
Citation: Rodriguez, C.; Toharia, P.;

Pastor, L.; Mata, S. Carbonic: A

Framework for Creating and

Visualizing Complex Compound

Graphs. Appl. Sci. 2022, 12, 7541.

https://doi.org/10.3390/app12157541

Academic Editors: Carson K. Leung,

Kwan-Hee Yoo and Nakhoon Baek

Received: 10 June 2022

Accepted: 24 July 2022

Published: 27 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Carbonic: A Framework for Creating and Visualizing Complex
Compound Graphs
Cristian Rodriguez 1 , Pablo Toharia 2,3,* , Luis Pastor 1,3 and Susana Mata 1,3

1 Departamento de Ciencias de la Computación, Arquitectura de Computadores, Lenguajes y Sistemas
Informáticos y Estadística e Investigación Operativa, Escuela Técnica Superior de Ingeniería Informática,
Campus de Móstoles, Universidad Rey Juan Carlos, 28933 Madrid, Spain; cristian.rodriguez@urjc.es (C.R.);
susana.mata@urjc.es (S.M.); luis.pastor@urjc.es (L.P.)

2 Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Escuela Técnica Superior de Ingenieros
Informáticos, Campus de Montegancedo, Universidad Politécnica de Madrid, Boadilla del Monte,
28660 Madrid, Spain

3 Center for Computational Simulation, Campus de Montegancedo, Universidad Politécnica de Madrid,
Boadilla del Monte, 28660 Madrid, Spain

* Correspondence: pablo.toharia@upm.es; Tel.: +34-91-067-2864

Abstract: Advances in data generation and acquisition have resulted in a volume of available data
of such magnitude that our ability to interpret and extract valuable knowledge from them has been
surpassed. Our capacity to analyze data is hampered not only by their amount or their dimensionality,
but also by their relationships and by the complexity of the systems they model. Compound graphs
allow us to represent the existing relationships between nodes that are themselves hierarchically
structured, so they are a natural substrate to support multiscale analysis of complex graphs. This
paper presents Carbonic, a framework for interactive multiscale visual exploration and editing of
compound graphs that incorporates several strategies for complexity management. It combines the
representation of graphs at multiple levels of abstraction, with techniques for reducing the number
of visible elements and for reducing visual cluttering. This results in a tool that allows both the
exploration of existing graphs and the visual creation of compound graphs following a top-down
approach that allows simultaneously observing the entities and their relationships at different scales.
The results show the applicability of the developed framework to two use cases, demonstrating the
usefulness of Carbonic for moving from information to knowledge.

Keywords: compound graphs; graph visualization; compound graphs visualization; complex graphs
visualization; visual editing of graphs

1. Introduction

Systems that combine a huge number of elements together with complex interactions
among them can be found in a wide range of domains such as social networks, finance,
physics, and biotechnology, among others. During the last few decades, the size of these
datasets has grown exponentially, in part due to technological advances that facilitate the
generation or retrieval of data at speeds never seen before. The direct modeling of these
entities and their relationships yields graphs of enormous complexity that often exceed
the human capacity for interpretation. However, the large social and economic benefits
derived from the human understanding of these domains drive the demand for effective
techniques to enable their analysis and comprehension. In this sense, visual analytics aims
at helping the user to understand large volumes of data thanks to the ability of humans
to understand complex information received through the visual channel [1]. While much
effort has been devoted to designing algorithms that can scale to create pictures from very
large graphs, the question remains on whether these depictions can be effectively processed
by our cognitive system to extract meaningful knowledge.

Appl. Sci. 2022, 12, 7541. https://doi.org/10.3390/app12157541 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12157541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7263-3753
https://orcid.org/0000-0003-2429-1300
https://orcid.org/0000-0002-7900-7509
https://orcid.org/0000-0002-2789-3801
https://doi.org/10.3390/app12157541
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12157541?type=check_update&version=1

Appl. Sci. 2022, 12, 7541 2 of 25

Several factors contribute to the underlying difficulty in visually exploring and ana-
lyzing a graph. First, the complexity of the data itself has a direct impact on the challenges
associated with its visualization. Different metrics can be applied to evaluate the complexity
of a graph for visualization purposes, however, some of the most commonly used are the
number of nodes and the number of edges, as well as their density [2]. Beyond the number
of elements that make up the dataset, its graphical representation will determine the visual
complexity present in the image and the possibility of distinguishing some elements from
the others. However, the fact that the entities are perceivable does not guarantee that
our brain can understand them, since the mental effort required to do so may exceed our
cognitive capacities.

Therefore, when designing a framework for the visualization of complex graphs, it
is necessary to incorporate strategies to manage complexity in its different aspects. The
reduction of the number of elements present in the image has a direct impact on the
reduction of both visual and cognitive complexity. Depending on the user’s objective, this
reduction may focus on a selection of a subset of data to be visualized. This can be achieved
by eliminating the rest of the information from the display so that the user can focus only
on a reduced set that can be selected by means of different techniques such as filtering
or zooming. On other occasions, the analyst seeks to obtain a global view of the dataset,
without eliminating any information but without getting lost in the details of each one
of the elements. In these cases, data aggregation is presented as a solution to reduce the
clutter of the image, not by discarding information, but by summarizing it.

Different criteria can be applied to identify aggregations or groups, from automatic
techniques that apply similarity measures calculated from the properties of the data to
supervised techniques that incorporate the user’s knowledge to create clusters. Particularly
interesting is the generation of hierarchical aggregations that allow the visualization of data
at multiple scales. Abstraction is one of the key concepts that allows handling complexity
by hiding nonrelevant details, providing thus a simpler model to work with, without
understanding all the hidden complexity. Applying this concept recursively results in a
hierarchy of levels of abstraction, where the highest level represents the whole domain and
the lowest level captures the details of the smallest elements of the dataset. Interactions are
likely to be studied at any scale, even mixing elements from different scales to understand
how they interplay among them (cross-scale analysis). Although this hierarchical structure
of the nodes of a graph can be obtained algorithmically, there are multiple domains whose
elements intrinsically present a hierarchical structure, such as those based on geographical
distributions or biological organisms [3]. In these cases, their study is usually carried out
naturally at different scales, with higher levels of aggregation corresponding to higher
levels of abstraction.

This paper focuses on the design of a visual framework (Carbonic) for the visualization
of complex systems that can be represented as a compound graph, i.e., elements hierarchi-
cally structured and relations among elements at the finer scale that can be aggregated and
studied at other higher scales. This multiscale approach is complemented by additional
techniques aimed at reducing visual complexity, not forgetting the prominent role of in-
teraction when visually exploring complex datasets. The interaction capabilities include
the possibility of creation and editing so that the designed visual framework allows not
only the exploration of existing compound graphs, but also their creation and editing in a
visual environment. Multiple areas can benefit from this functionality, such as the addition
or creation of synthetic scenes that constitute the input data for subsequent simulation
processes or the construction of conceptual maps that allow the understanding of complex
issues and their interrelations to understand the landscape of strategic domains either for
decision-making or communication purposes. Specifically, Carbonic presents the following
main features:

• Strategies for managing the number of elements to be displayed. Two complemen-
tary approaches are provided: the first one discards certain information, either by
eliminating particular elements through filter operations or by focusing the display

Appl. Sci. 2022, 12, 7541 3 of 25

on a subtree through zooming operations. The second approach allows reducing the
amount of information by summarizing or aggregating data that are not individually
displayed. In this way, groups of nodes can be aggregated into meta-nodes and groups
of connections into meta-connections.

• Multiscale visualization of the dataset, based on hierarchical aggregations that allow
deciding the desired scale for each branch of the tree. Meta-nodes can be selectively
collapsed or uncollapsed, depicting the aggregated meta-connections at multi-scale
or cross-scale views. Additionally, visual metaphors can be rendered to summarize
relevant information from the non-visible collapsed sub-tree.

• Techniques for the reduction of visual cluttering, such as edge bundling, transparency,
or on-the-fly adjustment of visualization parameters.

• Interaction aimed at data exploration for performing topology-based, attribute-based,
or browsing tasks. In addition, interaction also provides editing capabilities that allow
users to modify an existing dataset or even create a new one from scratch.

• Domain awareness taking as input a domain formalization. This guides the definition
of filters (adjusting them to the domain properties) and allows defining constraints to
guide the modification or creation of the system.

The rest of the paper is organized as follows: Section 2 reviews the related work.
Section 3 describes the visualization approach followed in Carbonic as well as the strategies
applied for complexity management and the provided interaction capabilities. Section 4
presents two use cases applying Carbonic for the interactive exploration and for the visual
creation of compound graphs. Finally, we discuss the use cases, provide some conclusions,
and point towards future directions.

2. Related Work

Visually analyzing and exploring complex and large graphs in an interactive way
can become a very cumbersome task, mainly due to the high number of entities and the
high density of relationships. On the one hand, when the amount of data is huge, the
scalability of the visualization techniques can become a problem and thus compromise the
smooth interaction that is desirable in this type of system. On the other hand, even when
computational capabilities are enough, the amount of information depicted can produce
visual clutter, hindering the user’s capacity for extracting knowledge from the data.

