum system
expected cost rate as the objective function is established.

minEC(Q, D(i)
p ) =

E(C)
E(T)

(26)

subject to


0 < D(i)

p < D(i)
f

dr ≤ dmax
dr < pr
Q ∈ N∗

(27)
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where Q and D(i)
p are decision variables to determine the optimal production lot size Q∗ of

the system and the preventive maintenance threshold D(i)
p
∗ of each unit. The relationship

between each unit threshold is restricted; that is, the preventive maintenance threshold
D(i)

p of each unit is between 0 and the corrective maintenance threshold D(i)
f . Restricted

demand rate dr less than maximum demand rate dmax is based on Equation (8), and the
demand rate dr less than the production rate pr is to ensure regular production. The lot
size Q must be a positive integer to ensure product integrity.

5. Resolution Method

This section is described from the steady-state probability density function solution
method and the proposed model solution method.

5.1. Solution Method of Steady-State Probability Density Function

The value at the integral point can be obtained as Equation (29) by applying the
approximate quadrature rule of Equation (28) to Equation (2). In the numerical calculation,
Dmax is used to replace ∞ in the Equation (29), so that h1 = D(1)

max/imax, h2, h3 can be
obtained similarly.

∫ b

a
y(s)ds =

N

∑
j=1

wjy(sj) (28)

s(i1h1, i2h2, i3h3) = f1(i1h1) f2(i2h2) f3(i3h3)− h1h2h3
imax
∑

j1=m1

imax
∑

j2=m2

m3
∑

j3=1
s(i1h1, i2h2, i3h3) f1(i1h1) f2(i2h2) f3(i3h3)

+h1h2h3

min(i1,m1)

∑
j1=1

imax
∑

j2=1

min(i3,m3)

∑
j3=1

s(i1h1, i2h2, i3h3) f1(i1h1 − j1h1) f2(i2h2 − j2h2) f3(i3h3 − j3h3)

+h1h2h3

min(i1,m1)

∑
j1=1

min(i2,m2)

∑
j2=1

imax
∑

j3=m3

s(i1h1, i2h2, i3h3) f1(i1h1 − j1h1) f2(i2h2 − j2h2) f3(i3h3 − j3h3)

+h1h2h3
imax
∑

j1=m1

min(i2,m2)

∑
j2=1

min(i3,m3)

∑
j3=1

s(i1h1, i2h2, i3h3) f1(i1h1) f2(i2h2 − j2h2) f3(i3h3 − j3h3)

+h1h2h3
imax
∑

j1=m1

imax
∑

j2=m2

min(i3,m3)

∑
j3=1

s(i1h1, i2h2, i3h3) f1(i1h1) f2(i2h2) f3(i3h3 − j3h3)

+h1h2h3
imax
∑

j1=m1

min(i2,m2)

∑
j2=1

imax
∑

j3=m3

s(i1h1, i2h2, i3h3) f1(i1h1) f2(i2h2 − j2h2) f3(i3h3)

+h1h2h3

min(i1,m1)

∑
j1=1

imax
∑

j2=m2

imax
∑

j3=m3

s(i1h1, i2h2, i3h3) f1(i1h1 − j1h1) f2(i2h2) f3(i3h3)

(29)

Let s = s(i1h1, i2h2, i3h3) be the three-dimensional array of solutions, f be the array
f(i1h1, i2h2, i3h3). Ki represents the three-dimensional array Ki

imax×imax×imax
, and its definition is

Ki = h1h2h3Ki1Ki2Ki3, Ki1 =
{

k11
i1 j1

}
imax×imax

, Ki2 =
{

k12
i2 j2

}
imax×imax

,

Ki3 =
{

k13
i3 j3

}
imax×imax

, i = (1, 2, · · · , 7). Equation (29) is changed into the form of Equation (30),

and the specific calculation of Ki is shown in Appendix A.

(I+K1 −K2 −K3 −K4 −K5 −K6 −K7)s = f (30)

The steady-state probability density function can be obtained by solving the approxi-
mate numerical solution s = s(i1h1, i2h2, i3h3) of the implicit equation.

