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Abstract: This examination is carried out on the two-dimensional magnetohydrodynamic problem
for a steady incompressible flow over a porous medium. The Cu− Al2O3 nanoparticles are added
to the water base fluid in order to improve thermal efficiency. The transverse magnetic field with
strength B0 is applied. The governing equations formed for the defined flow form a system of partial
differential equations that are then converted to a system of ordinary differential equations upon
applying the suitable similarity transformations. On analytically solving the obtained system, the
solutions for velocity profile and temperature distribution are obtained in terms of exponential and
Gamma functions, respectively. In addition, the physical parameter of interest, the local Nusselt
number, is obtained. The results are analyzed through plotting graphs, and the effect of different
parameters is analyzed. Furthermore, we observe that the suction/injection parameter enhances the
axial velocity. The porous and radiation parameters enhance the temperature distribution, and the
suction/injection parameter suppresses the temperature distribution.

Keywords: hybrid nanofluid; porous media; Brinkman ratio; suction/injection; magnetic parameter

1. Introduction

Several studies have focused on the problem of boundary layer flow (BLF) and heat
transfer across a stretching/shrinking sheet [1]. Because of its importance in industrial and
engineering processes, a significant amount of effort has been devoted to this area in recent
years. The application of certain flows in engineering and technological operations includes
refrigeration, electrical gadgets with fans, nuclear reactors, polyethylene extraction, steel
fabrication, and many more. Crane introduced the idea of flow across a stretching sheet by
analytically solving the steady 2D flow through a linearly stretched plat [1]. Wang further
generalized this concept to a 3D example [2]. Numerous scholars have since investigated
various facets of this form of movement [3–10]. They examined fluid flow and even heat
transfer properties of a permeable stretching sheet of convective boundary conditions (BCs),
viscous dissipation, and several types of fluid.

Choi was the first to invent the phrase “nanofluid” (NF) in 1995 [11], which is a mixture
that improves the physical and chemical properties of a fluid using nanoparticles. Currently,
the importance of energy consumption has led scientists to optimize thermal devices. One
of the solutions proposed for this purpose is using solid nanoparticles to amend the thermal
properties of conventional viscous fluids. Furthermore, a different type of NF, called a
hybrid nanofluid (HNF), is being studied to boost the mass transfer coefficient even more.
HNF is an enhanced NF composed of two unique nanoparticles, while ordinary NF consists
of a special nanoparticle that absorbs the base fluid. The chemical compositions of HNF are
then improved, which improves mass transfer efficiency. Most of the studies investigated
the BLF and mass transfer. The concept of HNF has been the subject of extensive scientific
studies. It was proven that hybrid nanofluids can be an alternative to the single nanofluid,
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because it can provide more heat transfer enhancement, particularly in the contexts of solar
energy, electromechanics and automobile use.

Mahabaleshwar et al. studied the radiation effect on inclined MHD flow and found
the exact solution for the flow over the porous media by considering different boundary
conditions, such as on the studied MHD flow with CNTs by considering the impact of
mass transpiration and radiation, on the flow and heat transfer with chemical reaction
in porous media, as well as on the unsteady inclined MHD flow for Casson HNF due to
porous media [12,13]. Moreover, Aly and Pop [14] performed a comparison between the
significance of HNF and NF on MHD flow and heat transfer by considering the effect of
partial slip. The flow of MHD in such a particular case was first explored by Sarpakaya [15]
and Mahabaleshwar [16]. Mahabaleshwar et al. [17] investigated the MHD effect on a
Newtonian fluid flow due to a super-linear stretching sheet. Fang and Zhang [18] and
Hamad [19] examined the MHD flow due to a shrinking sheet and a stretching sheet,
respectively. Turkyilmazoglu [20] examined the MHD flow, heat and mass transfer of
viscoelastic fluid with slip over the stretching surface, and obtained multiple solutions.
Suresh et al. [21,22] investigated the effect of HNF on heat transfer and the formation of
HNF out of (Al2O3-Cu/H2O). Vinay Kumar et al. [23] also investigated the MHD flow over
a nonlinear stretching/shrinking sheet and the impact of slip on it in a porous medium.

