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Abstract: X-ray imaging represents the most commonly used imaging modality in X-ray-guided
vascular intervention procedures. Computed tomography (CT) data ensure that the procedure is
performed accurately and safely by providing medical staff with positional information of the body
part before starting the procedure. In particular, accurate geometric information of the imaging
equipment is essential to accurately calculate the three-dimensional (3D) position of catheters used
in delicate operations. However, it is difficult to gather this information before surgery. Therefore,
this study proposes a novel calibration method that can be used immediately before a procedure
and can guarantee the stability of the procedure. The calibration was performed without additional
radiography using sinogram data obtained during the 3D CT imaging process, and both the accuracy
and calculation time available in the vascular intervention theater were allowable. The experimental
results show that the best angular conditions in terms of calculations and accuracy are between −40
and 40 degrees in angular range and 1.6 degrees in angular interval. Consequently, we achieved a
calculation time of 2.92 s and an average accuracy of 0.36 mm, thus meeting our goal of accuracy
below 1 mm within a minute of computational time.

Keywords: image-guided surgery; surgical navigation; X-ray calibration

1. Introduction

Radiation-based imaging has played an important role in the development of medical
technology. After Röntgen discovered X-rays in the 19th century, researchers were given
insight into the internal structure of the human body. The development of two-dimensional
(2D) radiographic imaging has provided clues about the unique structures of the human
body, and three-dimensional (3D) computed tomography (CT) has provided tools for non-
invasively observing the interior of the human body in 3D form. This development has
significantly contributed to the advancement of medical diagnostic skills.

Image-guided surgery uses medical imaging technology to develop diagnostic and
interventional technologies [1]. Radiographic imaging is one of the most commonly used
imaging modalities for image-guided surgery, providing physicians with live positional
information. As such, it plays an important role in the accuracy and safety of the opera-
tion [2]. Importantly, image data distortion must be minimized to ensure the accuracy of
image-guided surgery, which necessitates accurate knowledge of the geometric information
corresponding to the imaged volume and the development of an image-guided surgical
system. Vascular intervention using angiographic imaging represents one of the clinical
applications of the image-guided approach. In this procedure, a catheter is inserted into the
patient’s body and fed in the desired direction [3]. When the catheter reaches its destination,
it can be maneuvered to remove sediment from the vessel or insert a mesh-type structure
to widen the narrowed vessel, or even inject therapeutic drugs. The medical staff can
track the catheter’s location during these procedures using 2D radiographic imaging, and
3D Cone-Beam CT (CBCT) is only used as an auxiliary means of helping determine and
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guide the catheter location. This necessitates the development of techniques for intuitively
determining the 3D location of the catheter using the spatial relationship between 3D
CBCT data and 2D radiographs taken repeatedly during the procedures. There are some
existing approaches to estimating the 3D position of the catheter by utilizing the image
registration techniques of 2D radiographic imaging and 3D CBCT data. Calculating the
precise location of the catheter necessitates precise calibration of the projectional geometry
of the radiographic imaging device, which is essential for the implementation of 2D and
3D image registration techniques.

