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Featured Application: Improving quality of hyperspectral Rrs curves and images.

Abstract: Hyperspectral data are important for water color remote sensing. The inevitable noise will
devalue its application. In this study, we developed a 1-D denoising method for water hyperspectral
data, based on sparse representing. The denoising performance was compared with three commonly
used methods in simulated and real datasets. The results indicate that: (1) sparse representing can
successfully decompose the hyperspectral water-surface reflectance signal from random noises; (2) the
proposed method exhibited better performance compared with the other three methods in different
input signal-to-noise ratio (SNR) levels; (3) the proposed method effectively erased abnormal spectral
vibrations of field-measured and remote-sensing hyperspectral data; (4) whilst the method is built in
1-D, it can still control the salt-and-pepper noise of PRISMA hyperspectral image. In conclusion, the
proposed denoising method can improve the hyperspectral data of an optically complex water body
and offer a better data source for the remote monitoring of water color.

Keywords: hyperspectral; denoising; water color remote sensing; sparse representing; bio-optical model

1. Introduction

Hyperspectral techniques have long been utilized in water color remote sensing [1,2],
especially for optically complex water [3–5]. The main controllers of the optical properties
are the absorption and scattering of the water color parameters, such as phytoplankton,
particulate matter, and colored, dissolved organic matter [6,7]. Different pigments also have
varied optical characteristics [8]. Therefore, researchers suggested that to accurately capture
the concentration of the water color parameters, the spectrometer needs to contain at least
15 bands at specific wavelength in the visible and near infrared spectral ranges [9,10].
Furthermore, to quantitatively determine the chlorophyll concentration (Cchla) by remote
sensing in systems dominated by suspended sediment, the sensor needs a high spectral
resolution (10 to 15 nm band width) at 675 and 705 nm [11]. This determines that the hy-
perspectral data are urgently needed for the building and refining of water color parameter
estimation models [12–15].

However, the accurate hyperspectral measurement of water surface reflectance (Rrs)
is challenging. In field measurements, the above water method is popular because it is
stable and easy to use. During the measurement, we need to strictly obey some geometries
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to limit sun glitter, avoid instrument-shading problems, and retrieve the Rrs [16,17]. In
addition, we always collect several spectra (ten in our study) at each sampling station
and calculate their average values as the result, in order to control random errors in the
measurement. Even though, the occurrence of noise is inevitable. Focusing on this problem,
the researchers tried to utilize denoising methods on the Rrs curves to improve its quality.

These methods can be categorized into three types: 1-D, 2-D, and 3-D methods.
The 1-D methods are based only on the spectral, such as kernel regression smoothing
(KRS) [18,19], Savitzky–Golay polynomial smoothing (SG) [20], and mean filter smoothing
(Mean) [20]. How to choose a proper denoising level is a problem in the 1-D methods, to
avoid over-denoising because the spatial information—that can offer extra constraints—is
not involved. The 2-D [21,22] and 3-D [23–25] methods are focusing on hyperspectral
images. More challenging than field measuring, the hyperspectral image needs to separate
the radiated signal from the field of view (FOV) into hundreds of spectra bands in each
pixel. Furthermore, the integration time of the sensor is limited under its high orbiting
speed. For the hyperspectral remote sensors, achieving high SNR images is more difficult.
Therefore, signal processing methods, such as classic principal component analysis [26,27],
wavelet transform [21,28,29], and total variation method [30,31], are widely used. Recently
developed sparse representing [32,33], low rank [23,34], and deep learning algorithms [35]
also showed great potential in hyperspectral data denoising. By comprehensively utilizing
the spectral and spatial information, these methods can better retrieve useful signals in the
hyperspectral image from the noisy data. Both the 2-D and 3-D methods require spatial
information. This means that these methods were limited to denoise hyperspectral images.
Thus, in this study, we focus on 1-D methods, which can be applied to both field-measured
and remotely sensed hyperspectral Rrs data.

Different optical properties will produce a variety of Rrs features [36,37], which bring
more challenges to the denoising. In this study, in order to keep the universality with
high accuracy of the model, we introduced a bio-optical model—a radiative transfer model
in the water body—into the sparse-representing algorithm. The method first generates a
comprehensive hyperspectral Rrs dataset and decomposes the noisy Rrs signals into sparse
signals and noise signals. By recomposing the sparse signals, the denoising is completed.
The yields will provide more accurate data for the optically complex water-color model
development and hyperspectral applications.