One of the strategies that can be used when analyzing complex and large data is to
apply a multiscale analysis approach. The main objective of this approach is to reduce
complexity by increasing the level of abstraction. This method can be specifically applied to
the analysis of complex and large graphs. For that purpose, besides the graph itself, it would
be also necessary to have a hierarchical structure that models the levels of abstraction of
the specific domain. The leaf nodes of this hierarchy would be the nodes of the graph. This
combination of graph and hierarchy is known as a compound [4] or clustered graph [5].
The multi-scale nature of these structures allows analysis at different scales, changing
the level of detail accordingly to the different levels of the hierarchy and aggregating
the underlying information. The analysis at different levels of abstraction can be done
using entities from the same level (multi-scale analysis) or entities from different levels of
abstraction (cross-scale analysis). Visually analyzing this type of graph requires using a
combined visualization of both the graph and the hierarchy.

In general, graph representation techniques can be classified into three main categories:
node-link diagrams, adjacency matrices, and containment-based or adjacency-based repre-
sentations [6], the latter only being suitable for trees. Node-link representations are based
on the visualization of nodes as simple marks (typically dots) and links as arcs that connect
nodes. This type of representation is better suited for topology-based tasks [7], but tends to
get problematic when the number of entities is large. On the other hand, adjacency matrix
representations are based on depicting a 2D array derived from the graph, where each
node is assigned to a row and a column. In this matrix, each cell encodes whether there is a
connection between the row node and the column node. In addition, the cell could also

Appl. Sci. 2022, 12, 7541 4 of 25

encode connection attributes using visual channels such as shape, area, or color [8,9]. Adja-
cency matrices have the advantage of being compact, predictable, and stable to connectivity
changes. Moreover, adjacency matrices tend to behave better than node-link diagrams for
large graphs [10]. To get the benefits of both types of representation, hybrid approaches
have been applied in systems such as NodeTrix [11], MatLink [12], MatrixExplorer [13], or
Responsive Matrix Cells [14].

Regarding the representation of hierarchical structures, node-link diagrams, adjacency-
based representations, and containment-based representations are the most used ap-
proaches [15]. Node-link techniques applied to trees are considered an explicit repre-
sentation as hierarchical relationships are encoded explicitly with line marks. Moreover,
these representations try to encode the levels of the hierarchy using a rectilinear or radial
alignment, while meeting some aesthetic conditions, such as not having edge-crossing and
overlapping nodes, or minimizing the distance between nodes of the same level [16]. On
the other hand, containment-based and adjacency-based representations implicitly encode
inclusion relationships and are in general well suited for applying a space-filling approach
(maximizing the use of the available screen space). Circle Packing [17], BeamTree [18], and
TreeMap [19] are examples of containment-based representations while Sunburst [13] and
Iclicle Plots [20,21] are examples of adjacency-based representations. Moreover, hybrid tech-
niques can be found such as Elastic Hierarchies [22], Dendrogramix [23], or Stacked Trees [24].
Finally, Treevis.net [25] provides a classification of a wide range of tree representations
depending on the features discussed above, such as explicit vs. implicit, dimensionality, or
node alignment.

For the specific visualization of compound graphs, some previous works are based on
using a circle-packing representation for the hierarchy combined with a node-link diagram
(TugGraph [26] and GrouseFlocks [27]). Other authors proposed to use a Treemap-based
representation for the hierarchy combined with a node-link diagram (ArcTree [28] and
NFlowVis [29]). Additionally, other relevant approaches are proposed in TreeNetViz [30],
combining a Sunburst representation with node-link diagram, and MatLink [12], that
applies a node-link diagram for the hierarchy in combination with an adjacency matrix for
the graph. All these approaches use a tree representation as the layout substrate, while
Drogrusoz et al. propose using a node-line diagram with a force-directed layout and
representing the hierarchy by creating nested groups [31].

On the other hand, when data are complex, it is also necessary to provide mechanisms
that allow the analyst to establish a dialogue with the data, and this can be achieved through
interactivity [32]. In this way, the user, through manipulation of the visual representations,
can build up an analytical discourse that can potentially lead to valuable new knowledge,
confirm hypotheses previously established, or share findings and communicate them for ef-
fective decision-making [33]. In the literature, different classifications for the techniques for
visual interaction can be found. For example, Yi et al. suggest seven categories of interaction
techniques: select, explore, reconfigure, encode, abstract/elaborate, filter, and connect [34].
Furthermore, Keim divides the spectrum into five groups: dynamic projections, filtering,
zooming, distortion, and linking and brushing [35].

As for visual editing, Baudel’s work is noteworthy, although it does not focus on
relational data, but proposes an extension of interactive manipulation techniques for the
direct visual editing of complex datasets [36]. With respect to editing a network, this
process may involve either editing the attributes of nodes and relationships, or editing the
existing nodes and relationships themselves. For the first case, Eichner et al. propose to use
node-link diagrams paired with attribute-dependent layouts [37]. For example, they use a
scatterplot for placing the nodes of the node-link diagram, and with drag-and-drop gestures,
the values of the attributes would be visually edited. Regarding the editing of nodes and
relationships, there are some systems designed for editing the network through a table
while updating the visual representation of the graph on the fly (for example, Cytoscape [38]
or Gephi [39]), but this approach is not strictly visual-based. The visual-based approach
most commonly used is editing the graph directly through its node-link representation (for

Appl. Sci. 2022, 12, 7541 5 of 25

example, yEd Graph Editor (https://www.yworks.com/products/yed, accessed on 10 June
2022) or Visual Paradigm (https://www.visual-paradigm.com/, accessed on 10 June 2022)).
In this case, all of them use a similar approach for creating nodes, based on selecting a
template and dragging it to the canvas or clicking on the location where the user would
like the node to be placed. The creation of links can be defined by selecting the related
nodes or by dragging the link to the canvas and then attaching it to the nodes [40]. Apart
from these general approaches, there are a couple of remarkable papers. On the one hand,
Horak et al. propose editing the graph through the selection of a region of interest, which is
displayed as a matrix and allows editing the connections [14]. On the other hand, Gladisch
et al. propose EditLense, a tool that allows the insertion, editing, and removal of nodes and
connections through gestural interaction with fingers [41].

To summarize, the literature has approached the visualization of complex graphs, but
the authors who focused on compound graphs have not covered the problems derived
from the magnitude and complexity of the data. On the other hand, there are authors that
have worked on the visual editing of graphs but not specifically for compound graphs.
This paper presents Carbonic, which addresses the visualization, exploration, and editing
of complex compound graphs. Furthermore, Carbonic is not a set of independent tools or
strategies, but an integrative framework that allows performing these tasks visually and in
a coordinated fashion.

3. Methods
3.1. Definitions

A directed graph, also known as digraph, G = (V, E) consists of a set of nodes V and a
set of directed edges E ⊆ V×V. An edge (u, v) ∈ E of a digraph G = (V, E) is an incoming
edge of the node v and an outgoing edge of the node u; both nodes u and v are incident
with the edge (u, v).

A rooted tree is a digraph T = (V, E) with one special tree node root(T), the root of T,
such that for every other node u ∈ V \ root(T) there is an unique path from root(T) to u.

From the above definition derives that every non-root node v ∈ V \ root(T) in a tree
T = (V, E) has exactly one incoming edge (u, v); u is called the parent of v (parent(v));
conversely, v is a child of u (child(u)). A node without children is a leaf, while nodes with
descendants are referred to as internal nodes. The descendants of v, desc(v), are all nodes u
such that there is a path from v to u. Conversely, a node u on the unique path from root(T)
to v is said to be an ancestor of v.

The depth of v, depth(v), is the number of edges making the path from root(T) to
v. This implies that depth(root(T)) = 0. The depth of the entire tree T is defined as
depth(T) = maxv∈Vdepth(v). The height of a node v, height(v), is the depth of the subtree
rooted at v.

A compound digraph D = (V, E, F) consists of nodes V, directed inclusion edges E,
and directed adjacency edges F. The inclusion digraph T = (V, E) is a rooted tree, and
no adjacency edge connects a node to one of its descendants or ancestors, i.e., for every
adjacency edge (u, v) ∈ F, u and v are unrelated in T. If the adjacency edges are undirected,
then D is called a compound graph.

An additional constraint may impose that the adjacency edges only connect leaf nodes.
In this case, adjacency connections between their ancestors are only meta-connections that
represent the adjacency edges between their descendants. These meta-connections will
also be named meta-edges. Analogously, nodes that are not leaves will be referred to as
meta-nodes.

3.2. Compound Graph Visualization

Carbonic is designed for the visualization of relational data in which network nodes
present a hierarchical relationship. The hierarchy between nodes will be specified by
inclusion edges, while the relationships or connections between them will be represented
as adjacency edges. In addition, nodes may have associated properties that can be used to

https://www.yworks.com/products/yed
https://www.visual-paradigm.com/

Appl. Sci. 2022, 12, 7541 6 of 25

guide the exploration of the data (through operations such as selection or filtering) and the
editing or creation of the dataset.

