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Abstract: Water temperature in rivers is the key property determining the biotic and abiotic processes
occurring in these ecosystems. In many regions of the world, the significant lack of measurement
data is a serious problem. This paper presents reconstruction of water temperature for selected Polish
rivers with monitoring discontinued in the period 2015–2020. Information regarding air temperature
and water temperature in lakes provided the basis for the comparison of three models: multiple
linear regression, random forest regression, and multilayer perceptron network. The results show that
the best reconstruction results were obtained with a multilayer perceptron network model based on
water temperatures in the lake and air temperatures from three meteorological stations. The average
values of mean error, root mean square error and standard error were for the rivers in Poland: 1.52 ◦C,
5.03%, and 0.47 ◦C. The course of mean yearly water temperature in the years 1987–2020 showed
a statistically significant increase from 0.18 to 0.49 ◦C per decade. The results show that the largest
increases occurred in June, August, September, November, and December.

Keywords: artificial neural network; multiple linear regression; random forest regression; multilayer
perceptron network; Mann–Kendall test; Sen test

1. Introduction

Continuous civilisational development directly contributes to the transformation of
the natural environment, and its particular components respond to the process in different
ways. The transformation is evident in reference to the hydrosphere due to the properties
of water, with a high capacity for the accumulation and transfer of energy and matter. As a
consequence, it is important in reference to water resources and water quality. One of the
most elementary water properties is its temperature, which considerably determines the
course of all processes that occur in water. Considering the currently observed [1,2] as well
as forecasted climate changes [3,4], as well as the close relationship between air and water
temperature [5,6], knowledge on these relationships is particularly important. Numerous
studies point to an increase in the temperature of inland waters [7,8], which plays and will
continue to play an important role in the transformation of their properties. The proper
assessment of the distribution of its characteristics, and particularly the direction and
rate of changes, is possible based on an appropriately organised monitoring system. This
adopts various forms, both in reference to measurement methods and frequency [9–11]. In
recent years, the role of remote sensing techniques has been increasing, offering, among
others, possibilities of capturing thermal differentiation [12–14]. The role of traditional
field measurements, however, is still of particular importance [15]—both in the context of
their accuracy and providing the basis for the validation of satellite images. Considering
the above, the lack or loss of data referring to water temperature in rivers and lakes can
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be of high importance for the management of these ecosystems—particularly in reference
to biodiversity, oxygen conditions (and consequently for their self-cleaning capacity),
and finally their quality. The loss of data can have different causes, both instrumental
and administrative. Sensors collecting data in situ are susceptible to technical errors,
resulting in failures to record observations and/or anomalies, and therefore in gaps in
data [16]. In many parts of the globe, primarily due to the shortage of financial resources, the
information collected on water temperature and the monitoring of other quality properties
is limited [17,18]. Economic conditions have been the cause of changes in the observation
network in Poland. In the case of rivers, records of water temperature were discontinued
in some of the observation sites supervised by the Institute of Meteorology and Water
Management—National Research Institute at the end of 2014. The decision was determined
by limitations of sufficient financial resources for the functioning of the hydrological–
meteorological measurement observation service in the scope of the institution’s activity.
As a consequence, many rivers have lost valuable data that had been recorded in detail for
at least several decades. The situation is particularly unfavorable in the context of further
transformations of these ecosystems.

Based on research conducted in Mackenzie and Yukon Basins, Yang and Peterson [19]
determined that mean monthly water temperature shows an incoherence between sites
located in the upper and lower courses of the rivers. This specifically results from the
differences in the data collection systems. As emphasised by Arismendi et al. [20], the
understanding of trends of changes in river temperature depending on the climate is
limited by the data alone, and future improvements in forecasting changes will require
the development of a network of monitoring sites offering better spatial and temporal
representativeness. Due to the above, an increase in the density of the current observation
sites should be expected instead of their complete liquidation. Based on such an assumption,
with consideration of the maintenance of the current state of information, research has been
undertaken towards the reconstruction of records lost to date. Such an approach aims at
expanding knowledge and the proper interpretation of the course and distribution of one
of the basic water properties, namely, temperature. The requirement of the availability of
long-term data regarding inland water temperature is obvious due to the importance of this
property for the entirety of processes and phenomena occurring in inland water. Therefore,
studies have been undertaken with varied approaches, aimed at the reconstruction of water
temperature. They are based on paleolimnological methods [21], apply mechanistic open
source models [22], or use three estimators of mean annual water temperature depending
on different measurement methodologies and periodicity [23]. Research conducted in
the Anchor River watershed (Alaska) by Murphy et al. [24] shows that it is possible to
reconstruct mean water temperatures in situ for small streams at the regional scale by
means of the regression model in combination with Landsat or air temperature data.