On the other hand, many studies have been conducted on HNF flow, MHD HNF
flow due to a quadratic stretching/shrinking sheet, radiative mixed convective flow, and
also dusty HNF [24,25]. Furthermore, recent developments and applications of HNF were
investigated in Refs. [26,27].

The Marangoni convection is stress due to the transverse gradient of surface tension
that is acting along interfaces to produce movements in liquid–liquid or liquid–gas in-
terfaces in some industrial processes. The thermo-Marangoni convection has important
applications in the semiconductor and metallurgical industries, as well as in welding and
crystal growth [27–29]. Chamkha [30] demonstrated that surface-driven flows, which may
be produced not only by Marangoni effects but also by the existence of the buoyancy effects
caused by gravity and the external pressure gradient, can produce steady boundary layers
along the interface of two immiscible fluids. Motivated by the aforementioned works,
the aim of the current study was to examine the 2D MHD steady incompressible flow
and heat transfer of HNF over a porous medium. In particular, we included the effect
of adding Cu− Al2O3 nanoparticles to the base fluid water in order to improve thermal
efficiency. The thermal conductivity of Cu− Al2O3 water increases with increasing volume
concentration of nanoparticles. The main reason for the increase in thermal conductivity of
Cu− Al2O3 water hybrid nanofluid is the functionalization of Al2O3 and Cu nanoparticles,
which have a higher thermal conductivity than Al2O3 nanoparticles. Thermal radiation was
also incorporated in the present study. Because of its impact on processes that operate at
high temperatures, thermal radiation has also drawn a lot of interest [31–33]. We performed
an analysis to obtain the velocity profile and temperature distribution for this system. The
manuscript is arranged as follows: In Section 2, the physical model is presented and, in
Section 3, the analytical solutions of the model are obtained. In Section 4, the results are
discussed. Finally, the concluding remarks are given in Section 5.

2. Physical Model

The 2D MHD steady incompressible flow and heat transfer of HNF over a porous
medium are here considered. As shown in Figure 1, the transverse magnetic field with
strength B0 is applied along the y-axis. In addition, the Cu and Al2O3 nanoparticles are
added to the water base fluid. This shows that the velocity boundary layer thickness is
more than the thermal boundary layer thickness. The ambient temperature of the HNF is
kept constant at T∞. In adopting the standard boundary layer approximation, the leading
equations are as follows [27],

∂u
∂x

+
∂v
∂y

= 0 (1)
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u
∂u
∂x

+ v
∂u
∂y

=
µe f f

ρhn f

∂2u
∂y2 −

σhn f B2
0

ρhn f
u−

µhn f

ρhn f K
u (2)

u
∂T
∂x

+ v
∂T
∂y

=
κhn f

(ρCP)hn f

∂2T
∂y2 −

1
(ρCP)hn f

∂qr

∂y
(3)

subject to BCs,
v = vw , µhn f

∂u
∂y = ∂σ

∂T
∂T
∂x at y = 0,

u→ 0 , T → T∞ as y→ ∞

}
(4)
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All mentioned parameters are as described in the nomenclature. The subscript hn f
denotes the HNF quantities and are described as below,

ρhn f

ρ f
= (1− φ2)

(
1− φ1 + φ1

ρs1

ρ f

)
+ φ2

(
ρs2

ρ f

)
µhn f
µ f

= 1
(1−φ1)

2.5(1−φ2)
2.5

σhn f
σf

=
σs2+2σb f +2φ2(σs2−σf )
σs2+2σb f−φ2(σs2−σf )

,

where
σb f
σf

=
σs1+2σf +2φ1(σs1−σf )
σs1+2σf−φ1(σs1−σf )

khn f
k f

=
ks2+2kb f +2φ2(ks2−k f )
ks2+2kb f−φ2(ks2−k f )