Moreover, Carbonic can use a formalization of the domain (loaded through a configu-
ration file) which will establish constraints in the data, such as the types of entities that can
be created at the different levels of the hierarchy: the entities’ attributes, and their types; or
the relationships that are allowed between specific types of entities. This formalization is
used inside Carbonic for different purposes. For example, it can be used for guiding the
creation and editing process, allowing only the creation of specific entities depending on the
level of the hierarchy. Furthermore, it can be used to automatically create the appropriate
set of widgets for establishing filters on the entities’ attributes.

Some domains do not present an intrinsic hierarchical relationship but can also benefit
from analysis at different levels of abstraction. For this purpose, Carbonic provides the pos-
sibility of obtaining a hierarchy of the nodes of a network by applying different clustering
algorithms, such as hierarchical grouping based on category values of the nodes or based
on community detection using Louvain’s method [42]. In this way, the nodes of the original
graph will become the leaf nodes of the tree and the hierarchical grouping algorithmically
obtained will give rise to the meta-nodes.

Visualizing a compound graph implies simultaneously revealing the underlying tree
structure of the nodes while depicting their adjacency edges. The next subsections explain
the approach followed to represent these elements.

3.2.1. Visualization of the Tree: Nodes and Inclusion Edges

One of the first questions to be answered is why we want to visualize the hierarchical
structure of the nodes in a compound graph. There may be different motivations, but the
most direct one is because we want to observe the organizational structure of the data.
Another important reason is to understand the distribution of data along the hierarchy; a
third reason to depict the underlying hierarchy is to provide a visual reference to guide the
multilevel navigation in complex datasets. Sunburst diagrams [13] represent hierarchical
relationships using an adjacency-based layout and following a space-filling approach with
a radial layout. Although sunburst diagrams do not make optimal use of the screen space,
especially in the corners, they provide an intuitive and effective view of a hierarchical
structure and, consequently, of the abstraction levels encoded in the hierarchy. Figure 1
shows the sunburst diagram of a small tree. Each concentric ring of the sunburst represents
a depth level of the tree, and each tree node corresponds to a sector of the ring. The central
ring corresponds to the tree root and the number of concentric rings is the depth of the tree.
The color and the size of the sectors can be used to map a certain feature of the data. In the
examples of this paper, the colors of the inner ring (depth = 1) have been selected so that
the nodes are distinguishable from each other according to the tree color palette [43]. In the
successive depth levels, the color range available for the descendants is distributed among
the nodes to make them as distinguishable as possible. To avoid adjacent nodes having
similar colors, a permutation of the palette is performed.

Regarding the size of the sectors, each ascendant will span over the arc occupied by all
of its descendants. The size of the leaf nodes may be uniform or may map some properties.
In the example of Figure 1, all the leaf nodes have been uniformly sized. Obviously, other
schemes can be applied to make color and size represent other features of the data.

3.2.2. Visualization of the Adjacency Edges

Once the nodes of the hierarchy are radially depicted, the adjacency edges will be
drawn as arcs that connect both incident nodes. In the case of adjacency edges having
directionality, the arcs will incorporate an arrow as an indicator of the direction of the con-
nection. Figure 2 shows the adjacency edges connecting the leaves of the tree. Following the
same principle as the one applied to the sectors, the color and thickness of the connections
can encode different properties of the adjacency edges. In case there are different types
of connections, each of them will be rendered with edges of different colors. As in the

Appl. Sci. 2022, 12, 7541 7 of 25

case of sectors, the thickness of edges in leaf nodes can be uniform or encode any property
associated with the connection.

(a) (b)
Figure 1. (a) Classic node-link representation of a simple tree. (b) The same tree depicted using a
sunburst diagram.

(a) (b)
Figure 2. (a) The same simple tree as in Figure 1, adding adjacency relationships between leaf
nodes. (b) Inclusion edges are represented by the sunburst diagram while the adjacency relations are
depicted with edges connecting the incident leaf sectors.

Meta-edges (i.e., aggregations of connections among descendant nodes) can also be
drawn to present connectivity at different scales. Since the incident nodes of these meta-
edges will be meta-nodes, meta-connections will summarize the adjacency edges of the
meta-nodes’ descendants.

As the volume of data increases, the superposition of adjacency edges, meta-edges,
and the hierarchy of nodes in the same diagram can be sometimes confusing and over-
saturate the final image. For this reason, Carbonic offers a set of strategies for reducing the
number of elements simultaneously depicted, as described in the next section.

3.3. Managing the Number of Elements

The presence of too many elements in an image contributes to increasing its visual
and cognitive complexity, hindering the analysis process. One of the solutions to decrease
the overload of the image is to reduce the number of elements in it, requiring strategies
to select which information to present at each moment. Carbonic offers different options
to reduce the number of elements to be displayed by filtering operations, focusing on a
sub-branch of the tree, and through aggregations that allow summarizing the information

Appl. Sci. 2022, 12, 7541 8 of 25

and abstracting lower-level details. The following subsections describe in greater detail the
operations provided to select the subset of data to be visualized.

3.3.1. Filtering

Filtering operations allow selecting elements to temporarily remove them from the
view. Regarding the nodes, they can be directly selected with the mouse or a more powerful
selection method can be applied based on the values of their attributes. Two alternatives
are provided to visualize the results of a filtering operation: the first one will remove from
the visualization all the filtered nodes. As a consequence, the space will be redistributed
according to the elements that remain unfiltered to occupy the screen space available for
them. The second alternative keeps the filtered nodes, showing them deemphasized in gray
color. In this way, a view is obtained in which the removed nodes (inactive) and the nodes
that have not been affected by the filter (active) coexist. This approach will minimize the
changes in the layout helping the user not to lose the overall context. Regardless of which
of the two filtering visualization options is applied, the adjacency edges of the filtered
nodes are automatically removed from the displayed image, although they will still be
aggregated by the meta-edges of their ancestor meta-nodes. Figure 3 illustrates a filtering
operation applying these two visualization options.

(a) (b)
Figure 3. Filtering out H1 (and its descendants) and N2 on the scene of Figure 2. (a) Filtered-out
nodes are attenuated in gray color and their connections are removed from the visualization. (b) Both
the filtered nodes and their connections are removed from the view, thereby rearranging the layout.

Carbonic also allows filtering connections. In this sense, the visualization can be
configured to show all edges and meta-edges, none of them, only meta-edges or only edges
between leaf nodes. In addition, filters can be set according to their properties, so that any
filtered-out connections will disappear from the rendered image.

3.3.2. Hierarchy Pruning

The elements removed by the filtering operations presented in the previous section are
targeted either by the direct user selection or by choosing those elements whose properties
satisfy certain criteria. Additionally, Carbonic also supports other pruning operations that
reduce the number of elements to be displayed by keeping visible only a subset of the
original tree. Carbonic offers two types of pruning: the first one allows focusing on a branch
of the hierarchy by selecting the node whose descendant tree will be displayed. This implies
that the selected node becomes the root of the new visible tree, removing the rest of the
hierarchy from the image. The context reference is provided by a breadcrumb trail where
the hidden ancestors are shown, thus the user can mentally locate the point in the hierarchy
from which the displayed hierarchy hangs (Figure 4). The second pruning mode displays a
limited number of levels starting from the root of the hierarchy, removing any elements
present at lower levels (Figure 5). To make the user aware of this situation, the outer

Appl. Sci. 2022, 12, 7541 9 of 25

side of the sector is highlighted as a visual mark that indicates the existence of elements
that are deliberately not being displayed. It should be noted that this visual mark only
appears in the sectors having descendants that have been removed from the visualization.
In addition, the connections of the invisible nodes are aggregated into meta-connections
that are displayed at the last visible level (Figure 5).

(a) (b)
Figure 4. Hierarchy pruning by selecting a branch: (a) Focusing on H6 node discards all other
branches and turns H6 into the root of the depicted tree. (b) The breadcrumb trail provides a
reference to the hidden ancestors of the selected node.

(a) (b)
Figure 5. Hierarchy pruning by depth selection: (a) Limiting the depth of the visible tree to 3 levels
implies eliminating the descendant nodes of H1 from the visualization. (b) Their connections are
aggregated in the meta-connection incident on the meta-node H1, while the highlighted outer arc
indicates the existence of non-visible descendants.

3.3.3. Collapse and Uncollapse Operations

As stated previously, when the number of leaf nodes and their connections is too high
for their direct visualization, applying multi-scale and cross-scale analysis can be helpful.
For that purpose, Carbonic displays the hierarchical structure of the data as a collapsible
sunburst diagram. Each sector of the diagram can be completely collapsed, hiding all
its descendants and depicting an aggregated view of their children nodes. A collapsing
operation on a meta-node implies that the descending sub-tree together with its adjacency
edges is eliminated from the visualization, becoming represented by the collapsed meta-
node and its meta-edges. This action can be applied selectively and individually to each
meta-node, obtaining thereby a sunburst where its branches present heterogeneous levels

Appl. Sci. 2022, 12, 7541 10 of 25

of abstraction (Figure 6). Similarly, a collapsed meta-node can be uncollapsed to show
its descendant nodes and their connections. This operation can be performed level by
level or recursively to unfold the descendant tree to its maximum level, until its leaf nodes
are displayed.