2. Materials and Methods

We collected both field-measured and remotely sensed hyperspectral data in this
study. For the field-measured data, the sampling stations were collected from four routes
distributed in two coastal provinces of China (Figure 1). In the four routes, we collected
150 hyperspectral curves and water samples in total (Table 1). For the samples collected in
Taihu Lake, the Cchla were measured in the library. The Cchla data were used to evaluated the
effectiveness of the denoising method through some popular spectra indices. In addition,
we collected a PRISMA hyperspectral image that covered part of Taihu Lake.

Table 1. Basic information of the four cruises. OWT represents optical water type. The detailed
description of OWTs can be found in Section 2.2.1.

Sampling Station Hyperspectral Sample Number Cchla

Taihu Lake (1 August 2019) 60 (OWT5: 3, OWT11: 37, OWT12: 20)
√

Hongze Lake (12 November 2020) 29 (OWT4: 1, OWT5: 14, OWT11: 13, OWT12: 2) -
Qiandao Lake (1 December 2021) 10 (OWT2: 2, OWT3: 5, OWT9:2, OWT12: 1) -

Hangzhou Bay (26 July 2017) 51 (OWT5: 17, OWT11: 30, OWT12: 4) -
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Figure 1. Spatial distribution of sampling stations.

2.1. Study Area

The field-measured hyperspectral samples were collected in four cruises in Hongze
Lake, Taihu Lake, Qiandao Lake, and Hangzhou Bay, respectively. The varied hydrology
conditions of the water body provide diversified hyperspectral Rrs curves.

Hongze Lake is located in the lower reaches of Huai River in the western Jiangsu
Province. It is the junction point of the middle reaches of the Huai River, the tributaries, and
the downstream rivers. It plays an important role in the flood regulation of the region [38].

Taihu Lake, located between the Jiangsu and Zhejiang Provinces, is a large shallow
lake with an area of ~2338 km2 and a mean depth of ~1.9 m [39]. The lake suffers from
water quality deterioration and also shows high turbidity in some areas, due to a large
quantity of sediment resuspension. These factors have led to the presence of complex water
conditions [40].
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Qiandao Lake is the largest freshwater, man-made reservoir in the Yangtze River Delta
of China. It is a large (580 km2), deep (mean depth = 30 m), and slightly turbid reservoir
that supplies freshwater to more than 10 million residents in the surrounding cities [41].

Hangzhou Bay is the largest bay along the southeastern coast of China, which is
located in the northeast Zhejiang Province. It is a wide, shallow, and funnel-shaped estuary
with approximately 8500 km2 area, 86 km length, and 95 km wide at the mouth [42]. The
water and sediment loads from the Yangtze River into the Hangzhou Bay profoundly
influence its hydrodynamics and sedimentation [43].

2.2. In Situ Dataset
2.2.1. Hyperspectral Data

The in situ Rrs was measured using an ASD FieldSpec spectroradiometer, which has a
spectral range of 350–1050 nm with increments of 1.5 nm. When the boat was anchored, the
radiance spectra of the reference panel, water, and sky were collected, using the above water
measurement method [44]. To avoid direct solar radiation and influence of the ship, when
measuring the water radiance signals, the azimuth difference of ASD and solar is about
45◦. The zenith angle of ASD is also about 45◦. When measuring the skylight radiance, the
spectroradiometer was rotated upwards by 90–120◦. The Rrs data for each spectral band
were acquired, using the Ocean Optical Protocols:

Rrs(λ) =
(

Lt(λ)− rLsky(λ)
)

/
(

Lpπ/ρp
)

(1)

where Lt is the radiance from water; Lsky is the sky radiance; Lp is the radiance measured
from a gray reference panel with a diffuse reflectance of ρp = 30%; and r is the surface
reflectance of the water depending on the wind speed (2.2% for calm weather, 2.5% for
<5 ms−1 wind, 2.6–2.8% for 10 ms−1 wind) [16].