The prediction of water temperature in rivers with the progressing application of
advanced modelling techniques is currently a well-developed research trend referring to
the thermal regime of rivers [25–27]. Against the background of the commonly used factor
of air temperature, this paper applies data on water temperature in lakes in the vicinity of
the analysed rivers as an additional predictor. It was assumed that the approach would
improve the modelling accuracy.

The paper presents a reconstruction of water temperature for selected rivers in Poland
in the period 2015–2020, based on air temperatures and water temperature in lakes. The
detailed objectives are as follows: (1) determination of a set of input data optimal from
the point of view of the reconstruction of river water temperature; (2) the selection of the
optimal method for the reconstruction of water temperature in rivers among multiple linear
regression (MLR), random forest regression (RF), and multilayer perceptrone network
(MLP); (3) the identification of errors in the reconstruction of river water temperature;
(4) the assessment of the effect of the results of data reconstruction on the estimation of
long-term changes in the thermal regime of rivers.
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2. Materials and Methods
2.1. Study Area

This paper employs data regarding water temperature in rivers and lakes, as well as air
temperatures provided by the Institute of Meteorology and Water Management—National
Research Institute. The provided data cover mean monthly water temperatures for 10
hydrological stations in rivers and 10 hydrological stations in lakes, and mean monthly air
temperatures for 15 meteorological stations (Figure 1). The obtained data cover the period
from 1987 to 2020. Complete data were obtained for five rivers. For the remaining five
rivers in the period 2015–2020, the data are incomplete. The period of water temperature
monitoring in rivers is presented in Table 1. The following method of coding the stations
was adopted: hydrological stations on rivers were marked with capital letters from A to J;
hydrological stations on lakes were marked with digits from 0 to 9, and meteorological
stations were marked with lower case letters from the top (Figure 1; Table 1). Moreover,
the table presents distances of hydrological stations on rivers (marked in capital letters)
from meteorological stations (marked in small letters) and hydrological stations on lakes
(marked by numbers).
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Figure 1. Locations of the analyzed river hydrological stations against the background of meteorolog-
ical stations and lake stations [28] (descriptions of the stations are provided in Table 1). Developed in
ArcGIS software [28].

2.2. Development of Models Multiple Linear Regression, Multilayer Perceptrone Network, and
Random Forest Regression for the Reconstruction of Water Temperature in Rivers

Due to the limitation of observations of water temperature in rivers, the analysis
of trends first requires the reconstruction of the missing data. This paper implements
such an approach based on mean monthly air and water temperatures in lakes. Although
the relationship of water temperatures in rivers with water temperatures in lakes and
air temperatures is obvious, the following research questions appeared: (1) What is the
necessary set of data for the reconstruction of water temperature in rivers? (2) What
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statistical method will allow obtaining the best results? (3) How will the reconstructed data
affect the directions and values of trends?

Table 1. River water temperature data—Institute of Meteorology and Water Management—National
Research Institute. The locations of the stations are shown in Figure 1.

River–Station
(Code)

River Monitoring
Period

Lake
(Code) Meteorological Station (Code)

Bóbr–Żagań (A) 1987–2014 Sławskie (57.4 km) (8)
Zielona Góra (37.6 km) (p)

Wrocław (124.3 km) (o)
Gorzów Wielkopolski (125.0 km) (d)

Drawa–Drawiny (B) 1987–2014 Lubie (63.8 km) (2)
Gorzów Wielkopolski (49.9 km) (d)

Piła (58.4 km) (k)
Poznań (78.0 km) (l)

Drwęca–Brodnica (C) 1987–2020 Bachotek (7.2 km) (0)
Toruń (58.8 km) (n)
Mława (66.3 km) (i)
Olsztyn (88.5 km) (j)

Ełk–Przechody (D) 1987–2014 Selmęt Wielki (30.7 km) (6)
Białystok (62.9 km) (a)
Suwałki (68.4 km) (m)
Mikołajki (70.9 km) (h)

Guber–Prosna (E) 1987–2016 Mamry (37.1 km) (4)
Kętrzyn (26.0 km) (f)

Mikołajki (59.4 km) (h)
Olsztyn (67.7 km) (j)

Gwda–Piła (F) 1987–2014 Sępoleńskie (62.4 km) (7)
Piła (2.4 km) (k)

Poznań (82.0 km) (l)
Chojnice (82.0 km) (b)