(a) (b) (c)
Figure 6. Collapse operations are applied to the meta-nodes H1 and H5. (a) Shows a node-link repre-
sentation of the original graph and how the collapsing operations would be applied. (b) Illustrates
using a node-link representation of the status after the collapsing operations, i.e., how H1 and H5
descendant nodes are removed and their connections are aggregated in the meta-edges incident on
H1 and H5. (c) Shows how Carbonic would represent the same graph after the collapsing operations.
The fact that a meta-node is collapsed is visually represented by a circle inside the sector, which also
serves as a handler for interactively applying the reverse uncollapse operation.

3.4. Reducing Visual Cluttering

Though the number of elements to be displayed has a direct impact on the perceived
visual complexity, it is also true that the application of space distribution techniques,
arrangement of elements, or adjustment of visual properties can significantly alleviate the
visual load of the image. The following is a description of the main decisions aimed at
increasing the legibility of the final image.

3.4.1. Edge Bundling

Large datasets with a large number of connections usually generate images with an
excessive number of overlapping edges, obscuring the underlying connectivity patterns.
Edge bundling techniques enable modifying the trajectories of the connections in order to
group them together creating edge bundles that produce a more structured image. Carbonic
applies a hierarchical edge bundling algorithm [44] where the user can parameterize the
tension factor to be applied. Figure 7 illustrates the effect of increasing the tension in the
grouping of the adjacency edges.

3.4.2. Transparency

The adjustment of the alpha component helps to distinguish the elements even if
they are overlapping. Applying transparency to the arcs representing the connections will
facilitate the perception of the links when they overlap each other, as well as avoid the
obfuscation of the hierarchy of nodes since the trajectory of the adjacent edges crosses over
them. Transparency can be configured independently for the connections and for the nodes
of the hierarchy. In the latter case, it can either affect the entire hierarchy or exclude the
collapse front (the set of nodes that are not uncollapsed) for a better perception of the visible
leaf nodes. The combined effect of tuning the tension factor and the alpha component is
shown in Figure 7.

3.4.3. Additional Decluttering Strategies

The positioning of the elements within Carbonic is based on a hierarchical, radially
distributed arrangement. In this way, the placement of the nodes allows identifying their
ancestors easily and avoids any overlapping with each other. However, in large datasets,

Appl. Sci. 2022, 12, 7541 11 of 25

the number of leaves can become extremely high. The fact that the hierarchy expands
outwards in the sunburst implies that the available space increases with the depth of the
tree, thus providing more space to draw the leaf nodes. This approach is complemented by
collapse and uncollapse operations that allow only a subset of the leaf nodes to be expanded.
In addition, distortion operations are provided to adjust the screen space allocated to a
sector. In this way, the angle devoted to a sector and its descendants can be increased,
thereby enhancing their visual exploration (Figure 8).

(a) (b)

(c) (d)

Figure 7. Adjustment of edge bundling tension (β) and transparency (αn and αc for nodes and
connections, respectively). (a) αc = 0.75, αn = 0.75, β = 0.0. Low transparency and no edge bundling.
(b) αc = 0.75, αn = 0.75, β = 0.8. Increasing edge bundling tension. (c) αc = 0.25, αn = 0.75, β = 0.8.
Increasing transparency in the connections. (d) αc = 0.25, αn = 0.25, β = 0.8. Increasing transparency
in the internal nodes of the hierarchy.

Regarding the adjacency edges, in addition to the previously mentioned edge bundling
technique, other options have been incorporated to modify their trajectory. Specifically, in
the case where the dataset includes different types of connections (multi-layer network),
each category can be depicted with a small offset (that can be modified interactively) to
avoid overlapping among them (Figure 9). The self-connections will run on the outside
of the sunburst to reduce the overlap with the rest of the adjacency edges (Figure 10a).
Following the same approach, connections between siblings can optionally be shifted to
the outside of the sunburst, thereby enabling a better perception of the relationships within
a parent node since they are not obfuscated by the rest of the connections in the dataset
(Figure 10b).

Appl. Sci. 2022, 12, 7541 12 of 25

(a) (b)
Figure 8. The magnification of a sector increases or decreases its angle by readjusting the space
associated with its sibling nodes. (a) The arrow points to the sector to be magnified. (b) The red arc
crossing the sector indicates that its size is modified by a magnification operation and therefore does
not faithfully reflect the angle computed according to the properties of the data.

(a) (b)
Figure 9. Carbonic supports multi-layer networks. Each type of connection is depicted in a different
color and an offset can be applied to their trajectories to avoid overlapping between them. (a) Offset: 0.
(b) Offset: 0.5.

(a) (b)
Figure 10. (a) Self connections trajectory runs on the outer side of the diagram to reduce overlapping
among connections and improve discernibility. In this case, the same sector acts as the origin and the
destination of the self-connection. (b) Connections among siblings can optionally be depicted on the
outside of the sunburst to improve the perception of the relationships within a parent node. Note
that these arcs run between the two connected sectors, unlike self-connections, which start and end
in the same sector.

Appl. Sci. 2022, 12, 7541 13 of 25

3.5. Interaction for Exploration and Edition

Interactivity allows a more effective exploration of the relational data than that offered
by a merely static image, especially when dealing with complex and large datasets. There-
fore, all the operations previously mentioned oriented to the management of the number
of elements and to the reduction of visual cluttering can be applied and configured inter-
actively by the user. In addition, with the purpose of enhancing connectivity exploration,
the highlighting operation of the ego-network of a given node is incorporated, given a
maximum number of jumps (Figure 11).

(a) (b)
Figure 11. Computation of the ego network of the node pointed by the arrow. (a) One-step ego-
network. (b) Three-step ego-network.

The automatic computation of certain metrics can both complement and assist the
visual exploration of complex datasets. In this sense, Carbonic automatically computes
centrality measures than can be used to guide filtering operations.

Finally, the inclusion of editing and creation capabilities provides a means for these
operations to be used in the process of exploring the datasets, as well as making Carbonic
not only a viewer but also an editor that allows the creation of compound graphs in an
interactive and visual fashion. For this purpose, operations for editing, creating, and delet-
ing nodes and adjacency edges have been incorporated through clicking and contextual
menus. In case a formalization of the domain has been defined, then the creation and
editing actions will be restricted by the entities and attributes established.

3.6. Visual Cues to Guide the Multiscale Exploration of the Compound Graph

All the features described in the previous sections share the goal of providing a
visual framework for the exploration (and editing) of complex graphs at different levels
of abstraction. The collapse and uncollapse operations naturally support exploration
at different scales, while the combination of the different interactions provides tools to
overview the dataset and to perform topology-based or attribute-based tasks. Nevertheless,
it is possible that the number of pixels available to represent certain elements may not
be sufficient, so they are practically not perceivable. In these cases, Carbonic superposes
visual marks indicating the presence of elements that cannot be clearly perceived. This will
make the user aware of the presence of non-visible information and of the need to apply
operations to redistribute the space in case of wanting to observe the hidden elements
(Figure 12a).

Generally, a decrease in the level of abstraction implies an increase in the number
of elements to be represented and, therefore, greater complexity in the image. Having
information that complements the aggregated view of the descendants without the need
to disaggregate the meta-node would guide the user in choosing the level of abstraction
at which to visualize the data, avoiding costly uncollapse operations that increase the
complexity of the visualization. For this purpose, a visual metaphor has been designed

Appl. Sci. 2022, 12, 7541 14 of 25

that summarizes the characteristics of the hanging tree of a collapsed meta-node. As a
first approach, in this work we have chosen a simple and clean design, showing a square
shape whose filling can encode variables related to the descendant tree. In the example
shown in Figure 12b, the width of the black filling represents the number of leaves while
the height of the black filling encodes the depth of the hidden tree. This initial design could
be replaced in future works by a glyph-based visual metaphor that could visually encode
more variables.

(a) (b)
Figure 12. Highlighting or summarizing hidden information. (a) The image shows the result of
mapping the angle of each sector to its connectivity degree. Those sectors whose angular size turns
out to be below a threshold are enclosed in an orange circle, meaning that there is not enough screen
space available to render them in detail. (b) Relevant features of the hidden tree under each collapsed
node are summarized by a simple glyph. In this example, the width of the black filling encodes the
number of leaf nodes, while the height of the black filling represents the depth of the hidden tree.

4. Results and Discussion

This section illustrates the combined application of some Carbonic features and capa-
bilities by means of two examples. The first one shows the visual exploration of a dataset
containing the existing air routes between the world’s airports. The second example fo-
cuses on the creation and interactive exploration of a graph representing the hierarchical
decomposition of a course, the dependencies between the explained concepts, and the
results of the evaluation of the competencies acquired by a group of students.

The following subsections show these hypothetical workflows, describing a sequence
of steps for the visual exploration and editing of the datasets. Obviously, these are just
examples involving decisions that should be taken by the real user depending on his final
goal. The Carbonic tool, documentation, and the examples presented are available at
https://vg-lab.es/carbonic/, accessed on 10 June 2022. This prototype has been developed
using web-based technologies, such as HTML5, CSS3, and JavaScript. This makes Carbonic
available for any system that has a web browser engine. HTML5 Canvas 2D has been used
instead of SVG to achieve better performance.