Therefore, previous studies have been conducted to accurately calculate the geometric
information of the imaging device and improves the accuracy of the registration between
the 2D and 3D CT images based on this information. Consequently, the findings of this
study contribute to the advancement of this work by improving the accuracy and stabil-
ity of image-guided surgery. The accuracy of the geometric parameters of the imaging
device that acquires the image data influences the accuracy of registration between the
2D radiographic image and the 3D CT data. Image registration with inaccurate geometric
parameters cannot guarantee high accuracy, which negatively impacts the accuracy and sta-
bility of image-guided surgery. Therefore, several groups are also interested in improving
the calibration accuracy of the projectional geometry of the imaging device to improve the
accuracy of the registration and ultimately guarantee the safety of the image-guided surgi-
cal system. Calibration techniques for radiographic systems have been studied as methods
for calculating the geometric information of radiographic images using a calibration phan-
tom [4–7]. The phantom-based calibration method requires several radiographic images
of a phantom that employs ball bearings to establish accurate locations at multiple angles.
The geometric parameters of the system are then calculated using the spatial relationship
between the 2D images acquired by the imaging device and the known 3D spatial fiducial
markers of the phantom calibration model. Kohei Sato et al. proposed an algorithm for
estimating the geometric parameters of the system by attaching calibration markers to the
X-ray source housing [4]. When the X-ray images are acquired, the calibration markers
are always presented with the objects. However, such markers can introduce noise and
scattering effects and can act as physical obstacles that prevent the accurate diagnosis of a
patient. J. Chetley Ford et al. proposed an algorithm to improve and verify the accuracy
of CBCT geometric parameter estimation by performing additional calibration with the
results of the initial calibration [5]. Calibration errors caused by phantom tolerance were
corrected during the calibration procedures in their study. C. Fragnaud et al. also proposed
a calibration method that uses a Computer-Aided Design (CAD) model to estimate the
initial projective model of the X-ray device and then compute the real projective parameters
by comparing the projective model from X-ray images with the CAD-based projective
mode [8]. There have also been efforts to improve calibration accuracy with a new calibra-
tion phantom design. V. Nguyen et al. devised a low-cost method for creating a calibration
phantom [7]. The goal of their research was to devise a method for creating a phantom
using lightweight and inexpensive LEGO blocks. Consequently, the calibration phantom
could be easily and cheaply designed and built for clinical applications. J. da Silva et al.
proposed a paddle-wheel type phantom for cone-beam CT geometric calibration [9], and V.
Nguyen reported geometrical calibration results using a new phantom with a cylindrical
shape and then embedding fiducial markers on the body. The calibration using the new
phantom improved the accuracy compared to traditional designs. In addition, Hui Miao et
al. used Singular Value Decomposition (SVD) to calculate the geometric parameters of the
radiographic system [6]. Although their study proposed an approach similar to that in this
study that applies SVD [10,11] to the calibration of the radiographic imaging device, their
work had a limitation in the degree of freedom of the geometric parameters. Furthermore,
the approach proposed herein can be applied to the same device when provided with
known geometric parameters.

Previous research presented efforts to improve the geometric calibration of the X-ray
imaging device using a calibration pattern fixed to the X-ray source and providing an
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algorithm to calibrate the geometric parameters. Furthermore, some studies proposed a
low-cost, easily manufactured calibration phantom. These studies, however, had several
limitations. When a calibration pattern is attached for calibration, the markers on the
calibration pattern can sometimes occlude the patient’s lesion. This usually makes diagnosis
of the patient’s disorder difficult. In addition, for calibration, the calibration algorithms
typically acquired a single or several projectional images of the phantom. Although they
showed promising calibration accuracy, it was challenging to maintain calibration accuracy
along the various orientations of the C-arm X-ray gantry. This study was designed and
conducted to overcome such limitations and improve the calibration accuracy along various
orientations of the C-arm X-ray gantry.

This study aims to develop a projectional geometry calibration method for radio-
graphic use, which is essential for performing registration between 2D radiographic images
and CBCT data acquired intraoperatively during an image-guided angiographic interven-
tion. The clinical target of this study is a C-arm angiographic imaging device that has been
used in vascular intervention procedures and is equipped with CBCT imaging capabilities.
While operating the CBCT, this device can provide sinogram data and radiographic image
data with multi-directional projection images at various angles, which are then used to
reconstruct 3D CT volume data. The significance of this study is in the calculation and
application of the geometric parameters of radiographs required for image-guided vascular
intervention procedures using the sinogram data obtained during CBCT acquisition in
the intervention room. Herein, we aim to improve the accuracy of the calibration method
using sinogram data acquired during the interventional procedures without any additional
radiation exposure and any significant increase in the computational time. We attempted
to obtain robust calibration accuracy along various orientations of the X-ray gantry using
sinogram data and only one calibration procedure. Furthermore, we did not want to per-
manently fix any calibration pattern to obtain a clear object without using any additional
calibration markers. A calibration phantom with ball bearings to establish accurate 3D loca-
tions was designed for this purpose, and is used before surgery to calibrate the geometry
of the X-ray imaging device. This study also focused on executing the calibration method
in under a minute, which is an acceptable calculation time for image-induced vascular
intervention, and within a 1 mm accuracy.