According to Spyrakos’ study [45], the inland water spectra can be categorized into
13 OWTs. They also offered the average spectral of each class. The 150 spectra were
clustered in terms of the L2 norm distance to the 13 centers. The results are shown in
Figure 2. Most of our samples belong to the OWTs 5, 11, and 12, which are sediment-
laden waters, waters high in CDOM with cyanobacteria presence and high absorption
efficiency by NAP, and turbid, which are moderately productive waters with cyanobacteria
presence, respectively. Only a few samples were clustered into the OWTs 2, 3, 4, and 9,
which represents the common-case waters with diverse reflectance shape and marginal
dominance of pigments and CDOM over inorganic suspended particles, clear waters,
turbid waters with high organic content, and optically neighboring to the OWT2 waters but
with higher Rrs at shorter wavelength. From another aspect, we can see that the samples
collected in Hangzhou Bay and Hongze Lake are mainly clustered into the OWTs 5 and 11.
The samples from Taihu Lake are mainly belong to the OWTs 11 and 12. Nine out of ten
samples collected in Qiandao Lake are categorized to the OWTs 2, 3, and 9. Note that in this
research, only the Rrs curves between 400 and 800 nm were discussed. This is because the
lack of the inherent optical property curves in the wavelength ranges shorter than 400 nm
and longer than 800 nm limits the bio-optical simulation.

2.2.2. Cchla Measurement

The water samples were filtered using GF/C filters (Whatman). The chlorophyll-a
was extracted with ethanol (90%) at 80 ◦C for 6 h in darkness and then analyzed spec-
trophotometrically at 750 and 665 nm; the phaeopigment correction was carried out using
a spectrophotometer (Shimadzu UV-3600, Shimadzu, Kyoto, Japan).
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2.3. PRISMA Image

PRISMA is a small sized satellite mission targeted at qualifying space-borne hyperspec-
tral technology and delivering image spectroscopy data to foster novel processing methods
and to employ in a variety of resource management and environmental monitoring appli-
cations [46]. It has been successfully applied to remotely estimate water parameters [47].
We collected the PRISMA L2D surface reflectance data on 14 December 2020 to test the
performance of our proposed algorithm on the satellite remote-sensing hyperspectral data.
The image was rescaled from the original range [0, 65535] to the range [0, 1] and then
divided by π to obtain Rrs data, according to Equation (6).

2.4. Denoising Algorithm Description

The proposed sparse representing (SR) method is based on a theoretical hypothesis
that an N-band hyperspectral Rrs curve RN×1 is a linear combination of seldom atoms
(columns) in a K-column redundant dictionary D. When K ≥ N, the target Rrs spectrum
can be expressed as:

R = Dα (2)

where α is the sparse coefficient. D was generated based on a bio-optical simulated dataset,
using the K-singular value decomposition (K-SVD) algorithm. The simulated dataset was
generated with wide parameter ranges and contains 10,000 Rrs curves. More details of this
dataset can be found in [48]. Equation (1) was established based on the assumption that
a Rrs curve is sparse in a high dimensional linear space (D). When the Rrs signal is noisy,
Equation (2) should be changed, as follows:

R = Dα + u (3)

where u is the random error that is not sparse in the linear space (D). As K > N, the
resolution of α is an underdetermined problem. Thus, for an input noisy signal r, the
sparsity of α can be utilized to solve the problem by:

α̂ = argmin‖α‖0 s.t.‖r−Dα‖2
2 = 0 (4)
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Once the sparsity coefficients were determined, the denoised signal (R̂) can be calcu-
lated by:

R̂ = Dα̂ (5)

In addition, we selected three other algorithms as comparisons. They are KRS, GS,
and Mean methods.

2.5. Assessment Indices

We used SNR to evaluate the performance of denoising. It was calculated by

SNR = 10lg
(

Rrs
2/

(
Rnoisy − Rrs

)2
)

(6)

where Rrs means the reference noiseless signal and Rnoisy represents the noisy signal.