5.2. Solution Method of the Proposed Model

Equation (26) shows four decision variables in the proposed model, and the solution
space is enormous. The traditional calculation method is challenging to calculate, so the
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intelligent algorithm is selected for solving. Since the genetic algorithm performs well in
solving the problem of ample solution space, the genetic algorithm is chosen. At the same
time, the elite strategy can ensure that the optimal individual of each generation can be
retained. In this paper, the worst individual is replaced by the optimal individual to ensure
the evolution of the population. Since the genetic algorithm generally solves the maximum
value problem, the objective function is taken as the inverse, that is, f itness = −EC(Q, D(i)

p ).
In addition, the real number is used for coding in the algorithm. The real number cod-
ing linear crossover is applied in the crossover operation, and the roulette method with
f itness = f itness−min( f itness) as input data is proposed to distinguish different fitness
values in a select process better. The mutation probability pmut gradually decreases with a
fixed attenuation coefficient δ to make the population gradually stable and obtain a better
solution [30], that is, pmut = δ× pmut. The proposed genetic algorithm flow chart is shown
in Figure 6.

Figure 6. The proposed genetic algorithm flow chart.

6. Numerical Analysis
6.1. Verification of Steady-State Probability Density Function

As the steady-state probability density function of the deteriorating state, s(X) should
have the general characteristics of the probability density function, that is, the integral in
the whole state space is 1. Let r =

∫ ∞
0

∫ ∞
0

∫ ∞
0 s(X)dx1dx2dx3. Table 3 shows the calculation

results of different parameters, where D(i)
max = 5× D(i)

f , D(1)
f = 10, D(2)

f = 12, D(3)
f = 12,

D(1)
p = 8, D(2)

p = 9.6,D(3)
p = 9.6, and αi and βi are the shape parameters and size parameters

of the deterioration process of unit i, respectively. The larger the imax, the smaller the step
size hi, and the higher the accuracy, as shown in Table 3. No matter the imax, it can be found
that the values are close to 1, which proves that the definition and numerical solution of the
steady-state probability density function of the series–parallel three-unit system proposed
are correct.
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Table 3. Value of r under different parameters.

Unit 1 Unit 2 Unit 3 r imax = 25 r’imax = 50 r”imax = 100

α1 = 2, β1 = 1.5 α2 = 1.5, β2 = 0.8 α3 = 1.5, β3 = 0.8 1.0043 1.0011 1.0003
α1 = 1.2, β1 = 0.8 α2 = 1, β2 = 0.6 α3 = 1, β3 = 0.6 1.0045 1.0012 1.0003
α1 = 1.2, β1 = 2 α2 = 2, β2 = 2.5 α3 = 2, β3 = 2.5 0.9737 1.0021 1.0007

α1 = 0.7, β1 = 1.2 α2 = 1.1, β2 = 0.9 α3 = 1.1, β3 = 0.9 1.0134 1.0026 1.0003
α1 = 0.7, β1 = 2 α2 = 0.9, β2 = 1.5 α3 = 0.9, β3 = 1.5 1.0231 1.0134 1.0014

According to the approximate quadrature rule, the fourth data and imax = 100 are
selected to draw the approximate numerical solution of the steady-state probability density
function diagram, as shown in Figure 7.

Figure 7. The approximate numerical solution of the steady-state probability density function of the
joint state of the proposed system s(x1, x2, x3).

The data in Table 3 show that when the unit obeys the distribution functions with
different parameters, the result of r is always close to 1. At the same time, when the imax is
larger, the representation accuracy is closer to 1. However, the increase in accuracy will
lead to a rise in calculation time. Therefore, the fourth group of data with imax = 100 is
selected to draw the approximate solution of the steady-state probability density function
of the system. It can be seen from Figure 6 that when the maintenance threshold of the unit
is determined, each unit has a maximum probability density, which conforms to the law of
normal deterioration.