Łeba–Lębork 2 (G) 1987–2020 Łebsko (25.8 km) (3)
Łeba (27.3 km) (g)
Hel (69.1 km) (e)

Chojnice (93.0 km) (b)

Łyna–Sępopol (H) 1987–2020 Dadaj (46.8 km) (1)
Kętrzyn (32.3 km) (f)

Mikołajki (65.4 km) (h)
Olsztyn (67.3 km) (j)

Pisa–Ptaki (I) 1987–2020 Roś (28.7 km) (5)
Mikołajki (46.1 km) (h)
Kętrzyn (80.1 km) (f)

Białystok (96.8 km) (a)

Wda–Czarna Woda (J) 1987–2020 Wdzydze (17.4 km) (9)
Chojnice (39.5 km) (b)

Elbląg (94.7 km) (c)
Toruń (94.9 km) (n)

The answer to the first question was based on the assumption that the reconstruction of
mean monthly water temperatures in rivers would employ mean monthly air temperatures
from a maximum of three meteorological stations located in different directions from the
point of measurement of river water temperature and lake water temperature from the
closest hydrological station. In order to answer the second research question, it was as-
sumed that the reconstruction of mean monthly water temperatures in lakes would employ
three statistical methods with different degrees of advancement, namely, multiple linear
regression, multilayer perceptrone network, and random forest regression. Answering the
third question involved the comparison of the directions and values of trends in the mean
monthly and annual water temperatures in rivers obtained for use as measurement data
with those obtained for use as sets with reconstructed data. The research material covers
data for five rivers for which complete data were obtained in the period from 1987 to 2020.
The data series was divided into two parts: the first one from 1987 to 2014, and the second
one from 2015 to 2020. The first series (from 1987 to 2014) was used for the development and
testing of the models of multiple linear regression, multilayer perceptrone network, and
random forest regression. The second series (from 2015 to 2020) comprised independent



Appl. Sci. 2022, 12, 7503 5 of 18

material, used for the final verification of the aforementioned research questions (Figure 2).
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The development of multiple regression models involved the search for an optimal set
of independent data. The analysis considered all possible combinations of independent
variables (water temperature in the lake and air temperature from three meteorological
stations). A total of 15 multiple linear regression models was obtained for each river. The
multiple linear regression models were developed based on data from the period 1987–2014.
The development of multiple linear regression models employed 70% of the first data series
(training sample), and the remaining 30% of data (test sample) were used for testing the
models. The multiple linear regression models were developed in the programme Statistica
version 13.1 [29].

An analogical procedure was applied for the multilayer perceptrone network. Multi-
layer perceptrone network learning was based on data from the period 1987–2014. Data
from the period were divided into two analogical parts; 70% of the data were used at the
stage of network learning, and 30% of data at the stage of testing and verification. Finding
an optimal multilayer perceptrone network diagram involved using the automatic network
search diagram. Designing the network architecture included determining the number
of input and output variables (i.e., neurons in input and output layers), and determining
the number of hidden layers and neurons in each hidden layer. A three-layer multilayer
perceptrone network model was tested, with a hidden second layer with 3 to 20 hidden
neurons. The input (independent) variables were mean monthly air temperatures (from a
maximum of three meteorological stations) and mean monthly lake water temperatures
(from the nearest lake). Moreover, the development of a multilayer perceptrone network
employed additional qualitative data, i.e., month index (M), and the output variable was
mean monthly river water temperature. The functions of activation while learning for
hidden neurons and output neurons were linear, logistic, tanh, exponential, and sinus.
An automatic way of designing the network was applied, testing 100 different network
architectures, and eventually keeping the 5 best ones. Finally, out of the five best networks,
one referential network was selected based on statistical parameters describing errors
obtained at the stage of model testing. The multilayer perceptrone network models were
developed in the programme Statistica version 13.1 [29].