3. Results
3.1. Effectiveness of Sparse Representing

The foundation of our proposed method is that each hyperspectral curve can be
sparsely represented by predefined atoms. The simulated dataset is used to verify this
hypothesis, because it is theoretically noiseless. In detail, we decomposed the simulated
dataset using the OMP algorithm and recovered the spectra using the sparse coefficients
and the dictionary. The SNR indices between the original spectra and recovered spectra per
band are shown in Figure 3. For an ideal recovery, its signal should be the same as original
spectral and the SNR value is infinite.
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We calculated the SNR histogram of each of the spectral bands (Figure 3). These
histograms have two high density regions. The first one is around the SNR and equals
70 for all of the bands. This means that the proposed method can equally represent all of
the spectra in the range of 400 to 900 nm. Two SR-processed spectra with a SNR of 77.41
(Figure 4a) and 67.73 (Figure 4b) indicate that such an error level (the SNR is about 70) is
negligible visually. The second high density region that appears in the SNR equals 100.
In fact, for these samples, the SR and original signals are numerically indistinguishable.
The SNR values are infinite. In order to better show the overall characters of the SNR
distribution, we set the maximum SNR as 100 in Figure 3. In conclusion, the proposed
algorithm can effectively represent the hyperspectral data of the inland water.

3.2. Denoising Performance in the Simulated Dataset

In this section, we added random errors into the simulated dataset used in the previous
section, to yield spectra with different SNRs. By controlling the input error, the simulated
SNRs resulted in three levels (30, 50, and 70). Then, we applied the SR and the other three
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algorithms to the noisy spectra and obtained the denoised data. The SNRs of the spectra
before and after denoising were calculated and compared.
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We plotted three typical spectra under varied noise levels, together with the SR
denoised ones (Figure 5). When the SNR is around 30, the noisy Rrs curves show obvious
vibration (Figure 5a). The sharp peaks and valleys caused by random noise at sensitive
bands will bring errors into the water-color estimation models. The denoised signals
(Figure 5b) look smooth and highly consistent with the original noiseless Rrs curves. When
the SNR was set to about 50, the noised spectra (Figure 5c) were obviously smoother than
those in Figure 5a. We could only see some slight fluctuations in several bands. The SR
denoised curves were nearly indistinguishable with the original signals. When the SNR is
about 70, both the noisy and denoised spectra looked the same with the original Rrs curves.
This means that the SR method can yield satisfactory results under both high, median, and
low noise levels.

Furthermore, we calculated the SNR of the denoised spectra from the four methods
and drew their violin plots. As a comparison, the SNR of the noisy spectra were also
calculated (Figure 6). It is interesting that, overall, some of the methods provided even
worse results than the noisy signals. In particular, when the SNR is about 70, the SNRs of the
denoised spectra are lower than those of the noisy spectra. According to Figure 4, when the
SNR was around 70, the noise of the spectra was nearly negligible. Under this situation, all
four of the methods destroyed the useful information to different degrees. The SR method
kept most of the original signals and its median SNR was 64.30. GS performed better than
KRS and Mean; its median SNR was 59.30, which was close to the SR. The SKRS and Mean
exhibited a similar performance, their median SNRs were 48.05 and 46.19, respectively.
When the input noise level increased, the SNR decreased to about 50 (its median is 52.55)
(Figure 6b); the performance of the four methods was similar to that in Figure 6c. What
was different is that at this input error level, the SR and GS effectively increased the SNR
compared with the noisy signals. Their median SNRs were 56.83 and 53.31, respectively.
The KRS and Mean still could not effectively remove the noise and keep useful information
synchronously. Their median SNRs were 44.87 and 44.65, respectively. This indicates that
they were still over-denoising at this noise level. When we further increased the noise
level and the SNR dropped to about 30 (its median is 32.39), the SR-yielded spectra could
effectively increase the SNR to a median of 37.49. In the other three algorithms, the Mean
outperformed the KRS and GS. Its median SNR was 36.79, which was quite close to the SR.
The KRS could also slightly improve the SNR at this input noise level.
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3.3. Denoising Performance in ASD Measured Dataset

Compared with the remote-sensing image retrieved Rrs, the field-measured Rrs were
less influenced by complex absorption and the scattering of gas molecular and particulates
in the atmosphere. In addition, the field measurement of Rrs had a longer integration
time. This will further decrease random errors. So, the field measured spectra are usually
treated as the reference data in research, such as atmospheric correction [49–52]. However,
the field-measured signal is not noise-free. Random factors, such as wind speed, white
cap, and platform swing, will all influence the measurement. Some of the related research
completed a pre-process to denoise the Rrs curves and then built Cchla estimation models.
The improved estimation accuracy indicated the necessity of denoising, even for field-
measured Rrs [18,53].