6.2. Case Study

The proposed system is a three-unit series–parallel system, as shown in Figure 1. The
deterioration of unit i follows a gamma distribution, and the shape and size parameters
are αi and βi, respectively. The preventive maintenance time and corrective maintenance
time of unit i are exponentially distributed with parameters λi and µi, respectively. The
maintenance-related parameters of each unit are shown in Table 4. In addition, the produc-
tion and cost parameters considered in the proposed model are shown in Table 5 [30].
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Table 4. Parameters of units.

Unit i αi βi D(i)
f c(i)PM c(i)CM

λi µi

1 1.4 2.8 10 1600 4700 1 0.5
2 2.2 3.2 12 1400 4200 2 1
3 2.2 3.2 12 1400 4200 2 1

Table 5. Parameters of system.

Parameter Value Parameter Value

pr(unit/day) 200 β 1.26
dmax(unit/day) 160 µ 0.1

θ1 0.1 cSet (Yuan/each time) 600
θ2 0.6 cI (Yuan/unit/day) 0.5
p0 0.004 cR (Yuan/unit) 10
η 0.071 cS (Yuan/unit) 20
p0 0.0046 cP (Yuan) 1000

According to the solving process shown in Figure 6, the genetic algorithm parameters
are set as follows: crossover probability pcro = 0.8, initial mutation probability pmut = 0.1,
reduction coefficient δ = 0.98, population size N = 40, and iteration number L = 50. It
should be noted that through the previous calculation, it can be known that the thresholds
of unit 2 and unit 3 are roughly the same. Since unit 2 and unit 3 are two identical
parallel units, their preventive maintenance thresholds are consistent. Thus, in the final
encoding calculation, the two are set to be equal, and the operation is in line with the reality.
The optimal strategy for 50 experiments is EC(881, 6.96, 8.25, 8.25) = 217.5198. For this
enterprise, when the lot size is set to 881, the preventive maintenance threshold of unit 1 is
6.96, and the preventive maintenance thresholds of units 2 and 3 are 8.25, and the total cost
rate of long-term production of the system is the lowest at 217.5198. The iteration diagram
is shown in Figure 8.

Figure 8. Iteration diagram.

6.3. Sensitivity Analysis

This section analyzes the impact on the results by changing the input parameters. Each
calculation only varies the value of one parameter, ranging from −50% to +50%. Other
parameters remain unchanged, and the changes in the results are observed. Since unit 2
and unit 3 are the same two units, their two parameters change simultaneously. Hereby,
this part selects θ1, θ2, µ, cSet, cI , cR, cS, cP, c(1)PM, c(2)PM, a total of 10 parameters for analysis.
The influence of parameter changes on lot size Q, preventive maintenance threshold of
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unit 1 D(1)
p , preventive maintenance threshold of unit 2 D(2)

p , and expected cost rate EC are
shown in Figure 9.

Figure 9. Influence of parameters.

Figure 9a shows the influence of parameter changes on the optimal production lot size
Q. We can see that two parameters have significant effects on lot size. The first is the setting
cost cSet. With the increase of setting cost, the quantity has an apparent upward trend. When
the setting cost increases, the PM thresholds D(i)

p increase to minimize the expected cost rate
and reduce the frequency of maintenance operations. When the production time increases,
the lot size increases significantly. The second is inventory cost cI . When inventory cost
increases, the production lot size is reduced to minimize the expected cost rate.

Figure 9b shows the influence of parameter changes on the preventive maintenance
threshold of unit 1. D(1)

p is sensitive to the ten parameters analyzed. The most sensitive is

setting cost cSet and PM cost of unit 2 c(2)PM. Similar to Figure 9a, when setting cost increases,

the PM threshold D(1)
p increases to reduce maintenance frequency. When the PM cost of unit

2 increases, the threshold of unit 2 D(2)
p increases to reduce the frequency of maintenance

unit 2, and D(1)
p decreases to decrease the expected cost rate.