2. Materials Furthermore, Methods
2.1. Phantom Design Furthermore, Fabrication

The calibration phantom used a 2-layered model designed with 3D CAD software,
SolidWorks (Dassault Systèms SolidWorks Corp., Vélizy-Villacoublay, France), and was
built with plastic material, Vero (Stratasys, Rehovot, Israel), using a 3D printer, Objet30
Prime (Stratasys, Rehovot, Israel). Figure 1 shows the CAD model of the calibration
phantom and the manufactured phantom, both of which have fiducial markers to establish
precise 3D locations. Figure 2 depicts the layouts of the two layers. The size of the phantom
is 170 mm × 170 mm × 103.54 mm, and lead ball bearings, SL-20 and SL-40 (Suremark,
Simi Valley, CA, USA) lead, were used as fiducial markers. The upper and lower layers
are the same size but differ in height. On the upper layer, 16 markers with a diameter of
2 mm are arranged in a rectangular pattern at 20 mm intervals toward the X-ray source. On
the lower layer, there are two sizes of markers—eight 4 mm diameter markers arranged
in small rectangular shapes at 20 mm intervals and twenty-four 4 mm diameter markers
arranged in large rectangular shapes at 20 mm intervals and located toward the X-ray
detector. Only the height differs between the horizontal and vertical centers of the three
squares and the center of the phantom.
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Figure 1. Calibration phantom model (A) was designed using CAD software, and the phantom
(B) was built with a 3D printer, with lead-bearing fiducial markers to establish precise locations.

Figure 2. Two-dimensional drawings of the top and bottom layers of the phantom. The brackets
represent the 3D coordinates of the center of each ball bearing, in mm. (A) is the lower layer with
2 mm diameter ball bearings, and (B) is the upper layer with 4 mm ball bearings.

2.2. Definition of the Coordinate System

Figure 3 depicts the coordinate system defined for imaging device calibration. The
origin of the world coordinate system is defined as being in the center of the detector,
and the X-ray source is aligned with the z-axis of the system. This means that the x and
y of the centers of the X-ray source and detector are the same and have different heights
(z coordinate), a choice that avoids computational complexity and burden. The CT system
rotates in the y-axis direction about the rotational center, which is commonly referred to as
the isocenter.
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Figure 3. Coordinate system used in the calibration; the red axes show the world coordinate system,
and the blue axes represent the orientation of the phantom.

Equation (1) defines the position of the upper and lower layers in the calibration
phantom, position of the X-ray source, center of the X-ray detector, and isocenter in the
world coordinate system. These represent the 3D information regarding the imaging device.
The center of the X-ray detector is the origin of the world coordinate system.

Pu = (Pu
x , Pu

y , Pu
z ) : Upper of Phantom

Pl = (Pl
x, Pl

y, Pl
z) : Lower of Phantom

S = (Sx, Sy, Sz) : Position of X-ray Source

D = (Dx, Dy, Dz) = (0, 0, 0) : Center of X-ray Detector

I = (Ix, Iy, Iz) : Isocenter

(1)

Equation (2) presents the coordinates of the projected point on the upper and lower
layers of the phantom, which give the 2D information in the X-ray image.

P′u = (P′ux , P′uy , P′uz )

P′ l = (P′ lx, P′ ly, P′ lz)
(2)

where, P′uz = P′ lz = Dz = 0

2.3. Detection of Fiducial Markers

The sinogram is in the form of stacked data of the projection images at various angles.
The fiducial markers in the images were detected at each angle, and the detected markers
were divided into upper and lower layer markers. Since the X-ray attenuation coefficient in
the fiducial marker is much higher than in the plastic material of the phantom, the fidu-
cial markers could be distinguished using the threshold-based segmentation method [12].
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Therefore, by applying the threshold value to the CT sinogram data, the markers could
be segmented, and the layer to which the fiducials belonged could be classified. Then the
centers of markers were determined by successively applying the Hough circle transforma-
tion [13] and findContours function [14] of the OpenCV library. Since the upper and lower
fiducial markers have different heights and radii, they could be divided into two groups
based on the sizes of the detected markers.