4.1. Flight Routes Visualization

In this example, we will show how Carbonic can be used for the exploration of
flight routes at different levels of abstraction. The dataset used for that purpose combines
two datasets: OurAirports (https://ourairports.com/data/ accesssed on 10 June 2022),
and OpenFlights (https://openflights.org/data.html, accesssed on 10 June 2022). The
OurAirports dataset stores the airports and will allow the creation of the hierarchical
structure based on the location of the airport: city, region, country, and continent. On the
other hand, the OpenFlights database provides the air routes between the airports spanning
the globe. In this way, the leaf nodes are the airports and the edges indicate that there is
a route between the two incident airports. Additionally, the dataset has been filtered to

https://vg-lab.es/carbonic/
https://ourairports.com/data/
https://openflights.org/data.html

Appl. Sci. 2022, 12, 7541 15 of 25

discard inconsistencies, leaving a total of 19,222 connections among 55,741 airports. The
OurAirports dataset also provides other attributes for the airports which can be used in
Carbonic for filtering operations. In this example we have used the attribute “Type” which
can have the following values: large airport, medium airport, small airport, seaplane base, or
heliport.

Figure 13a shows the initial Carbonic visualization of the complete dataset, where the
colors of the sectors follow the tree color palette, the size of the leaf nodes is unitary, and
the nodes have been alphabetically sorted. The high complexity of the scene does not allow
to discern the nodes from each other and it becomes impossible to follow the trajectory
of the connections, presenting the usual hairball effect. Rolling up to the highest level of
abstraction makes it possible to obtain a global view of the whole data without the need to
look at each airport and each connection individually. This can be seen in Figure 13b where
a global collapsing has been performed, visualizing only the meta-nodes of the highest
level of abstraction, which in this case corresponds to the continents. Since the size assigned
to the leaf nodes is unitary, we see that the continents occupying a larger angle are those
with a larger number of airports (in the example, North America followed by Europe and
South America).

(a) (b)
Figure 13. (a) Flight dataset’s initial visualization, depicting the hierarchy totally uncollapsed.
Adjacency edges represent air routes among airports that are hierarchically structured into cities,
regions, countries, and continents. (b) Dataset completely collapsed at the continent level. The angle
occupied by the sectors is proportional to the number of airports. The black filling of the square
placed in each sector is indicative of the connectivity degree. Asia and Europe show a high degree of
connectivity in relation to their number of airports.

Looking at the square marks placed in each sector, we observe that the continent
with a higher connectivity degree is North America, followed by Asia and Europe. It seems
coherent that the continent with the largest number of airports is, at the same time, the
one with the most air routes. However, it is striking that Asia has such a high degree
of connectivity, occupying such a small angle. This imbalance encourages us to further
explore the distribution of connections and airports. By applying a property-based filter,
we can remove closed airports, heliports, and seaplane bases from the visualization. This
will allow us to remove elements that are not relevant, in this case, airports that do not
have commercial routes. If we now map the degree of connectivity to the angle of the leaf
nodes, then the largest continents will be those having the most routes. Figure 14a shows
the result of applying this modification and it is clear that North and South America have
significantly reduced their size, while Europe and Asia have significantly increased their
size. From this, it can be seen that the density of routes relative to the number of airports

Appl. Sci. 2022, 12, 7541 16 of 25

is much higher in Europe and Asia, while in the two American continents there are more
airports, but some of them operate few passenger routes.

(a) (b)
Figure 14. (a) The angle occupied by the sectors is now proportional to their connectivity degree.
Note that North America and South America have reduced its size considerably, while Europe and
Asia have increased it significantly. (b) When removing self-connections and focusing on external
connections, we observe that Europe and Asia are the two most highly connected continents.

Looking at the thicknesses of the meta-connections associated with the continents in
Figure 14a, it is easy to see that the number of internal routes in Europe, North America, and
Asia is very high in comparison with the number of external routes with any of the other
continents. If we eliminate from the visualization the self-connections (Figure 14b) and
focus on the routes between continents, it is clearly perceived that Europe and Asia are the
two most highly connected continents, followed by Europe to North America, and Europe
to Africa.

With the purpose of inspecting the routes between the two most connected continents
(Europe and Asia), we proceed to filter out the rest of continents and uncollapse Europe
(Figure 15a). To reduce visual clutter, sibling connections at the country level (in this case,
European internal routes) can be depicted on the outward side, allowing a better analysis
of the available routes between Asia and European countries (Figure 15b). It is immediately
observed that Russia is the country of the European continent with the highest number of
routes to Asia, followed by United Kingdom and Germany. Uncollapsing Asia we see that
Turkey is the Asian country most connected to Europe (Figure 15c).

With the aim of inspecting the connections across European countries, we can focus
on the European continent by discarding the rest of the hierarchy from the visualization.
Figure 16a, where Europe is shown as the root of the sunburst, reveals that Spain and
Germany are the two most highly connected European countries. By disaggregating Spain
and highlighting the connections from Germany, it can be clearly seen that the regions of
Spain with which Germany mainly connects are the Canary Islands, the Balearic Islands and
Andalusia (Figure 16b).

Returning to the highest level of abstraction and visualizing again the meta-connections
between continents (Figure 14a), we realize that, while Europe and Asia were the most highly
connected, the meta-connection linking Africa and South America appears with a very small
thickness, which indicates that there are few routes between the two continents. For further
analyzing this fact, we focus on both continents by filtering out the rest of the meta-nodes
and disaggregating South America at the country level (Figure 17a). In this view, it is clear
that there is only one edge connecting Africa to Brazil, which implies that Brazil is the only
country in South America that has air routes to the African continent. By uncollapsing Africa
we can now analyze which African countries Brazil has routes to. Since we have already
identified Brazil as the only South American country with routes to Africa, we can perform

Appl. Sci. 2022, 12, 7541 17 of 25

this analysis at a higher level of abstraction, visualizing South America collapsed. Highlight-
ing the direct connections of South America, we observe that it has direct routes with only
five African countries: Morocco, South Africa, Togo, Cape Verde, and Angola (Figure 17b).

(a) (b) (c)

Figure 15. (a) Filtering out the rest of the continents except Asia and Europe, we can analyze the
connectivity between them. By uncollapsing Europe, we can see that European Russia is the country
with the most connections to Asia. (b) By painting the connections among sibling countries on the
outward side of the sunburst, the external routes are more sharply observed. In this image it is easy to
see that the European countries that are most connected to Asia are Russia, Great Britain, and Germany.
(c) Uncollapsing Asia, we observe that Turkey is the Asian country most connected to Europe.

(a) (b)
Figure 16. (a) Focusing on Europe, the most highly connected countries are Germany and Spain.
(b) Uncollapsing, applying a magnification on Spain, and highlighting the connections from Germany
reveals that the majority of the routes between Germany and Spain are with the Canary Islands, followed
by the Balearic Islands and Andalusia region.

(a) (b)
Figure 17. (a) Brazil is the only South American country with air routes to Africa. (b) Brazil connects
with only 5 African countries: Morocco, South Africa, Togo, Cape Verde, and Angola.

Appl. Sci. 2022, 12, 7541 18 of 25

4.2. Course Design: Visual Creation and Exploration of Course Contents

The second use case is concerned with the visual creation of a compound graph
using the multiscale visualization framework proposed in this paper. This will be done by
illustrating the design process of a course, specifically the “Computer Structure” course
within the “Computer Science” degree program at Universidad Rey Juan Carlos in Madrid.

The planning of a course is an iterative process consisting of several phases. One
of them is the structuring and sequencing of the contents, which is usually done using
generic tools such as word processors or spreadsheets. A top-down approach is commonly
followed in which the content is initially structured in large blocks or modules and then
subdivided into finer levels of granularity. After defining the content to be taught, it will be
necessary to sequence and make a temporal planning of the activities, assigning time slots
to each one of them.

In the context of this use case, Carbonic supports the visual creation of the hierarchical
structure of the course, also allowing the insertion and visualization of the dependency
relationships between concepts, something that is typically in the mind of the teacher who
is designing the course but is not commonly depicted in the course plans.

The creation of meta-nodes to represent the modules and their subdivisions can be
done interactively through the context menu that appears when clicking with the mouse
on the empty canvas displayed when launching Carbonic. However, prior formalization
of the working domain will allow establishing the elements permitted at each level of the
hierarchy as well as their attributes. This formalization (available at https://vg-lab.es/
carbonic/course-domain.djson, accessed on 10 June 2022) will guide the process of creating
entities and relationships, avoiding the generation of erroneous elements according to
each level of the hierarchy. In addition, as explained in Section 3.2, the definition of which
attributes can have each type of entity and their types allows the creation of appropriate
filtering widgets for them.