Figure 9c shows the influence of parameter changes on the preventive maintenance
threshold of unit 2. D(2)

p is similar to D(1)
p . The most sensitive is setting cost cSet and PM

cost of unit 1 c(1)PM. When setting cost increases, the PM threshold D(2)
p increases to reduce

maintenance frequency. When the PM cost of unit 1 increases, the threshold of unit 2 D(1)
p

increases to reduce the frequency of maintenance unit 1, and D(2)
p decreases to decrease the

expected cost rate.
Figure 9d shows the impact of parameters on the expected cost rate. It can be seen

from the figure that the expected cost rate is more sensitive to setting cost cSet and inventory
cost cI . This is because the increase in setting cost causes a lot of changes in the production
lot size, resulting in an increase in inventory costs and thus affecting the expected cost rate.
Overall, the expected cost rate is still increasing.

In the established context, different costs will affect the cost rate of the enterprise,
affecting the decisions of decision-makers. Therefore, in the normal production process,
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considering the relationship between different units, it is useful to develop a reasonable
and effective production and maintenance plan for the enterprise.

6.4. Contrast Experiment

This section sets up two contrast experiments. First, the influence of maintenance
on the system probability density function is not considered. That is, the probability
distribution function is handled according to the set function, and other conditions remain
unchanged. The second is that the influence of the structure between units on the system is
not considered. That is, the unit will perform relevant operations as long as it reaches the
maintenance threshold.

• Maintenance policy is independent of system structure When the maintenance oper-
ation does not affect the probability density function of the system, the probability
density function of the system s′(x1, x2, x3) can be expressed as

s′(x1, x2, x3) = f1(x1) f2(x2) f3(x3) (31)

Other remaining settings remain unchanged. After 20 experiments, the optimal strat-
egy is EC(807, 8.31, 10.17, 10.17) = 217.6142. Compared with the results of this paper,
it can be found that there is little difference in the cost rate, but without considering the
influence of maintenance on the unit, the optimal preventive maintenance threshold
of the three units is significantly higher than the results of this paper. In the actual
production process, it is very likely to reach the fault threshold in the production
process, affecting the normal production process.

• System probability density function is not affected by the maintenance operation In
this case, there will be 27 maintenance situations in the production process. Each
unit has three maintenance situations, and there are 3 × 3 × 3 = 27 maintenance
situations in the system. Maintenance situations are as shown in Figure 10, and the
representation method is the same in Figure 5.

Figure 10. Division of maintenance situations without considering system structure.

According to the modeling idea, the situation is modeled and solved. The optimal
strategy is EC(880, 6.91, 8.39, 8.39) = 217.2128. When the influence of the structural relation-
ship between units on the maintenance combination is not considered, the expected cost
rate is similar to the value of the model proposed in this paper. However, in theory, due to
the failure of some non-key components, the overall shutdown maintenance of the system
is required, which may lead to excessive system maintenance and waste of resources. At
the same time, in the analysis of the expected cost rate, it is found that although the cost is
reduced, the cycle becomes longer, which may lead to short supply or overtime.

Overall, the proposed model takes into account the specific situation in the real pro-
duction system, which is more realistic and can guide the decision-making of enterprises.

7. Conclusions

This paper studies the joint optimization problem of production- and condition-based
maintenance of a three-unit production system. The DSSP method is extended and applied
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to the three-unit series–parallel system, and the numerical solution of the steady-state
probability density function is given. Under the condition that the market has strict quality
requirements and a rapid response, the impact of product quality on demand is considered.
The relationship between unit deterioration state and demand rate is given. In addition, the
economic principle is considered for maintenance groupings between different units. The
production and maintenance situations in one cycle are analyzed to establish the model.
The proposed model takes the minimum expected cost rate as the objective function to
determine the optimal production lot size and preventive maintenance threshold of each
unit. According to the characteristics of the model, an improved genetic algorithm is
designed. Finally, sensitivity analysis shows the influence of each parameter on decision-
making, which is helpful for decision-making. The model can be applied to complex mass
production systems, such as transistor manufacturing systems, consumables production
systems, etc.