,

where
kb f

k f
=

ks1 + 2k f + 2φ1

(
ks1 − k f

)
ks1 + 2k f − φ1

(
ks1 − k f

)
(ρCP)hn f

(ρCP) f
= (1− φ2)

(
1− φ1 + φ1

(
ρCp

)
s1(

ρCp
)

f

)
+ φ2

(
ρCp

)
s2

(ρCP) f
(5)
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The radiative heat flux is calculated by applying the Rosseland approximation for
radiation as follows [12,28],

qr = −
4σ∗

3k∗
∂T4

∂y
(6)

It is implicit that the temperature varies within the flow, where the term T4 is the linear
function of the temperature. Therefore, using Taylor series expansion to the term T4 about
T∞ and ignoring the higher order terms, we acquire

T4 ∼= 4T3
∞T − 3T4

∞ (7)

Equation (3) reduces to

u
∂T
∂x

+ v
∂T
∂y

=
κhn f

(ρCP)hn f

∂2T
∂y2 +

16σ∗T3
∞

3k∗(ρCP)hn f

∂2T
∂y2 (8)

Consider the suitable similarity transformations as follows [27]:

ψ(η) = ξ2x f (η), η = ξ1y
u = ξ1ξ2x fη(η), v = −ξ2 f (η) , θ(η) = T−T∞

ax2
(9)

On using (9), Equations (2) to (4) are converted as

Λ fηηη + C1

(
f fηη − fη

2
)
−
(

C3M + C2Da−1
)

fη = 0 (10)

1
C4

(
C5

Pr
+ NR

)
θηη + f θη − 2 fηθ = 0 (11)

With the imposed BCs as

f (0) = S , fηη(0) = −2(1− φ1)
2.5(1− φ2)

2.5 , θ(0) = 1,
fη(η)→ 0 , θ(η)→ 0 as η → ∞

}
(12)

where Da−1 =
ν f

Kξ1ξ2
is the inverse Darcy number; Λ =

µe f f
µ f

is the Brinkman ratio;

M =
σf B0

2

ξ1ξ2ν f
is the magnetic field; NR = 16σ∗T∞

3

3k f k∗ is thermal radiation; and Ci, where i = 1 to
5, is taken as

C1 =
ρhn f

ρ f
, C2 =

µhn f

µ f
, C3 =

σhn f

σf
, C4 =

(ρCP)hn f

(ρCP) f
and C5 =

khn f

k f
(13)

The interested physical local Nusselt number Nux is given by

Nux =
xqw

k f (T − T∞)
(14)

where qw is the heat flux given as

qw = −khn f

(
∂T
∂y

+ qr

)
y=0

(15)

Equations (14) and (15) lead to

Nux = −
(

khn f

k f
− khn f PrNR

)
ξ1xθη(0) (16)
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3. Exact Analytical Solutions

In this section, we compute the analytical solution of the model. We separate the
section into two subsections for the velocity and temperature fields.

3.1. Velocity

The exact analytical solution of Equation (10) is in the form

f (η) = d1 + d2e−αη (17)

where α > 0 is to be determined. On using BCs (12a)

d1 = S− d2

d2 = − 2
α2 (1− φ1)

2.5(1− φ2)
2.5

(18)

So, using (17) in Equation (10) gives

Λα3 − SC1α2 −
(

C3M + C2Da−1
)

α− 2C1(1− φ1)
2.5(1− φ2)

2.5 = 0 (19)

3.2. Temperature Distribution θ(η)

Using Equation (17) and applying a new variable ε = −e−αη in Equation (11),

εθεε(ε) + (p− qε)θε(ε) + 2qθ(ε) = 0 (20)

with BCs as
θ(0) = 0 , θ(−1) = 1, (21)

where p = 1 − n
α

[
S + 2

α2 (1− φ1)
2.5(1− φ2)

2.5
]

and q = 2n
α3 (1− φ1)

2.5(1− φ2)
2.5, where

n = C4(
C5
Pr +NR

) .