In this example, the contents have been structured in four hierarchical levels: modules,
units, lessons, and concepts. Concepts have two attributes: their relevance according to
the teacher’s judgment and their duration, which reflects the time spent working on
the concept in a session. In addition, the dependencies across concepts are formalized
as directed adjacency relations, reflecting that the target concept depends on the source
concept. Figure 18 shows the course structure modeled using a traditional textual scheme.
The creation of this hierarchical structure comprising the contents of the subject will be
easily carried out through Carbonic’s graphical interface, simply by right-clicking the
mouse and selecting the option to create children from the contextual menu (Figure 19).
Afterward, each node can be edited by right-clicking on it to set the appropriate values of
its attributes, previously specified in the domain file. The result is shown in Figure 20a,
where the same structure created with Carbonic is depicted. Finally, adjacency relationships
can be created by selecting the source and destination via a mouse click. For the sake of
simplicity, only the dependencies between concepts of different units have been created,
ignoring those between concepts of the same lesson or of the same unit.

Figure 20b shows the final result, where the contents distribution and the dependency
among them can be simultaneously observed. It is easy to notice that Module 4 does not
present any previous dependencies, which indicates that it could be moved and taught at
any time during the course and even assessed whether those concepts could be moved to a
different course.

When collapsing the diagram at the unit level (Figure 21a), we observe that there
are no dependencies between the two units of Module 1 (Introduction and Performance and
Information Representation), therefore, their order could be interchanged without having
any effect on the course progress. Additionally, there is a strong dependency between
Assembler Basics and MIPS Programming units, while there is no dependency between the
Assembler module and the Arithmetic Circuits unit, so the latter has the flexibility to be
moved following the information representation unit. It is also easy to detect that there are
no dependencies between the Single Cycle and the Multicycle unit. Although the degree of

https://vg-lab.es/carbonic/course-domain.djson
https://vg-lab.es/carbonic/course-domain.djson

Appl. Sci. 2022, 12, 7541 19 of 25

difficulty makes it advisable to teach Single Cycle before Multicycle, it would be feasible to
interchange their order or even to eliminate the Single Cycle implementation and teach only
Multicycle.

1. Module 1: Introduction

(a) Unit 1: Introduction and Performance

i. Lesson 1: Computer Structure, O.S. Basics, Microprocessor
ii. Lesson 2: Performance

(b) Unit 2: Information Representation

i. Lesson 1: Binary, Octal, Hexadecimal, Fixed-point
ii. Lesson 2: Floating Point, Characters

2. Module 2: Assembler and Machine Language

(a) Unit 1: Assembler Basics

i. i. Lesson 1: Basic Concepts, Addressing Modes, MIPS Overview

(b) Unit 2: MIPS Programming

i. Lesson 1: Access to Data
ii. Lesson 2: Jump and Branch Operations, System Calls
iii. Lesson 3: Control Structures
iv. Lesson 4: Integer, Character, Booleans
v. Lesson 5: Masks, Floating Point
vi. Lesson 6: Data Structures
vii. Lesson 7: Routines
viii. Lesson 8: Code Optimization

3. Module 3: CPU Design

(a) Unit 1: Arithmetic Circuits

i. Lesson 1: Logical Operations, Addition, Subtraction, Comparison
ii. Lesson 2: ALU Modular Design
iii. Lesson 3: Multiplication, Division, Floating Point, Carry Look-ahead

(b) Unit 2: Single Cycle Datapath

i. Lesson 1: Synchronization Basics. Single Cycle Incremental Construction
ii. Lesson 2: Single Cycle Execution. Single Cycle Control
iii. Lesson 3: Adding New Instructions intro Single Cycle Datapath

(c) Unit 3: Multicycle Datapath

i. Lesson 1: Multicycle Incremental Construction
ii. Lesson 2: Multicycle Execution
iii. Lesson 3: Control Design
iv. Lesson 4: Adding New Instructions into Multicycle Datapath

4. Module 4: Other Concepts

(a) Unit 1: Other Concepts

i. Lesson 1: Computer Evolution, CISC and RISC architectures, Microprocessor’s Technology, Power Consumption

Figure 18. Structure of the course contents.

Figure 19. Interactive creation of the hierarchical structure of the course contents through contex-
tual menus.

(a) (b)
Figure 20. (a) Course hierarchy. Structure of the course contents created with Carbonic. The size of
the leaves is proportional to the duration attribute. (b) Hierarchy with the network. Hierarchical
structure and dependencies among concepts.

Appl. Sci. 2022, 12, 7541 20 of 25

(a)

(b) (c)

Figure 21. (a) Unit level. Hierarchy of contents collapsed at the unit level. (b) MIPS Prog. Unit.
MIPS Programming Unit uncollapsed at lessons level. (c) Arith. Circuits Unit. Arithmetic Circuits Unit
uncollapsed at lessons level.

Appl. Sci. 2022, 12, 7541 21 of 25

By selectively uncollapsing the MIPS Programming unit (Figure 21b), we observe that
the last four lessons do not generate dependencies. They contain advanced concepts
that are not essential for the continuation of the course and that can be cut or merged
if necessary due to any unexpected contingency. The same analysis can be made when
uncollapsing the Arithmetic Circuits unit (Figure 21c), since the last lesson does not generate
any dependencies either.

The relevance associated with each concept has been assigned by the instructor of
the subject according to his perceived importance in the range of [0, 10]. Filtering out
the concepts whose relevance is below 9 yields the image shown in Figure 22a, where
the less relevant concepts appear faded in gray color and have no visible connections. If,
additionally, we resize the leaf nodes to be proportional to their output degree, we obtain
the image shown in Figure 22b. We see that most of the concepts that have been labeled as
having little relevance also have few further dependencies so that they take up very little
space and even disappear from the diagram. Surprisingly, we see that the Assembler Basics
unit concepts occupy a large angle, despite being filtered out due to their low relevance.
In this case, a lack of consistency between the relevance assigned by the instructor and
the importance due to the dependencies presented by other later concepts is evident,
supporting the instructor in decision-making to enhance and assess the understanding of
these basic concepts.

(a) (b)
Figure 22. (a) Relevance filtering. Only the most relevant concepts are kept, while the least relevant
ones are filtered out and depicted in grey color. (b) Outdegree resizing. Concepts re-sized according
to their outdegree. Assembler Basics was filtered out according to its relevance but it turns out to have
a high number of post-dependencies.

4.3. Discussion

The results show two use cases using Carbonic from two different perspectives: in the
first one, an existing dataset is visually explored, while in the second one, a graph is created
from scratch using the visualization and interaction capabilities provided by Carbonic.

The first example shows a drastic reduction in complexity by visualizing the aggre-
gated data at a higher level of abstraction (Figure 13). Figure 13b presents a decluttered
image where the connectivity and proportion of airports on each continent are easily
visualized. The visual separation between the internal routes to the continent and the
external routes to the rest of the continents facilitates the perception of connectivity and the
identification of the most strongly connected continents (Europe and Asia) and those with
fewer air routes between them (Africa and South America). The selective uncollapsing of
sectors allows cross-scale exploration and the identification of the countries with which
a continent is mainly connected or the regions most connected to a given country. In this
way, it is easily detected that Brazil is the only country that directly interconnects Africa.
This information would have been very difficult to discern in a classical representation of
air routes on a geographical map.

Appl. Sci. 2022, 12, 7541 22 of 25

The second use case shows the usefulness of Carbonic as a support for planning
the contents of a course. Carbonic’s editing capabilities allow creating the hierarchical
structure of the concepts and establishing the dependencies between them, simultaneously
visualizing the hierarchical structure of the contents and the relationships between them.
The explicit visualization of this information can be of great help when rescheduling,
deleting content, or modifying the temporal sequencing in which contents are addressed.
In the example presented, the relevance attribute was associated with each concept taught,
thus qualifying the contents according to the teacher’s criteria. The combination of filtering
operations to discard less relevant concepts with the ability to scale the sectors according
to a numerical attribute (in this case the degree of output connectivity) highlights the
inconsistencies between the perceived relevance of certain concepts and their importance
due to further dependencies with subsequent concepts.

5. Conclusions

This paper presents a framework for the visual exploration and editing of graphs
by addressing the complexity derived from the high number of nodes and connections
through different strategies.

On the one hand, the organization of the data into levels of abstraction allows informa-
tion to be aggregated, thereby reducing the visual and cognitive complexity perceived by
the user. In addition to the ability to summarize information by means of aggregations, we
also have included operations to selectively eliminate certain elements: filtering, hierarchy
pruning, or focusing on a subtree allows discarding less relevant information to focus the
exploration on a subset of elements. The possibility of adjusting visual properties such as
transparency or the location and trajectory of the elements facilitates the reduction of visual
cluttering, boosting the perception of the represented elements. These features together
with the interaction capabilities provide an efficient environment for the visual exploration
of complex compound graphs.