Since some markers (close to each other or superimposed) could not be detected well,
a detection algorithm that considers these cases is developed. The detected markers were
divided into four sections—top, bottom, left, and right—and a rectangle was formed using
the detected markers. Four straight lines were drawn connecting both corner points for
each divided section. The corners of the detection rectangle were formed by the four
intersection points of the four lines. Consequently, even if a few markers are missed during
the detection process, a consistent rectangle can be generated using the detected markers.

Calibration is performed as shown in Figure 4 based on the position of the marker
detected in the sinogram data.

Figure 4. A flowchart of the calibration method.

2.4. Calculation of SDD, Phantom, Source, and Detector Position

The projectional radiography of the phantom is magnified based on the ratio between
X-ray source-to-phantom distance and the source-to-detector distance (SDD). Equation (3)
uses a triangular shape to express a proportional equation in which a point on the phantom
is projected–expanded.

Sz − Dz : Sz − Pz = P′z : Px (3)

By defining Sz − Pz as the parameter z′, Equation (3) can be expressed as Equation (4).

Sz :z′ = P′z : Px (4)

where, z′ = Sz − Pz
When projected to the x–z plane, the system can be expressed as shown in Figure 5.

Equation (5) expresses the coordinates of each point in Figure 5.
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Figure 5. System projected in two dimensions in the y-axis direction.

Pu,M =[PM
x , PM

z ]

Pu,L =[PM
x + Wucosθy, PM

z −Wusinθy]

Pu,R =[PM
x + Wucosθy, PM

z + Wusinθy]

Pl,L =[PM
x + Hsinθy −W lcosθy, PM

z − Hcosθy −W lsinθy]

Pl,R =[PM
x + Hsinθy + W lcosθy, PM

z − Hcosθy + W lsinθy]

(5)

where,

L, R, and M represent the left, right, and middle point in the 2D projection system, respectively.
W and H represent the width and height of the phantom, respectively.

Equations (4) and (5) can be substituted and summarized as Equation (6).

sinθy =
P′u,L

x + P′u,R
x − 2P′u,M

x

Wu · (P′u,L
x − P′u,R

x )
· z′

cosθy =
P′ l,Rx − P′ l,Lx −

sinθy
z′ ·W

l(P′ l,Lx + P′ l,Rx )

H(P′ l,Lx − P′ l,Rx ) + 2Sz ·W l
· z′

(6)

Since sinθy
2 + cosθy

2 = 1, the x- and z-coordinates of the phantom and SDD can be
calculated by Equation (7).

Sz =
P′u,M

x − P′u,L
x · (Wu · a + 1)
Wu · b

Pu,M
z =Sz − z′ = Sz −

√
(a2 + b2)−1

Pu,M
x =

a
Sz

z′

(7)

where, a = P′u,L
x +P′u,R

x −2P′u,M
x

Wu ·(P′u,L
x −P′u,R

x )
, b = P′ l,Rx −P′ l,Lx −a·W l(P′ l,Lx +P′ l,Rx )

H(P′ l,Lx −P′ l,Rx )+2Sz ·W l

To calculate the 3D initial coordinates of the phantom and the source, the same process
from Equations (3)–(7) is performed for the system projected to the y–z plane.
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2.5. Calculation of Isocenter Position
The SVD method was used to calculate the 3D coordinates of the phantom and

the isocenter [10,11]. The positions of known markers are defined with respect to the
coordinates of the phantom. Therefore, a relational equation should be established by
considering the initial position and orientation with respect to the current coordinates of
the markers. Furthermore, the rotational angle about the z-axis, θz, can be calculated using
the minAreaRect function [15] of the OpenCV library. A 4× 4 homogeneous transformation
matrix can be expressed as the relational Equation (8) of a point rotated along the X- and
Y-axes.