To solve Equation (20), we deploy the Laplace transformation to obtain

S(q− S)ΘS(S) + [3q + S(p− 2)]Θ(S) = 0 (22)

Here, Θ(S) = L[θ(ε)]. Integrating Equation (22) gives

Θ(S) =
C(S− q)(p+1)

S3 (23)

In order to obtain the solution of Equation (20), we apply the inverse Laplace transfor-
mation and use the convolution property to acquire

θ(t) =
C

2Γ[−1− p]

t∫
0

(t− w)2

wp+2 exp(qw)dw, here p < −1 (24)

where C is integrating constant can be determined by using the BCs θ(−1) = 1 in
Equation (24) to obtain,

C =
2Γ[−1− p]

−1∫
0

(1+w)2

wp+2 exp(qw)dw
(25)
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Therefore, Equation (24) becomes

θ(ε) = −

ε∫
0

(ε−w)2

wp+2 exp(qw)dw

0∫
−1

(1+w)2

wp+2 exp(qw)dw
(26)

Operating the integration of Equation (26) gives the final expression for θ(t)

θ(ε) =
q2ε2Γ[−p− 1, 0,−qε] + 2qε Γ[−p, 0,−qε] + Γ[−p + 1, 0,−qε]

q2Γ[−p− 1, 0, q]− 2qΓ[−p, 0, q] + Γ[−p + 1, 0, q]
(27)

In terms of the similarity variable η, Equation (27) becomes:

θ(η) =
q2e−2αη Γ[−p− 1, 0, qe−αη ]− 2qe−αη Γ[−p, 0, qe−αη ] + Γ[−p + 1, 0, qe−αη ]

q2Γ[−p− 1, 0, q]− 2qΓ[−p, 0, q] + Γ[−p + 1, 0, q]
(28)

Differentiating Equation (28), we obtain

θη(0) =
2αq{Γ[−p, 0, q]− qΓ[−p− 1, 0, q]}

q2Γ[−p− 1, 0, q]− 2qΓ[−p, 0, q] + Γ[−p + 1, 0, q]
(29)

Therefore, from Equation (16,) Nusselt number becomes

Nux = −
(

khn f

k f
− khn f PrNR

)
ξ1x

2αq{Γ[−p, 0, q]− qΓ[−p− 1, 0, q]}
q2Γ[−p− 1, 0, q]− 2qΓ[−p, 0, q] + Γ[−p + 1, 0, q]

(30)

In the next section, we analyze these results.

4. Results and Discussion

We examined the 2D MHD steady incompressible flow and heat transfer due to a
porous medium containing Cu− Al2O3 nanoparticles in the base fluid by applying a mag-
netic field of strength B0 to the fluid flow. The addition of nanoparticles enhances the
thermal efficiency of the flow system. The leading equations form the system of PDEs and
are then converted into the system of ODEs by adopting suitable similarity transforma-
tions. The system is analytically solved to obtain the solutions for the velocity profile and
temperature distribution in terms of exponential and Gamma functions, respectively. In all
plots, the dotted lines refer to the behavior of the base fluid, while the solid lines refer to
the behavior of HNF for Cu− Al2O3.

Figure 2 demonstrates the axial velocity f (η) for various Da−1. We found that the
velocity declines as Da−1 increases. Panels (a)–(c), where the velocity is examined for S = 0
show that there is no permeability. For suction S = 1 and injection S = −1, we observe that
as S increases from injection to suction, the axial velocity for HNF very quickly coincides
with the base fluid as Da−1 increases. In all cases, the profile of fη(η) has a decreasing
nature, and it becomes constant to zero at a certain point of η.

Figure 3 depicts the velocity fη(η) as a function of η for various values of Λ. The
velocity increases with an increase in Λ. Panels (a)–(c), where the velocity is examined for
S = 0, show that there is no permeability. For suction S = 1 and injection S = −1, we
observe that the difference between the axial velocity of the base fluid and HNF is larger in
the case of suction and smaller in the case of injection. In all cases, the axial velocity is less
for an HNF than the base fluid.