We selected four typical Rrs curves and showed the denoised spectra, together with
the original ASD spectra (Figure 7). Different from the simulated noisy spectra (Figure 5),
in this dataset, the noises were not evenly distributed along the wavelength. Generally, the
spectra curves between 500 and 720 nm are smooth. However, in the shorter and longer
wavelength regions, with the decrease in the Rrs signals, the noises were more obvious. The
denoised curves are highly consistent with the original spectra. All of the characteristic
peaks and valleys were clearly kept after denoising; for example, the Rrs valley caused by
the chlorophyll-a absorption peak at around 680 nm and the peak caused by chlorophyll-a
fluorescence near 700 nm. At the same time, the Rrs curves at high noise wavelengths
became smoother after denoising. The results indicated that, for ASD-measured spectra
data, the proposed SR denoising method is also effective. The method is not sensitive to
the wavelength distribution of random noise.
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3.4. Denoising Performance in Hyperspectral Image

The previous sections showed the effectiveness of the SR method in simulated and
ASD-measured Rrs spectra. In this section, we will show the performance of the SR
denoising method on PRISMA hyperspectral data. The lower SNR level of PRISMA
(compared with ASD) leads to its stronger vibrations over all of the spectral bands (Figure 8).
We can observe two kinds of noises from the spectra. In the wavelength range that is shorter
than 550 nm, the noises are relatively wavelength-independent. The PRISMA Rrs curves
changed randomly along the wavelength. Another kind of noise showed more common
characteristics, such as the sharp small peak at around 775 nm. According to the simulated
(Figure 5) and field-measured Rrs curves (Figure 7), this peak is a systematic error caused
by the sensor or the atmosphere. Under this complex error condition, the SR-denoised
spectra (Figure 8) look smooth at the random-error region and flatten the small peaks
around 775 nm.
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In three different datasets, the proposed SR denoising method showed its encouraging
performance. This method can handle both random noise at varied levels (Figure 6),
unevenly distributed noise (Figure 7), and systematic noise (Figure 8).

4. Discussion
4.1. Influence of K

Sparsity is an important parameter in our proposed algorithm. It decides how many
atoms are involved in compositing the Rrs signal. More atoms mean more spectral details
are included in the result. Simultaneously, more errors might also be retained. Therefore,
we evaluated the performance of the proposed algorithm under different sparsity (k), to
give suggestions for the denoising signals at different SNR levels. In the same way as
the former sections, all of the calculations were carried out using the simulated dataset at
three input SNR levels. To exhibit the results more clearly, we further calculated the SNR
difference before and after the denoising. A SNR difference equal to 0 means the denoising
made no contribution to the recovery of useful signals. An ideal SNR difference should be
larger than 0, which means the denoising is effective. On the contrary, if the SNR difference
is less than 0, the denoising destroyed part of the useful signals. The dashed line in Figure 9
represents the SNR difference equals 0.
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The violin plot of the SNR differences under three input SNR levels is shown in
Figure 9. With the increase in k, the denoising performance under different SNR levels
exhibited similar trends. When k was less than 10, the SNR differences increased syn-
chronously with k. After k was larger than 10, the SNR differences became flat. This
suggests that the SR method is not stable under low sparsity conditions. Another evidence
of the stability is the width of the violins in Figure 9a,b. A narrower and longer violin indi-
cates a wider SNR difference distribution. A stable denoising of one dataset is expected to
yield a concentrated performance. From this aspect, when effective denoising is generated
(Figure 9a,b), a higher sparsity means the model is more stable.

What is interesting is that when the input noise is strong (Figure 9a), the increase in
the sparsity will not always lead to a better performance. The SNRs slowly decreased when
sparsity was larger than 15, even though they are still generally higher than the dashed
line. This denotes that, at highly noisy levels, a larger k value of SR method will keep more
of the noise signal. Sparse representation cannot completely separate the noise signal.

Considering both the high and low SNR levels, an optimized sparsity in this research
was set to 15. This is also the parameter that was applied in the previous sections. In practice,
when given enough prior information, we suggest using a lower sparsity (k = 10) for the
low SNR signals (SNR ≈ 30), and a larger one (k = 30) for the high SNR (SNR ≈ 70) signals.