Pr = M · P = TRxRyT−1P
Pr

x
Pr

y
Pr

z
1

 =


1 0 0 Ix
0 1 0 Iy
0 0 0 Iz
0 0 0 1




1 0 0 0
0 cosθx −sinθx 0
0 sinθx cosθx 0
0 0 0 1




cosθy 0 sinθy 0
0 1 0 0

−sinθy 0 cosθy 0
0 0 0 1




1 0 0 −Ix
0 1 0 −Iy
0 0 0 −Iz
0 0 0 1




Px
Py
Pz
1


(8)

The proportional expression between Pr and the projected point P′ is given by
Equation (9).

Sz : Sz − Pr
z = P′x : Pr

x

Sz : Sz − Pr
z = P′y : Pr

y
(9)

Equations (8) and (9) can be substituted and summarized into Equation (10).

P′x · Sz =Px[Szcosθy − P′xsinθycosθx] + Py[P′xsinθx]

+ Pz[Szsinθy + P′xcosθycosθx] + Ix[Sz(1− cosθy) + P′xsinθycosθx]

− Iy[P′xsinθx] + Iz[P′x(1− cosθycosθx)− Szsinθy]

P′y · Sz =Px[Szsinθysinθx − P′ysinθycosθx] + Py[Szcosθx + P′ysinθx]

+ Pz[P′ycosθycosθx − Szcosθysinθx] + Ix[P′ysinθycosθx − Szsinθysinθx]

− Iy[Sz(1− cosθx)− P′ysinθx] + Iz[Szcosθysinθx + P′y(1− cosθycosθx)]

(10)

The least-squares solution can be calculated by defining a matrix form of Ax = b using
SVD [10,11]. Therefore, Equation (10) can be converted into Equation (11) in the form of
Ax = b.

[
Szcosθy − P′xsinθycosθx · · · P′x(1− cosθycosθx)− Szsinθy

Szsinθysinθx − P′ysinθycosθx · · · Szcosθysinθx + P′y(1− cosθycosθx)

]T



Px
Py
Pz
Ix
Iy
Iz


=

[
P′x · Sz
P′y · Sz

]
(11)

Since Equation (11) is a matrix of one angle, the matrix of several angles can be
expressed as Equation (12).
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Szcosθy,0 − P′xsinθy,0cosθx,0 · · · P′x(1− cosθy,0cosθx,0)− Szsinθy,0

Szsinθy,0sinθx,0 − P′ysinθy,0cosθx,0 · · · Szcosθy,0sinθx,0 + P′y(1− cosθy,0cosθx,0)
...

...
...


T



Px
Py
Pz
Ix
Iy
Iz



=


P′x,0 · Sz
P′y,0 · Sz

...


(12)

Equation (12) obtains the Ax = b matrix in which Px, Py, Pz, Ix, Iy, Iz become variables.
Matrix A can be decomposed into A = UΣVT by the SVD theorem.

A : m× n rectangular matrix

U : m×m orthogonal matrix

Σ : m× n diagonal matrix

V : m×m orthogonal matrix

The pseudo-inverse of A is calculated as A+ = VΣ+UT . Therefore, in Ax = b, the
x can be calculated as x = A+b, and the calculation is the least-squares solution that
minimizes ‖Ax− b‖. Consequently, the least-squares solution of Equation (12) can be
expressed as Equation (13).

x =A+b

=
[
Px Py Pz Ix Iy Iz

]T (13)

Since the eight corners detected from the phantom are used, Equation (13) is expanded
to Equation (14) to calculate the coordinates of the eight corners.

x =A+b

=
[
Px,0 Py,0 Pz,0 · · · Px,7 Py,7 Pz,7 Ix Iy Iz

]T (14)

2.6. Evaluation

The projections of the fiducial markers to the detector are computed and compared
with the locations of the fiducials in the sinogram corresponding to the angular orienta-
tion of the X-ray gantry based on the geometric parameters obtained using the calibra-
tion method.