An analogical procedure was adopted for the reconstruction of water temperature
in rivers by means of the random forest regression method. In this case, a single random
forest regression model was built, using a full set of predictors, including water temper-
ature from one hydrological station on a lake and air temperature from the three nearest
meteorological stations. Moreover, the month index (M) was used as the auxiliary vari-
able to maximize prediction performance. The calculations related to the random forest
regression were performed using the ranger [30,31] package within statistical software R
4.1.2 [32]. The multiple linear regression, multilayer perceptrone network and random
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forest regression models were tested on 30% of the data not used at the stage of model
development. The statistics described in Section 2.3 were calculated for all models. This
analysis was performed to show whether the obtained values of goodness-of-fit measures
are significantly different from those obtained at the model development stage. Finally, as
a result of the adopted procedure, 15 multiple linear regression and multilayer perceptrone
network models and one random forest regression model were obtained. The following
method of coding the models was adopted: multiple linear regression/A/8dop, wherein
the first part of the name signifies the type of model (multiple linear regression) the second
part signifies the name of the hydrological station on a river (River–Station—code—Table 1),
and the third part shows the range of used independent data (lake and meteorological
station code—Table 1). In the presented example, multiple linear regression/A/8dop
means a multiple regression model used for data reconstruction on the Bóbr River (No. A),
developed based on independent data obtained from one hydrological station on Lake
Sławskie (No. 8) and three meteorological stations Gorzów Wielkopolski (No. d), Wrocław
(No. o), and Zielona Góra (No. p). Each of the developed and tested models was used for
the reconstruction of water temperature in rivers in the period from 2015 to 2020.

2.3. Procedure for Testing and Validation of Multiple Linear Regression, Multilayer Perceptrone
Network and Random Forest Regression Models

The verification of the multiple linear regression, multilayer perceptrone network, and
random forest regression models employed monthly data from the period from 2015 to
2020. Model validation involved the calculation of the values of the standard error (SE),
maximum error (ME), root mean square error (RMSE), coefficient of determination (R2),
Nash–Sutcliffe model efficiency coefficient (NSE) [33], and mean absolute percentage error
(MAPE) [34]. The mathematical expressions of these statistics can be written as follows.

Standard error (SE):

SE =

√√√√ 1
n− 2

{
n

∑
i=1

(
Mi −M

)2 −
[
∑n

i=1
(

Pi − P
)(

Mi −M
)]2

∑n
i=1
(

Pi − P
)2

}
(1)

Maximum error (ME):
ME = max|Pi −Mi|ni=1 (2)

Root mean square error (RMSE):

RMSE =

√
∑n

i=1(Pi −Mi)
2

n
100
M

(3)

Mean absolute percentage error (MAPE):

MAPE =
100
n

n

∑
i=1

∣∣∣∣Mi − Pi
Mi

∣∣∣∣ (4)

Coefficient of determination (R2):

R2 =
∑n

i=1
(

Mi −M
)2

∑n
i=1
(

Pi −M
)2 (5)

Nash–Sutcliffe model efficiency coefficient (NSE):

NSE = 1− ∑n
i=1(Pi −Mi)

2

∑n
i=1
(

Mi −M
)2 (6)

The above statistical metrics are often used when validating models [27,35,36].
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Moreover, for the purpose of the estimation of errors related to the reconstruction,
the application of a linear regression equation was proposed in the form of P = aM + b,
describing the dependency between measured (M) and forecasted water temperatures (P).
The values of the equation coefficients can be calculated from the following formulas:

a =
n ∑n

i=1 MiPi −∑n
i=1 Mi ∑n

i=1 Pi

n
(
∑n

i=1 M2
i
)
− (∑n

i=1 Mi)
2 (7)

b =
∑n

i=1 Pi ∑n
i=1 M2

i −∑n
i=1 Mi ∑n

i=1 MiPi

n
(
∑n

i=1 M2
i
)
− (∑n

i=1 Mi)
2 (8)

The analysis of the location of the regression line P = aM + b in reference to the
regression line in the form of P = M (full compatibility of results P and M) permits drawing
detailed conclusions regarding the prediction (reconstruction) results. Solving the system
of equations (Equation (9)) allows for the determination of the values of M0 and P0 (i.e.,
point of line intersection). {

P = aM + b
P = M

(9)

From the point of view of the assessment of prediction results themselves, it is possible
to underestimate or overestimate the values throughout the variation range, or to under- or
overestimate the values in certain intervals (Table 2).

Table 2. Assessment of model prediction quality.

Cases Slope Intercept M-Value Underestimate Overestimate

Case 1 a < 1 b < 0 M0 < Mmin <Mmin, Mmax>
Case 2 a < 1 b > 0 Mmin < M0 < Mmax (M0, Mmax> <Mmin, M0)
Case 3 a > 1 b > 0 M0 > Mmax <Mmin, Mmax>
Case 4 a > 1 b < 0 Mmin < M0 < Mmax <Mmin, M0) (M0, Mmax>

M0—point of line intersection; Mmin—minimum measured value; Mmax—maximum measured value.