The selected visual representation blends the hierarchical organization of nodes with
their connectivity in an intuitive way. This hierarchical structure provides natural support
for exploring the graph at different levels of abstraction, allowing the data to be visualized
at an adaptive level of detail that provides more precision in areas of interest while showing
a summary of information in other less relevant areas. This strategy facilitates the visual-
ization of large graphs and helps to break down complex systems in order to analyze the
interactions of their elements at different organizational levels. However, the aggregation of
nodes into meta-nodes encapsulates details that would only be observable by uncollapsing
the aggregated meta-node; this work proposes the enhancement of the representation by
including visual metaphors that summarize properties of the collapsed (and therefore not
visible) subtree to provide information to guide the user in the navigation process. The
visual metaphor presented here is extremely simple, but a more elaborate design would
allow a better characterization of the most relevant properties of the collapsed sub-tree,
thereby providing a summarized outline of the hidden hierarchy without disaggregating
the meta-node.

Many areas generate data that have a hierarchical organization, such as biological
systems, geographical data, or socio-economic data. However, even when the nodes do
not present an intrinsic hierarchy, it is possible to apply techniques for their automatic
hierarchical grouping, based on certain attributes of interest. This would allow applying
the developed visualization environment to analyze complex graphs following a multiscale
approach, even if they do not present a compound graph structure. No less interesting
would be to perform different hierarchical groupings of the same data, according to different
properties, which would allow interpreting the data from multiple perspectives derived
from the restructuring of the hierarchy.

The editing and creation capabilities turn this framework into a tool that aids the con-
struction of graphs in a visual and interactive way, taking advantage of all the complexity
management strategies already embedded in the viewer. This approach allows translating

Appl. Sci. 2022, 12, 7541 23 of 25

the mental model of a user by providing resources to build the representation following a
top-down approach and to observe at the same time the hierarchical organization of the
elements and their connections or dependencies.

The results shown in this paper illustrate the applicability of the proposed approach to
two different domains, demonstrating both the capabilities for the exploration of existing
datasets and the visual creation of graphs that reflect the mental structure that a user has of
a given domain. In both cases, Carbonic provides strategies for conveying information in a
meaningful way.

Regarding future work, the presented framework can evolve in multiple directions.
The proposed techniques are currently included in a prototype that is only a preliminary
implementation that needs to be improved in terms of usability and robustness. While
several techniques have been proposed to manage complexity from the visualization point
of view, there is also a need to deal with complexity from the computational perspective, by
developing strategies for efficient memory management to handle extremely large graphs.

The incorporation of data of different nature, such as time-varying data, would allow
us to extend the applicability of Carbonic to other domains and to show the temporal
evolution of properties, connections, or hierarchy.

Finally, the integration of the proposed visual framework with other domain-specific
tools would allow the development of a multiview environment where Carbonic would act
as a visual front-end for interacting with simulation software for highly complex systems,
such as those found in the field of neuroscience. Furthermore, the use of Carbonic in a
specific application domain will allow the evaluation of the proposed approach with end
users, which will greatly contribute to the refinement of both the underlying techniques
and the interaction capabilities.

Author Contributions: Conceptualization, C.R., P.T., L.P. and S.M.; data curation, C.R.; formal
analysis, P.T. and S.M.; funding acquisition, L.P.; investigation, C.R., P.T. and S.M.; methodology,
C.R., P.T. and S.M.; software, C.R.; supervision, P.T., L.P. and S.M.; visualization, C.R., P.T. and S.M.;
writing—original draft, C.R., P.T. and S.M.; writing—review and editing, L.P. All authors have read
and agreed to the published version of the manuscript.

Funding: The research leading to these results has received funding from the Spanish Ministry of
Economy and Competitiveness under grants C080020-09 (Cajal Blue Brain Project, Spanish partner of
the Blue Brain Project initiative from EPFL) and TIN2017-83132, and the Spanish Ministry of Science
and Innovation under grants PID2020-113013RB-C21 and PID2020-113013RB-C22, as well as from
the European Union’s Horizon 2020 Framework Programme for Research and Innovation under
the Specific Grant Agreements No. 785907 (Human Brain Project SGA2) and 945539 (Human Brain
Project SGA3).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thomas, J.J.; Cook, K.A. A Visual Analytics Agenda. IEEE Comput. Graph. Appl. 2006, 26, 10–13. [CrossRef]
2. Yoghourdjian, V.; Archambault, D.W.; Diehl, S.; Dwyer, T.; Klein, K.; Purchase, H.C.; Wu, H. Exploring the limits of complexity:

A survey of empirical studies on graph visualisation. Vis. Inform. 2018, 2, 264–282. [CrossRef]
3. Betzel, R.F.; Bassett, D.S. Multi-scale brain networks. NeuroImage 2017, 160, 73–83. [CrossRef] [PubMed]
4. Sugiyama, K.; Misue, K. Visualization of structural information: Automatic drawing of compound digraphs. IEEE Trans. Syst.

Man, Cybern. 1991, 21, 876–892. [CrossRef]
5. Eades, P.; Feng, Q. Multilevel Visualization of Clustered Graphs. In Graph Drawing, Symposium on Graph Drawing, Proceedings of the

GD ’96, Berkeley, CA, USA, 18–20 September 1996; Lecture Notes in Computer Science; North, S.C., Ed.; Springer: Berlin/Heidelberg,
Germany, 1996; Volume 1190, pp. 101–112. [CrossRef]

6. Munzner, T. Visualization Analysis and Design; AK Peters Visualization Series; CRC Press: Boca Raton, FL, USA, 2015.
7. Okoe, M.; Jianu, R.; Kobourov, S.G. Node-Link or Adjacency Matrices: Old Question, New Insights. IEEE Trans. Vis. Comput.

Graph. 2019, 25, 2940–2952. [CrossRef]

http://doi.org/10.1109/MCG.2006.5
http://dx.doi.org/10.1016/j.visinf.2018.12.006
http://dx.doi.org/10.1016/j.neuroimage.2016.11.006
http://www.ncbi.nlm.nih.gov/pubmed/27845257
http://dx.doi.org/10.1109/21.108304
http://dx.doi.org/10.1007/3-540-62495-3_41
http://dx.doi.org/10.1109/TVCG.2018.2865940

Appl. Sci. 2022, 12, 7541 24 of 25

8. Abello, J.; van Ham, F. Matrix Zoom: A Visual Interface to Semi-External Graphs. In Proceedings of the IEEE Symposium on
Information Visualization, Austin, TX, USA, 10–12 October 2004; pp. 183–190. [CrossRef]

9. Henry, N.; Fekete, J.D. MatrixExplorer: A Dual-Representation System to Explore Social Networks. IEEE Trans. Vis. Comput.
Graph. 2006, 12, 677–684. [CrossRef]

10. Ghoniem, M.; Fekete, J.D.; Castagliola, P. On the Readability of Graphs Using Node-Link and Matrix-Based Representations:
A Controlled Experiment and Statistical Analysis. Inf. Vis. 2005, 4, 114–135. [CrossRef]

11. Henry, N.; Fekete, J.D.; McGuffin, M.J. NodeTrix: A Hybrid Visualization of Social Networks. IEEE Trans. Vis. Comput. Graph.
2007, 13, 1302–1309. [CrossRef] [PubMed]

12. Henry, N.; Fekete, J.D. MatLink: Enhanced Matrix Visualization for Analyzing Social Networks. In Proceedings the 11th
IFIP TC 13 International Conference on Human-Computer Interaction, Rio de Janeiro, Brazil, 10–14 September 2007; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 288–302. [CrossRef]

13. Stasko, J.; Catrambone, R.; Guzdial, M.; McDonald, K. An evaluation of space-filling information visualizations for depicting
hierarchical structures. Int. J. Hum.-Comput. Stud. 2000, 53, 663–694. [CrossRef]

14. Horak, T.; Berger, P.; Schumann, H.; Dachselt, R.; Tominski, C. Responsive Matrix Cells: A Focus+Context Approach for Exploring
and Editing Multivariate Graphs. IEEE Trans. Vis. Comput. Graph. 2021, 27, 1644–1654. [CrossRef]

15. Li, G.; Tian, M.; Xu, Q.; McGuffin, M.J.; Yuan, X. GoTree: A Grammar of Tree Visualizations. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; Association for Computing
Machinery: New York, NY, USA, 2020; pp. 1–13. [CrossRef]

16. Buchheim, C.; Jünger, M.; Leipert, S. Improving Walker’s Algorithm to Run in Linear Time. In Graph Drawing, Proceedings of the
10th International Symposium, GD 2002, Irvine, CA, USA, 26–28 August 2002; Kobourov, S.G., Goodrich, M.T., Eds.; Revised Papers;
Springer: Berlin/Heidelberg, Germany, 2002; Lecture Notes in Computer Science; Volume 2528, pp. 344–353. [CrossRef]

17. Wang, W.; Wang, H.; Dai, G.; Wang, H. Visualization of Large Hierarchical Data by Circle Packing. In Proceedings of the CHI06:
CHI 2006 Conference on Human Factors in Computing Systems, Montréal, QU, Canada, 22–27 April 2006; Association for
Computing Machinery: New York, NY, USA, 2006; pp. 51–520. [CrossRef]

18. van Ham, F.; van Wijk, J. Beamtrees: Compact visualization of large hierarchies. In Proceedings of the IEEE Symposium on
Information Visualization, Boston, MA, USA, 28–29 October 2002; pp. 93–100. [CrossRef]