Equation (3) can be used to express the projection result. Equation (15) shows the error
between the coordinates predicted by the geometric parameters and the locations detected
in the same angle image of the sinogram data.

Exθ
= P′dx,θ − P′x,θ

Eyθ
= P′dy,θ − P′y,θ

Eθ =
√

E2
xθ
+ E2

yθ

(15)

where, P′dx,θ and P′dy,θ are the marker positions detected in the angle θ image of the sino-
gram data.
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3. Experiments
3.1. Experimental Setup

The Artis zee floor system is a C-arm angio imaging device with a 2D projectional
X-ray fluoroscopic imaging function and a CBCT imaging function that was used in the
experiment (Siemens AG, Munich, Germany). The Daegu-Gyeongbuk Medical Innovation
Foundation has established the imaging system (KMEDIhub, Daegu, Republic of Korea).
Figure 6 depicts the imaging room where the experiments were conducted. The phantom
experiment was also conducted in the imaging room. The computer used in the experiments
is equipped with an Intel i7 9700KF CPU, 40GB of DDR4 RAM, and an NVIDIA GeForce
RTX 3080 GPU.

Figure 6. C-arm angio imaging device was applied to the experiment, which has the functions of 2D
projectional X-ray imaging and CBCT imaging.

3.2. Software Implementation of the Geometric Calibration for X-ray Imaging

C++ and the MFC library were used to create the software application for geometric
calibration for X-ray imaging. Figure 7 shows the graphical user interface (GUI) for the
application. VTK 8.2.0, GDCM 2.8.9, and OpenCV 4.0.1 open-source libraries were used to
implement the core functions. Each function, as well as the order in which it was used, is
described below. The ‘Load DICOM’ button reads the sinogram data and X-ray images, as
well as their metadata, such as the angle of each slice and pixel spacing. A selected slice of
data of the sinogram data is rendered in ‘Window 1’. The rendered slice in ‘Window 1’ can
be changed to a different slice with a different angle using either the mouse or keyboard.
The ‘Calibration’ button enables the calculation of the geometric parameters of the X-ray
imaging using the loaded sinogram data belonging to the predefined range of angles (in
degrees) and angle interval. The angle range and interval can also be defined using the
application GUI’s edit boxes. The calculated geometric parameters are displayed in the
annotation at the top right of ‘Window 1’ and saved as an XML file. The ‘Projection Error’
check box allows the user to specify whether the error of ‘Window 2’ is displayed. The
‘2D Reflection Button’ allows the operator to overlay two images in the same view. In
‘Window 2’, the computational result of the projected markers based on the geometric
parameters and the detected markers in the corresponding slice of sinogram data can
be superimposed. Additionally, the ‘Error’ button calculates the root mean square error
between the superimposed data in ‘Window 2’, and the error is also written to the file
in CSV format. For comparison purposes, previously computed results are also loadable
using the ‘Read Points’ button, which enables the reading of the computed positions of the
projected markers written in the XML file format.
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Figure 7. Software application for the geometric calibration of X-ray imaging was implemented,
which provides core functions for the calibration and graphical user interface.

3.3. Data Acquisition

The imaging device was used for the experiments, and the image data were acquired
in DICOM file format, which is commonly used in medical applications. After securely
positioning the calibration phantom on the table, CBCT data were collected, and the
sinogram and reconstructed volume were saved to files. Following that, several 2D X-ray
fluoroscopic images were captured at various X-ray gantry orientations. The metadata
that contains the detailed information of the image data is stored with the image data
for calibration. The dimensions of X-ray fluoroscopic image data are 2480 × 1920, and
the spacings of the x- and y-direction are 0.154 mm and 0.154 mm, respectively. This
information is stored in the tags (0018, 1604), (0018, 1608), and (0018, 1164) of the metadata.
The sinogram data are a stack of 469 images with a dimension of 1240 × 960, and the
dimension is stored in the same tags (0018, 1604) and (0018, 1608) as the X-ray data, and
the number of images is stored in the tag (0028, 0008). Since the device that acquired the
X-ray data and sinogram data is the same, the spacing of the pixels for the sinogram data
is twice that of the spacing for the X-ray data. Each projectional image for the sinogram
was acquired every 0.399 degrees, from −98.95 degrees to 99.04 degrees, and the angle
information is stored in the metadata tags (0018, 1520). The geometric calibration was
applied to 301 images ranging from −60.12 degrees to 59.85 degrees for the experiment.