At the final stage of model validation, directions and trendline slope values for the
courses of river water temperatures in the period from 1987 to 2020 were also obtained,
based on original measurement data and based on data with partial reconstruction per-
formed for the years 2015–2020. A Mann–Kendall test [37] was used to determine the
direction of changes in river water temperatures. The extent of river water temperature
changes was determined using a non-parametric Sen test [38]. In order to remove the auto-
correlation from the data series, a trend-free prewhitening procedure was used [39]. The
adopted procedure is the most frequently used when analysing hydrological data [40,41].
This is because the method based on the Mann–Kendall and Sen test is less sensitive to
extreme values compared to the linear regression method and Student’s t-test. A modi-
fied Mann–Kendall and Spearman’s Rho Trend Tests package developed by Patakamuri
and O’Brien [42] was used to analyse the direction and extent of river water temperature
changes.

3. Results

Mean annual water temperatures in the five rivers for which complete data were
available (1987–2020) ranged from 8.0 (Łeba) to 9.7 ◦C (Drwęca). The mean monthly water
temperatures in the rivers were at a level from 2.9 to 13.9 ◦C and from 1.1 to 19.3 ◦C. The
Łeba River is subjected to the evident influence of air masses from over the Baltic Sea, and
water temperatures in the Drwęca River are primarily shaped as a result of the impact
of continental air masses from the east. The courses of mean monthly and annual water
temperatures in rivers are presented in Figure 3. The highest mean monthly temperatures
occur in July, and the lowest in January. The greatest increase in water temperature in rivers
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occurs in the period from March to May, and the greatest decrease in temperatures occurs
in the period from September to November.
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At the first stage of analysis, the models of multiple linear regression, multilayer
perceptrone network, and random forest regression were developed based on data from
the period 1987–2014. This period was adopted after conducting water temperature mea-
surements in rivers at the Institute of Meteorology and Water Management—National
Research Institute. In the process of the development of multilayer perceptrone network
models, the data series is by default divided into two parts, one constituting 70%, and the
other 30%. The first series was used at the stage of learning in the multilayer perceptrone
network. The second series was used for the testing (15% of sample) and validation of
the multilayer perceptrone network (15% of sample). In order to ensure the comparability
of results between the multilayer perceptrone network, multiple linear regression, and
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random forest regression methods, in each case during model development (learning),
the same random learning sample was used, resulting from the application of artificial
neural networks. Model validation was eventually performed based on an independent
set from the period 2015–2020 not used at any of the previous stages of learning, testing,
or validation. The comparison of measured values (mean monthly water temperatures)
with temperatures obtained from the models covered the calculation of the values of the
standard error, maximum error, root mean square error, coefficient of determination (R2),
Nash–Sutcliffe model efficiency coefficient, and mean absolute percentage error. The results
obtained at the model validation stage have been aggregated to show the effect of the
selection of data for reconstruction and the applied statistical method on the obtained
results (Figure 4).
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The performed calculations show that the best results in terms of all parameters were
obtained for multilayer perceptrone network models. The comparison of corresponding
groups of models by means of a non-parametric U Mann–Whitney test, grouped based
on a range of input data used for the reconstruction of water temperatures in rivers
based on values of standard error, maximum error, root mean square error, Nash–Sutcliffe
model efficiency coefficient, and mean absolute percentage error, suggests that in all
cases, the values were lower for multilayer perceptrone network models than for multiple
linear regression models (differences significant at a level of 0.05). The values of the
coefficient of determination (R2) and Nash–Sutcliffe model efficiency coefficient statistics
were higher for multilayer perceptrone network models than for multiple linear regression
models (differences significant at a level of 0.05). The comparison of groups of multilayer
perceptrone network/g and random forest regression/g models (reconstruction based on
water temperatures in the lake and air temperatures from three meteorological stations)
shows that maximum error and root mean square error values averaged 1.52 ◦C and 5.03%,
and 1.97 ◦C and 6.43%, respectively. Differences between maximum error and root mean
square error values were significant at a level of 0.05. The standard error values averaged
0.47 ◦C for the multilayer perceptrone network/g model, and 0.59 ◦C for the random forest
regression/g model, and differed at a significance level of 0.10. The remaining values of
the Nash–Sutcliffe model efficiency coefficient and the mean absolute percentage error,
and the coefficient of determination and Nash–Sutcliffe model efficiency coefficient, were
respectively lower and higher for multilayer perceptrone network/g models, although the
differences were not as statistically significant. The obtained results point to the advantage
of the multilayer perceptrone network method over the multiple linear regression method.
Differences between the multilayer perceptrone network/g and random forest regression/g
models are smaller, with a slight advantage of the multilayer perceptrone network model.