One limitation of this paper is that the research object is a three-unit system, and
a system above three units needs to be further expanded. The dimension of the linear
equations of the steady-state probability density function increases exponentially with the
number of units, and the improved genetic algorithm may fall into the local optimum in
the experiment. Therefore, finding more efficient equation solutions is conducive to the
subsequent expansion of applications. In future work, we can relax some assumptions
to make the model more realistic. For example, the unit returns to a better state after
maintenance rather than when new. When a parallel unit fails, the deterioration of other
units may accelerate, and the punishment cost can be calculated. In addition, the joint
optimization can also be combined with the control chart to improve product quality and
reduce cost rate.
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Appendix A

Detailed definitions of K in Equation (30):

K1 = h1h2h3

imax

∑
j1=m1

imax

∑
j2=m2

m3

∑
j3=1

f1(i1h1) f2(i2h2) f3(i3h3) (A1)

K2 = h1h2h3

min(i1,m1)

∑
j1=1

imax

∑
j2=1

min(i3,m3)

∑
j3=1

f1(i1h1 − j1h1) f2(i2h2 − j2h2) f3(i3h3 − j3h3) (A2)

K3 = h1h2h3

min(i1,m1)

∑
j1=1

min(i2,m2)

∑
j2=1

imax

∑
j3=m3

f1(i1h1 − j1h1) f2(i2h2 − j2h2) f3(i3h3 − j3h3) (A3)

K4 = h1h2h3

imax

∑
j1=m1

min(i2,m2)

∑
j2=1

min(i3,m3)

∑
j3=1

f1(i1h1) f2(i2h2 − j2h2) f3(i3h3 − j3h3) (A4)
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K5 = h1h2h3

imax

∑
j1=m1

imax

∑
j2=m2

min(i3,m3)

∑
j3=1

f1(i1h1) f2(i2h2) f3(i3h3 − j3h3) (A5)

K6 = h1h2h3

imax

∑
j1=m1

min(i2,m2)

∑
j2=1

imax

∑
j3=m3

f1(i1h1) f2(i2h2 − j2h2) f3(i3h3) (A6)

K7 = h1h2h3

min(i1,m1)

∑
j1=1

imax

∑
j2=m2

imax

∑
j3=m3

f1(i1h1 − j1h1) f2(i2h2) f3(i3h3) (A7)

k11
i1 j1

=

{
f1(i1h1) i1 = 1, · · · , imax; j1 = m1, · · · , imax

0 else

k12
i2 j2

=

{
f2(i2h2) i2 = 1, · · · , imax; j2 = m2, · · · , imax

0 else

k13
i3 j3

=

{
f3(i3h3) i3 = 1, · · · , imax; j3 = 1, · · · , m3

0 else

(A8)

k21
i1 j1

=

{
f1(i1h1 − j1h1) i1 = 1, · · · , imax; j1 = 1, · · · , min(i1, m1)

0 else

k22
i2 j2

=

{
f2(i2h2 − j2h2) i2 = 1, · · · , imax; j2 = 1, · · · , imax

0 else

k23
i3 j3

=

{
f3(i3h3 − j3h3) i3 = 1, · · · , imax; j3 = 1, · · · , min(i3, m3)

0 else

(A9)

k31
i1 j1

= k21
i1 j1

k32
i2 j2

=

{
f2(i2h2 − j2h2) i2 = 1, · · · , imax; j2 = 1, · · · , min(i2, m2)

0 else

k33
i3 j3

=

{
f3(i3h3 − j3h3) i3 = 1, · · · , imax; j3 = m3, · · · , imax

0 else

(A10)

k41
i1 j1= k11

i1 j1 ; k42
i2 j2= k32

i2 j2 ; k43
i3 j3= k23

i3 j3 (A11)

k51
i1 j1= k11

i1 j1 ; k52
i2 j2= k12

i2 j2 ; k53
i3 j3= k23

i3 j3 (A12)

k61
i1 j1

= k11
i1 j1 ; k62

i2 j2= k32
i2 j2

k63
i3 j3

=

{
f3(i3h3) i3 = 1, · · · , imax; j3 = m3, · · · , imax

0 else

(A13)

k71
i1 j1= k21

i1 j1 ; k72
i2 j2= k12

i2 j2 ; k73
i3 j3= k63

i3 j3 (A14)
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