Figure 4 shows the profile of fη(η) for various M. It can be seen that fη(η) is smaller
for larger values of M. Panels (a)–(c), where the velocity is examined for S = 0, show that
there is no permeability. For suction S = 1 and injection S = −1, we observe that the
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difference between the axial velocity of the base fluid and the HNF is more in the case of
suction and less in the case of injection.
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The effect of S is shown in Figure 5 for both the suction and injection cases. Clearly, the
velocity profile fη(η) decreases for a larger S. Panel (a) shows that the difference between
the axial velocity of the base fluid and the HNF is larger in the case of suction and smaller
in the case of injection as in panel (b). At η = 0, the axial velocity is different for various
values of each parameter.
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Figure 6 displays the temperature profile θ(η) for various values of Da−1. We observe
that θ(η) increases as Da−1 increases. Panels (a)–(c), where the temperature is shown for
S = 0, show that there is no permeability. For suction S = 1 and injection S = −1, we
observe that θ(η) for HNF coincides with the base fluid as Da−1 increases. In all cases, we
found that θ(η) decreases and that becomes constant to zero at a certain point of η. The
temperature profile has the same value at η = 0 irrespective of the parameters’ values.
Moreover, as the thermal rate increases upon adding nanoparticles to the base fluid, we
can see from the figures that θ(η) becomes more of an HNF than a base fluid.

Figure 7 shows the temperature profile θ(η) for different values Λ. We observe that
θ(η) decreases with the enhancement in Λ. Panels (a)–(c) show the regimens of S. In
panel (a) for S = 0, there is no permeability, whereas in panel (b) suction (S = 1) and
finally in panel (c) for injection case (S = −1). We found that there is an achievement of
enhancement of heat transfer upon using HNF and that Casson fluid will suppress the
temperature distribution.

Figure 8 shows the temperature profile as a function of η for different values of M. We
see that θ(η) increases as M increases. Panels (a)–(c) show θ for S = 0, S = 1, and S = −1,
respectively. We observe that HNF has much more thermal conductivity than the base fluid.
Furthermore, we observe that as the value of S increases, the domain of the temperature
distribution decreases.
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M = Λ = NR = 1, φ1 = 0.1, φ2 = 0.04.
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Figure 7. The temperature distribution θ(η) as a function of η for various values of Λ and for
three different regimes of S: (a) S = 0, (b) S = 1 and (c) S = −1. The other fixed parameters are:
M = Da−1 = NR = 1, φ1 = 0.1, φ2 = 0.04.
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Figure 9 shows the temperature distribution ( )θ η  for various values of the radia-

tion parameter RN . We can observe that ( )θ η  increases as the effect of radiation in-
creases. Panels (a)–(c) show the profile for cases with no permeability, with suction and 
injection. We note that the domain of the temperature is larger in the case of injection and 
smaller in the case of no-permeability. Furthermore, by observing each plot of tempera-
ture distribution, the effect of radiation on the change of heat transfer rate is less than 
those of the magnetic field and Casson fluid, i.e., the difference in temperature distribu-
tion between base fluid and HNF is not that much more significant. 

Figure 8. The temperature profile θ(η) as a function of η for several values of M and for
three different regimes of S: (a) S = 0, (b) S = 1, and (c) S = −1. The other fixed parameters are:
Λ = Da−1 = NR = 1, φ1 = 0.1, φ2 = 0.04.

Figure 9 shows the temperature distribution θ(η) for various values of the radiation
parameter NR. We can observe that θ(η) increases as the effect of radiation increases.
Panels (a)–(c) show the profile for cases with no permeability, with suction and injection. We
note that the domain of the temperature is larger in the case of injection and smaller in the
case of no-permeability. Furthermore, by observing each plot of temperature distribution,
the effect of radiation on the change of heat transfer rate is less than those of the magnetic
field and Casson fluid, i.e., the difference in temperature distribution between base fluid
and HNF is not that much more significant.