The analysis of the scope of data permitting the most credible prediction of water
temperatures in rivers was performed by means of the multilayer perceptrone network
method. The obtained results show that the best results are generated by models from the
multilayer perceptrone network/g group, where the reconstruction is based on lake water
temperatures and air temperatures from three meteorological stations. Mean values of
root mean square error provide the basis for systematising multilayer perceptrone network
models in the following order: g < e < c < a < b < f < b. Similar results were obtained based
on the remaining statistical measures describing the range of prediction errors. Values
of statistics describing the quality of the models’ coefficient of determination and Nash–
Sutcliffe model efficiency coefficient were at a high level in all cases, and ranged from
0.9865 to 0.9935, and from 0.9820 to 0.9925. The analysis of differences in values of standard
error, maximum error, root mean square error, Nash–Sutcliffe model efficiency coefficient,
and mean absolute percentage error between particular groups of multilayer perceptrone
network models points to the advantage of models employing a mixed set of input data,
i.e., lake water temperature and air temperature. The worst results of the estimation have
been provided by models based only on a set of data regarding air temperatures. It should
be emphasised that the values of the analysed statistics describing prediction quality adopt
approximate values for model groups multilayer perceptrone network/c (prediction based
on lake water temperature and air temperature from one meteorological station), multilayer
perceptrone network/e (prediction based on lake water temperature and air temperature
from two meteorological stations), and multilayer perceptrone network/g (prediction
based on lake water temperature and air temperature from three meteorological stations),
significantly differing at a level of 0.05 (according to the U Mann–Whitney test). It should be
emphasised, however, that the lowest values of standard error, maximum error, root mean
square error, Nash–Sutcliffe model efficiency coefficient, and mean absolute percentage
error statistics, and the highest coefficient of determination and Nash–Sutcliffe model
efficiency coefficient values, have been shown by the multilayer perceptrone network/g
model. The location of the regression line P = aM + b in reference to the regression line
in the form of P = M (full compatibility of results of P with M) allows for the designation
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of the Mo and Po values, and drawing detailed conclusions regarding the results of the
prediction (reconstruction) (Table 3). The results show that in a broader range of variability
of water temperatures, multilayer perceptrone network models underestimate values. This
is particularly evident in the case of the Łeba and Łyna Rivers. Generally, in almost any
model, underestimations primarily concern predictions of higher temperatures. The only
exception pertains to the Pisa River, where the highest values are slightly overestimated.

Table 3. The quality of the prediction of river water temperatures was based on the multilayer
perceptrone network/g model based on lake water temperature and air temperature from three
meteorological stations.

River
Temperature a b Mo/Po Underestimate Overestimate

Min Max Mean

Drwęca 0.1 21.8 9.8 0.9839 0.1491 8.8 (8.8–21.9) (0.1–8.8)
Łeba 0.5 16.3 8.2 0.9753 0.0174 0.7 (0.7–16.3) (0.5–0.7)
Łyna 0.1 22.4 9.4 0.9918 0.0237 2.9 (2.9–22.4) (0.1–2.9)
Pisa 0.1 23.0 9.6 1.0184 −0.3877 21.1 (0.1–21.1) (21.1–23.0)
Wda 0.2 19.9 9.0 0.9702 0.1871 6.3 (6.3–19.9) (0.2–6.3)

The last stage involved the validation of all multilayer perceptrone network models
based on the slope values of trendlines (Sen slope, Linear slope) obtained for the original
measurement data from the period 1987–2020, and data in which the period 2015–2020 was
supplemented based on results from the models (Figure 5). A tendency has been generally
observed in which the slope values of linear regression lines and Sen slope values are lower
for the data series supplemented with results of the multilayer perceptrone network/g
model. For the Łeba River, such a situation occurs in each month. In the remaining
cases, a similar trend has been generally observed, although in individual months the
opposite situation regarding the slope value of trendlines can be seen—they are higher
for data supplemented with the multilayer perceptrone network/g model. In November
and December, the Sen slope and linear slope values are higher for data reconstructed by
means of the multilayer perceptrone network/g model for the Drwęca, Łyna, and Wda
Rivers. In June, in almost every case, the slope values of trendlines are higher in the original
measurement data. The results show that even the best model can generate uncertainties
related to data reconstruction. Therefore, the measurement of river water temperatures
should be restarted as soon as possible.

Trendline slope values in reference to the values of mean annual water temperatures
in rivers are presented in Figure 6. The reconstructed curves have a course compatible
with that towards curves based on in situ measurements. It is worth emphasising that the
deviations do not exceed 0.5 ◦C (at a minimum measurement accuracy of 0.1 ◦C).