4. Results

In the experiments, ten parameters were computed for the geometrical calibration of X-
ray projectional imaging, including the SDD, position and orientation of the phantom, and
position of the isocenter. The sinogram and 2D projectional X-ray images were obtained,
and the evaluation procedures were followed using the software application developed in
this study.

Three different methods were used to analyze the results. First, the accuracy of the
calibration method was assessed using the angular range of the sinogram data used in the
calibration. As shown in Figure 8, the calibration algorithm was executed under a variety
of data size conditions, with the data set ranging from −15 to 15 to −60 to 60, increasing
10 degrees at each step. The results are presented in the orange bar graph of Figure 8, which
shows that the operation with a wide range of data provided improved accuracy. If the
data are wider than the angle from−40 to 40, the accuracy of the calibration was stable, and
further improvement could not be detected. However, as the range of the data increased,
so did the computational time for the calibration algorithm, as shown in the blue plot in
Figure 8.
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Figure 8. Graph of mean errors (orange bars) and computational time (blue plot) according to
different angular ranges applied to the calibration algorithm; the interval of the data is 0.4 degrees for
each range. The x-axis represents the angular range of the data applied to the calibration. The y-axis
on the left and right give the error and computational time, respectively.

Second, the accuracy of the calibration method was assessed using the data intervals
applied to the calibration algorithm. The calibration method was followed in several
conditions with different angle intervals but with the same angular range applied to the
algorithm, as shown in Figure 9. As illustrated with the orange bar graph in Figure 9, the
narrower the angular interval, the smaller the error. The improvement in the error was not
dramatic but gradual. Furthermore, as the angular interval widened, the calculation time
decreased, which is indicated by the blue plot in Figure 9.

We also tested the robustness of our method by projecting the 3D positions of the
fiducial markers into various angles based on the rotation of the C-arm gantry and cal-
culating the mean error between the projected fiducial positions and the centers of the
fiducial markers in the sinogram projection image. Calibrations were performed under
five different conditions, as shown in Figure 10, with angular ranges ranging from −20 to
20 degrees, −30 to 30 degrees, −40 to 40 degrees, −50 to 50 degrees, and −60 to 60 degrees.
Based on the results of each trial with different conditions, the 3D fiducial positions were
projected into all of the projected images that belong to the sinogram. As illustrated in
Figure 10, the evaluation result of the calibration with sinogram data with a range of −20 to
20 degrees shows the worst accuracy. The accuracy improved by broadening the data range
used by the calibration algorithm. Furthermore, as the angle moved away from 0 degrees,
the projectional errors in each trial increased, and the gradient became much larger in the
rotation angle outside of the range of the data used for calibration. In addition, the wider
the angle range, the better the accuracy of the projectional error. Moreover, the gradient is
much less for the results with a narrower data range.
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Figure 9. Graph of mean errors (orange bars) and computational time (blue plot) according to the
different angular intervals applied to the calibration algorithm with the same range of the applied
data; the angular interval ranges from 0.4 degrees to 3.2 degrees; the x-axis represents the angular
interval of the image used in the calculation. The y-axis on the left gives the error, and that on the
right gives the computational time.

Figure 10. Graph of the projection mean errors according to the angle range with an angle interval
of 0.4 degrees; the x-axis represents the rotation angle of each slice in the sinogram, and the y-axis
represents the projection mean error of the eight corner points [mm].