Finally, the effect of various values of S on the temperature profile is shown in Figure 10
for suction and injection cases. θ(η) decreases when as S increases, as shown in the figure.
The domain of θ(η) is larger in the case of injection than in suction.
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Figure 10. The temperature profile θ(η) as a function of η for several values of S. The other fixed
parameters are: M = Λ = Da−1 = NR = 1, φ1 = 0.1, φ2 = 0.04.

5. Concluding Remarks

In the present study, we examined 2D MHD steady incompressible flow and heat
transfer over a porous medium containing Cu− Al2O3 nanoparticles in a base fluid. The
addition of nanoparticles enhances the thermal efficiency of the flow system. The system
was analytically solved to obtain the solutions for the velocity profile and temperature
distribution in terms of exponential and Gamma functions, respectively. In addition, the
effect of different physical parameters was examined by using graphical representations.
The following observations were made:

• The axial velocity declines with increasing porous parameter or magnetic field, and
the suction/injection parameter increases with increasing Brinkman ratio.

• The temperature distribution increases for higher values of the porous parameter,
magnetic field, or radiation; it decreases with an increase in the Brinkman ratio or
suction/injection parameter.

• At η = 0, the axial velocity is different for various values of each parameter.
• The axial velocity is smaller for hybrid nanofluid than for base fluid.
• θ(η) is the same for every value of varying parameters at η = 0.
• As the thermal rate increases upon adding nanoparticles to the base fluid, the figures

showed that θ(η) will be larger for hybrid nanofluid than for base fluid.

In the future, we plan to conduct a similar investigation on a non-Newtonian fluid
with mass transfer problems. We postulate that adding the effect of viscous dissipation and
various physical parameters can uncover another interesting phenomenon.

Author Contributions: Conceptualization: U.S.M.; methodology: U.S.M. and D.L.; software: T.A.
and R.M.; formal analysis: T.A., R.M. and U.S.M.; investigation: T.A., R.M., U.S.M. and D.L.; writing—
original draft preparation: U.S.M.; writing—review and editing: D.L. All authors have read and
agreed to the published version of the manuscript.

Funding: D.L. acknowledges partial financial support from Centers of Excellence with BASAL/ANID
financing, grant nos. AFB180001, CEDENNA.



Appl. Sci. 2022, 12, 7527 21 of 22

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Nomenclature
Symbol Explanation SI unit
Latin symbols
B0 applied magnetic field

[
wm−2]

CP specific heat at constant pressure
[
JKg−1K−1

]
Da−1 inverse Darcy number [−]
f similarity variable [−]
k∗ mean absorption coefficient

[
m−2]

K permeability of porous medium
[
m−2]

Pr Prandtl number [−]
qr radiative heat flux

[
Wm−2]

qw local heat flux at the wall [−]
M magnetic parameter [−]
NR radiation parameter [−]
Nux local Nusselt number [−]
T temperature [K]
S > 0/ < 0 suction/injection velocity [−]
(x, y) coordinate axes [m]

(u, v) velocities along x- and y-directions
[
ms−1]

Greek symbols
α thermal diffusivity

[
m2s−1]

Γ gamma function [−]
κ thermal conductivity of fluid

[
WKg−1K−1

]
η similarity variable [−]
µ f dynamic viscosity of fluid

[
kgm−1S−1

]
µe f f effective viscosity

[
kgm−1S−1

]
ν kinematic viscosity

[
m2s−1]

ρ density
[
Kgm−3]

σ electrical conductivity
[
Sm−1]

σ∗ Stefan–Boltzmann constant [−]
φ nanoparticle volume fraction [−]
ψ stream function [−]
Λ Brinkman ratio [−]
Subscripts
f base fluid [−]
hn f nanofluid [−]
Abbreviations
BCs boundary conditions [−]
BLF boundary layer flow [−]
MHD magnetohydrodynamics [−]
HNF hybrid nanofluid [−]
Cu copper [−]
Al2O3 aluminum oxide [−]
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