Eventually, based on knowledge pertaining to the selection of the statistical model
and the selection of a data set for the supplementation of missing water temperatures,
reconstruction was performed. The results for all the analysed rivers are presented in
Table 4.

The obtained results show that the greatest increase in water temperatures occurred in
June, August, September, November, and December. The changes can be observed in 8 to
10 rivers, and are statistically significant at a level of 0.05. The smallest changes occurred
in January, February, and March (not statistically significant). Considering the values of
changes in the mean annual river temperatures, in each river, water temperature increased
from 0.18 to 0.49 ◦C per decade. In each case the changes are statistically significant at a
level of 0.05. Among the analysed rivers, the greatest water temperature increase can be
seen to occur in the Wda River, and the lowest in the Bóbr River.
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Table 4. Trendline slope values (Sen slope) in ◦C per decade in river waters in Poland.

Period Bóbr * Drawa * Ełk * Guber *
River Drwęca Łeba Łyna Pisa Wda

Gwda *

Nov 0.68 0.65 0.65 0.65 0.55 0.73 0.44 0.66 0.77 0.64
Dec 0.50 0.35 0.40 0.36 0.43 0.47 0.37 0.43 0.52 0.48
Jan −0.13 0.12 −0.18 −0.18 −0.18 −0.08 −0.18 −0.20 0.03 0.11
Feb −0.17 −0.10 −0.03 −0.04 −0.16 0.00 −0.04 0.07 0.15 0.18
Mar −0.12 0.02 0.06 0.12 0.24 0.30 0.19 0.26 0.47 0.41
Apr 0.39 0.32 0.40 0.35 0.45 0.41 0.39 0.45 0.79 0.42
May 0.17 0.15 0.30 0.32 0.12 0.06 0.30 0.46 0.35 0.55
Jun 0.44 0.49 0.65 0.57 0.60 0.53 0.52 0.84 0.80 0.72
Jul 0.27 0.22 0.27 0.22 0.44 0.14 0.48 0.43 0.44 0.49

Aug 0.18 0.50 0.53 0.28 0.50 0.37 0.48 0.63 0.69 0.53
Sep 0.24 0.40 0.61 0.40 0.51 0.53 0.40 0.61 0.48 0.60
Oct 0.24 0.45 0.40 0.37 0.36 0.45 0.34 0.41 0.34 0.48
Year 0.18 0.33 0.30 0.25 0.29 0.34 0.28 0.44 0.47 0.49

Bold—values statistically significant at a level of 0.05 based on Mann–Kendall test; *—reconstructed data.
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4. Discussion

Water temperature in rivers is an important property determining its quality, yet data
regarding it in many river systems are scarce or non-existent [43]. According to Rosencranz
et al. [44], in regions poor in data, modelling water temperature in rivers is necessary
to predict potential stress-inducing factors for endangered species. Further, the same
authors predicted water temperature (for three rivers in Canada) based on air temperature
from nearby meteorological stations, and revealed that the best model proved to be linear
regression using a 5-day delay in air temperature. Chen et al. [45] used modified sinusoidal
functions and sinusoidal wave functions (MSSWF) for the estimation of hourly water
temperatures in rivers. It was, among other things, determined that the distance of the
river monitoring site from the meteorological station has little effect on the efficiency of
particular models (in the case of a distance smaller than 300 km). In the case of the analysed
rivers, it was also determined that the distance of the site of air temperature measurement
from the hydrological station (at maximum not reaching 130 km) has no effect on the
accuracy of the models. Possibilities not achievable in hydrology to date are offered by
the implementation of an approach based on the assumptions of artificial intelligence.
Machine learning is increasingly frequently applied due to its ability to model complex
and non-linear dependencies between river water temperature and its predictors [46].
Machine learning models offer an empirical approach to predicting water temperature with
a high level of accuracy [47], and the advantages of models of artificial neural networks in
modelling water temperature involve their simplicity of use, good ability to generalise, and
flexibility [48]. Due to all the above, it is possible to obtain results at a good adjustment
level, as confirmed by the results obtained in the paper referring to the reconstruction of the
discontinued in situ measurements. According to current studies, the scope and availability
of input data and the adopted modelling methodology have a different character. The use
of classic models of machine learning for forecasting monthly water temperatures (USA)
showed that such an approach can be applied for the spatial and temporal modelling of
the majority of locations, with an accuracy of <1 ◦C [49]. Water temperature modelling by
means of neural networks and multiple linear regression in the case of the Catamaran Brook
(Canada) showed that neural networks offered better results in terms of adjustment, but an
inconsiderable difference in results suggests that both approaches are equally good [50].
The development of a model composed of artificial neural networks (ANN) for predicting
mean daily water temperature in individual sections of streams showed that the most
important predictors were mean daily air temperature, prior 7-day mean air temperature,
and network catchment area [51]. The analysis of the dependency between mean daily
air temperature and water temperature in the Drava River (Croatia) by means of linear
regression, stochastic modelling, non-linear regression, and multilayer perceptron showed
that the latter are considerably better models in the estimation and prediction of mean
daily river temperature [48]. The findings are in accordance with results presented in the
present paper, where the multilayer perceptrone network also obtained the best results
against the background of other proposed methodical solutions. Along with this variable
that is commonly used in this type of research on air temperature [27,52], this paper
employed additional information regarding water temperature in lakes (unlike in the
case of some rivers—subject to continuous monitoring). The combination of both input
attributes permitted obtaining even better results in the reconstruction of the missing water
temperature records.