19. Johnson, B.; Shneiderman, B. Tree-maps: A space-filling approach to the visualization of hierarchical information structures. In
Proceedings of the Proceeding Visualization ’91, San Diego, CA, USA, 22–25 October 1991; pp. 284–291. [CrossRef]

20. Kruskal, J.B.; Landwehr, J.M. Icicle Plots: Better Displays for Hierarchical Clustering. Am. Stat. 1983, 37, 162–168.
21. de Wetering, H.V.; Klaassen, N.; Burch, M. Space-Reclaiming Icicle Plots. In Proceedings of the 2020 IEEE Pacific Visualization

Symposium (PacificVis), Tianjin, China, 3–5 June 2020; Beck, F., Seo, J., Wang, C., Eds.; Institute of Electrical and Electronics
Engineers: Piscataway, NJ, USA, 2020; pp. 121–130. [CrossRef]

22. Zhao, S.; McGuffin, M.; Chignell, M. Elastic hierarchies: Combining treemaps and node-link diagrams. In Proceedings of the IEEE
Symposium on Information Visualization, INFOVIS 2005, Minneapolis, MN, USA, 23–25 October 2005; pp. 57–64. [CrossRef]

23. Blanch, R.; Dautriche, R.; Bisson, G. Dendrogramix: A hybrid tree-matrix visualization technique to support interactive
exploration of dendrograms. In Proceedings of the 2015 IEEE Pacific Visualization Symposium, PacificVis 2015, Hangzhou,
China, 14–17 April 2015; pp. 31–38. [CrossRef]

24. Bisson, G.; Blanch, R. Stacked trees: A new hybrid visualization method. In Proceedings of the International Working Conference
on Advanced Visual Interfaces, AVI 2012, Capri Island, Naples, Italy, 22–25 May 2012; pp. 709–712. [CrossRef]

25. Schulz, H. Treevis.net: A Tree Visualization Reference. IEEE Comput. Graph. Appl. 2011, 31, 11–15. [CrossRef] [PubMed]
26. Archambault, D.; Munzner, T.; Auber, D. TugGraph: Path-Preserving Hierarchies for Browsing Proximity and Paths in Graphs. In

Proceedings of the 2009 IEEE Pacific Visualization Symposium, Beijing, China, 20–23 April 2009; pp. 113–120. [CrossRef]
27. Archambault, D.W.; Munzner, T.; Auber, D. GrouseFlocks: Steerable Exploration of Graph Hierarchy Space. IEEE Trans. Vis.

Comput. Graph. 2008, 14, 900–913. [CrossRef]
28. Neumann, P.; Schlechtweg, S.; Carpendale, S. ArcTrees: Visualizing Relations in Hierarchical Data. In Proceedings of the

Seventh Joint Eurographics/IEEE VGTC Conference on Visualization, Leeds, UK, 1–3 June 2005; Eurographics Association:
Goslar, Germany, 2005; pp. 53–60. [CrossRef]

29. Mansmann, F.; Fischer, F.; Keim, D.A.; North, S.C. Visual Support for Analyzing Network Traffic and Intrusion Detection
Events Using TreeMap and Graph Representations. In Proceedings of the Symposium on Computer Human Interaction for the
Management of Information Technology, CHiMiT ’09, Baltimore, MD, USA, 7–8 November 2009; Association for Computing
Machinery: New York, NY, USA, 2009. [CrossRef]

30. Gou, L.; Zhang, X.L. TreeNetViz: Revealing Patterns of Networks over Tree Structures. IEEE Trans. Vis. Comput. Graph. 2011,
17, 2449–2458. [CrossRef] [PubMed]

31. Dogrusoz, U.; Giral, E.; Cetintas, A.; Civril, A.; Demir, E. A layout algorithm for undirected compound graphs. Inf. Sci. 2009,
179, 980–994. [CrossRef]

32. Thomas, J.J.; Cook, K.A. Illuminating the Path: The Research and Development Agenda for Visual Analytics; National Visualization and
Analytics Center: Richland, WA, USA 2005.

33. Pike, W.A.; Stasko, J.; Chang, R.; O’Connell, T.A. The Science of Interaction. Inf. Vis. 2009, 8, 263–274. [CrossRef]

http://dx.doi.org/10.1109/INFVIS.2004.46
http://dx.doi.org/10.1109/TVCG.2006.160
http://dx.doi.org/10.1057/palgrave.ivs.9500092
http://dx.doi.org/10.1109/TVCG.2007.70582
http://www.ncbi.nlm.nih.gov/pubmed/17968078
http://dx.doi.org/10.1007/978-3-540-74800-7_24
http://dx.doi.org/10.1006/ijhc.2000.0420
http://dx.doi.org/10.1109/TVCG.2020.3030371
http://dx.doi.org/10.1145/3313831.3376297
http://dx.doi.org/10.1007/3-540-36151-0_32
http://dx.doi.org/10.1145/1124772.1124851
http://dx.doi.org/10.1109/INFVIS.2002.1173153
http://dx.doi.org/10.1109/VISUAL.1991.175815
http://dx.doi.org/10.1109/PacificVis48177.2020.4908
http://dx.doi.org/10.1109/INFVIS.2005.1532129
http://dx.doi.org/10.1109/PACIFICVIS.2015.7156353
http://dx.doi.org/10.1145/2254556.2254690
http://dx.doi.org/10.1109/MCG.2011.103
http://www.ncbi.nlm.nih.gov/pubmed/24808254
http://dx.doi.org/10.1109/PACIFICVIS.2009.4906845
http://dx.doi.org/10.1109/TVCG.2008.34
http://dx.doi.org/10.2312/VisSym/EuroVis05/053-060
http://dx.doi.org/10.1145/1641587.1641590
http://dx.doi.org/10.1109/TVCG.2011.247
http://www.ncbi.nlm.nih.gov/pubmed/22034366
http://dx.doi.org/10.1016/j.ins.2008.11.017
http://dx.doi.org/10.1057/ivs.2009.22

Appl. Sci. 2022, 12, 7541 25 of 25

34. Yi, J.S.; Kang, Y.A.; Stasko, J.; Jacko, J. Toward a Deeper Understanding of the Role of Interaction in Information Visualization.
IEEE Trans. Vis. Comput. Graph. 2007, 13, 1224–1231. [CrossRef] [PubMed]

35. Keim, D.A. Information Visualization and Visual Data Mining. IEEE Trans. Vis. Comput. Graph. 2002, 8, 1–8. [CrossRef]
36. Baudel, T. From information visualization to direct manipulation: Extending a generic visualization framework for the interactive

editing of large datasets. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology,
Montreux, Switzerland, 15–18 October 2006; pp. 67–76. [CrossRef]

37. Eichner, C.; Gladisch, S.; Schumann, H.; Tominski, C. Direct Visual Editing of Node Attributes in Graphs. Informatics 2016, 3, 17.
[CrossRef]

38. Shannon, P.T.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape:
A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–504. [CrossRef]

39. Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In
Proceedings of the Third International Conference on Weblogs and Social Media, ICWSM 2009, San Jose, CA, USA, 17–20 May
2009; Adar, E., Hurst, M., Finin, T., Glance, N.S., Nicolov, N., Tseng, B.L., Eds.; The AAAI Press: Menlo Park, CA, USA, 2009.

40. Gladisch, S. Supporting Graph Editing in Visual Representations. Ph.D. Thesis, University of Rostock, Rostock, Germany, 2016.
41. Gladisch, S.; Schumann, H.; Ernst, M.; Fuellen, G.; Tominski, C. Semi-Automatic Editing of Graphs with Customized Layouts.

Comput. Graph. Forum 2014, 33, 381–390. [CrossRef]
42. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory

Exp. 2008, 2008, P10008. [CrossRef]
43. Tennekes, M.; de Jonge, E. Tree Colors: Color Schemes for Tree-Structured Data. IEEE Trans. Vis. Comput. Graph. 2014,

20, 2072–2081. [CrossRef]
44. Holten, D. Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data. IEEE Trans. Vis. Comput. Graph.

2006, 12, 741–748. [CrossRef]

http://dx.doi.org/10.1109/TVCG.2007.70515
http://www.ncbi.nlm.nih.gov/pubmed/17968068
http://dx.doi.org/10.1109/2945.981847
http://dx.doi.org/10.1145/1166253.1166265
http://dx.doi.org/10.3390/informatics3040017
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1111/cgf.12394
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1109/TVCG.2014.2346277
http://dx.doi.org/10.1109/TVCG.2006.147

	Introduction
	Related Work
	Methods
	Definitions
	Compound Graph Visualization
	Visualization of the Tree: Nodes and Inclusion Edges
	Visualization of the Adjacency Edges

	Managing the Number of Elements
	Filtering
	Hierarchy Pruning
	Collapse and Uncollapse Operations

	Reducing Visual Cluttering
	Edge Bundling
	Transparency
	Additional Decluttering Strategies

	Interaction for Exploration and Edition
	Visual Cues to Guide the Multiscale Exploration of the Compound Graph

	Results and Discussion
	Flight Routes Visualization
	Course Design: Visual Creation and Exploration of Course Contents
	Discussion

	Conclusions
	References