5. Discussion

We conducted phantom experiments and analyzed the experimental results using
three different methods to evaluate our calibration method. First, we assessed the accuracy
of the calibration method using a variety of data range conditions applied to the calibration
algorithm. Calibrations were performed using different ranges of sinogram data, and the
results are shown in Figure 8. The results show that a wider range of sinogram angles could
guarantee improved accuracy compared to a narrower range of data or a single image from
one angle. Although a broader range of data yields higher accuracy, it also necessitates
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more computational time. As shown in the blue plot of Figure 8, by increasing the range
of the data, the computational time also increases significantly. However, the accuracy
with different data ranges shows that there are no significant differences in accuracy if
the data range is wider than −40 to 40 degrees. Therefore, when considering the required
computational time, the range between −40 and 40 degrees is an optimized range of data
for calibration.

Second, we assessed how much the data interval affected the accuracy. The calibration
algorithm’s accuracy was tested with intervals ranging from 0.4 degrees to 3.2 degrees
over the same angular range. Figure 9 depicts the evaluation results, which show that the
interval of the sinogram data applied to the algorithm affects the accuracy less than the
range of the sinogram data. As shown in Figure 9, the results show no trend of decreasing
accuracy as the data interval is increased. The computational time, on the other hand, can
be reduced by reducing the amount of data and increasing the interval of the data using the
same angular range. Although the data size is reduced linearly by increasing the interval
of the data linearly, the computational time is not reduced linearly. This is because the data
loading time is involved in the computational time. By reducing the data size (by increasing
the interval), the percentage of the loading time relative to the entire computational time
is increased. Consequently, the computational time can be reduced by selecting a larger
interval, as shown in Figure 9. Given the accuracy and computational time constraints, an
interval of 1.6 degrees can be considered an optimized interval for the data used by the
calibration algorithm.

Finally, the robustness of the algorithm was evaluated based on the results with
various data ranges by projecting 3D fiducial markers of the phantom to each projectional
image of the sinogram and comparing the error between the projected coordinates and
the center of the fiducial marker region in each image slice of the sinogram. As shown
in Figure 10, the condition that applies a wider range of sinogram data to the algorithm
outperforms that with a narrower range. Furthermore, the shape of the plot is similar to
the parabolic shape of the quadratic polynomial with a minimum value near 0, and errors
increase as the rotation angle of the C-arm gantry increases in both directions within the
range. The accuracy of the calibration presented errors below 1 mm within the method’s
range, whereas the errors are much larger outside of the range, particularly for the ranges
of −20 to 20 degrees and −30 to 30 degrees. For the wider range of −40 to 40 degrees,
the overall accuracy is below 1 mm. The plots in Figure 10 are asymmetric due to the
rotational error of the C-arm gantry. If the rotational motion of the C-arm gantry is pure,
the error would demonstrate a symmetric pattern. However, since the rotational motion
has some errors during the rotational operation of the C-arm gantry in a real situation,
due to the vibration or bias of the rotational center of the C-arm, the error pattern is not
perfectly symmetric.

6. Conclusions Furthermore, Future Work

This study aims to create a calibration method that can be used in the intervention
theater immediately prior to a vascular intervention procedure. Furthermore, it aims to
improve the accuracy of the calibration method using sinogram data acquired during the
CBCT imaging process. In other words, the goal of this study is to create a calibration
method that ensures the safety of the vascular intervention procedure and executes within
the acceptable computational time for the image-guided vascular intervention room without
exposing the patient to any additional radiation.

The proposed method is a phantom-based calibration technique that uses sinogram
data to compute ten geometric parameters of the imaging device. By comparing and
evaluating the calibration accuracy across various angular ranges and interval conditions,
the optimal angle range and interval are proposed. Consequently, the optimal calibration
conditions considering the calculation time and accuracy were found to be an angular
range from −40 to 40 degrees, with an optimal angular interval of 1.6 degrees. Therefore, a
calibration method with an operation time of 2.92 s and a mean error of 0.36 mm could be
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achieved, thus satisfying our goal of below 1 mm accuracy within a minute computational
time. We plan to conduct additional research in the near future to apply this calibration
method to a robotic system for vascular intervention.
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