The final effect of the reconstruction of the thermal conditions of rivers is the main-
taining of continuity in information regarding them, permitting among others the analysis
of their long-term (1987–2020) changes. It was determined that in all cases, a statistically
significant increase in water temperature occurred, averaging 0.33 ◦C per decade. The
results are in accordance with the broad trend of hydrological research analysing the scale
and rate of changes in water temperature in rivers. In the case of rivers in the Loire River
catchment, the highest increases were recorded in spring and summer, reaching +0.38 ◦C
and +0.44 ◦C per decade, respectively [53]. The analysis of the temperature trend for the
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Salaca River (Latvia) showed its increase in the autumn and winter months and in early
spring, from November to April and September, and a decrease in June [54]. The analysis
of four sites on the Danube River revealed statistically significant warming trends for all
of them in reference to the annual and seasonal minimum and maximum water tempera-
tures [7]. The strongest warming was recorded at the measurement station Bogojevo for the
seasonal maximum Tw, with an average of +0.05 ◦C annually. An evident increase in water
temperature is a result coherent with findings for other rivers in the discussed region [55,56].
It is characteristic that in the case of winter and early spring months (Jan–Mar), trends
of changes in water temperature are not statistically significant. This is related to the ice
phenomena occurring during the period, which effectively determine the aforementioned
situation due to water cooling and its isolation from external conditions [57,58]. This results
in the lack of evident responses in the river ecosystems to changes in climate elements.

The development of the modelling concept for the purpose of predicting water temper-
ature in rivers is and will remain necessary for the effective integrated management of water
resources, and the development of strategies for adaptation to future global changes [59].
Detailed forecasts at different spatial and temporal scales can be a source of information for
decisions regarding water management that consider the effects of the changing climate
and extreme phenomena. The common prediction of temperature in sections of streams not
subject to monitoring can specifically allow decision-makers to respond to changes caused
by unpredicted disturbances [49]. Such assumptions are important in the case of many
regions in Poland (also covering catchments where river temperature monitoring has been
discontinued), where substantial water deficits are recorded. A smaller amount of water
resources increases the risk of their faster degradation [40], and precise data regarding
water temperature, determining, among other things, dissolved oxygen concentration [60],
provide the basis for undertaking appropriate reclamation activities.

5. Conclusions

Water temperature in rivers is an elementary characteristic that determines the course
of many processes of both biotic and abiotic nature. Hence, information on it is crucial for
understanding the overall functioning of these ecosystems. In this context, data shortages
are a problem, one of the reasons for which may be the cessation of previous monitoring.
New opportunities for water temperature reconstruction are provided by methods based
on artificial intelligence and the approach realised in this article. It was established that
the best statistical method allowing for the reconstruction of mean monthly water tem-
peratures in rivers is the method using artificial neural networks—multilayer perceptrone
network (mean error, root mean square error and standard error of 1.52 ◦C, 5.03% and
0.47 ◦C, respectively). As a result of the reconstruction, the course of mean yearly water
temperature in the years 1987–2020 showed a statistically significant increase from 0.18 to
0.49 ◦C per decade, averaging 0.33 ◦C per decade. Further research into water temperature
reconstruction based on artificial intelligence solutions should focus on using a broader set
of input predictors. Irrespective of the modelling results, where it is possible for formal
and organisational reasons, it is recommended to resume in situ measurements of water
temperature in rivers as key data necessary for the assessment of the effect of climate
change on water ecosystems and those dependent on waters.
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