4.2. Influence of Denoising to Cchla Estimation Models

The final goal of denoising is the quantitative estimation of the water quality parame-
ters. We take Cchla as the example to evaluate the effectiveness of the SR denoising method
in practice. Limited by the amount of the field samples and measurements (Table 1), we
cannot refine the estimation models and evaluate the estimation result directly by compar-
ing it with the in situ measured Cchla. Therefore, the correlation coefficients between the
popular spectral indices and Cchla were selected to complete this assessment.

The five popular spectral indices are the band ratio parameter [54,55], normalized
difference chlorophyll-a index (NDCI) [56], three-band parameter [12], four-band parame-
ter [57], and enhanced three-band parameter [58]. Their expressions are listed in Table 2. In
our dataset, the three-band index exhibited the highest correlation with Cchla. It is followed
by the enhanced three-band and band ratio indices. The correlation coefficients of the
three-band and four-band indices were slightly lower than the other three indices. For all
of the five indices, the denoised Rrs spectra showed better correlation coefficients compared
with the original Rrs. The improvements are not obvious, because the main wavelengths of
the indices are located in the low-noise ranges (Figure 7), where the SR method kept most
of the original signals.

Table 2. Linear correlation coefficients between Cchla and five spectral indices that calculated from
original Rrs and denoised Rrs.

Spectral Index Expression Original r Denoised r

Band ratio [54,55] R710/R680 0.719 0.721
NDCI [56] (R710 − R680)/(R710 + R680) 0.697 0.700

Three-band [12] (1/R680 − 1/R710) × R745 0.752 0.755
Four-band [57] (1/R680 − 1/R710)/(1/R745 − 1/R720) 0.695 0.698

Enhanced three-band [58] (1/R680 − 1/R710)/(1/R745 − 1/R710) 0.743 0.748

4.3. Denoised PRISMA Image

As previously mentioned, the proposed SR denoising method is the 1-D method. Even
the denoising is only dependent on the spectra signals; after the method is iterated over
each pixel, the denoising effect will affect the spatial information. We tested it on a 3D
PRISMA image cube in this section. The original PRISMA image and the denoised image
of bands 442 nm, 555 nm, and 700 nm are shown in Figure 10.
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For each spectral band, the denoising process kept the general Rrs spatial distribution
of the original image. This further revealed the fidelity of the SR algorithm. In the three
bands of the PRISMA image, the R(442) image showed an obvious salt-and-pepper noise.
Together with Figure 8, we can infer that the low SNR level of this band caused this
error. In other words, the noise that distributed in the spatial and spectral domains are
related. Therefore, the denoised image of band 442 (Figure 10b) successfully erased the
random errors. For the other two spectral bands, their images look smooth and clear. This
means these two bands are at higher SNR levels. The denoising kept most of the original
information and slightly changed the reflectance value (Figure 10f,i). The encouraging
image validation result suggests that the 1-D SR denoising method effectively improved
the quality of the PRISMA image.

Finally, we calculated the Cchla maps from the original PRISMA image and the de-
noised image, using Huang’s model [55]. From the results (Figure 11), we can see that,
in the same way as with the single band images, the spatial distributions of the PRISMA
and the denoised image yielded Cchla maps that are similar. Overall, the denoised Cchla
is highly consistent with the original Cchla, but systematically lower (Figure 11a,b). The
difference between the original and denoised images yielded Cchla that are stronger than



Appl. Sci. 2022, 12, 7501 13 of 16

the ASD results (Table 2). This is reasonable, considering the lower SNR of the PRISMA
data will lead to a larger difference after being denoised (Figure 8). Meanwhile, a higher
dynamic range after denoising (Figure 11c) reveals that the SR method enhanced the spatial
information-capturing ability of the PRISMA image.
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4.4. Limitations and Outlooks

A classic problem in signal denoising is its fidelity. How to keep most of the useful
signals when effectively wiping out errors is always challenging. We proposed a SR
denoising method for optically complex water spectra. Even when it is dependent on the
general prior information of the Rrs signal—the bio-optical model—it ruined some useful
information when the SNR level was high enough (Figures 6 and 9). This means the current
algorithm is still improvable in separating the noise from the signal. We believe that, with
the help of fast-developing deep learning algorithms, the performance of denoising might
be further improved.

In this study, we only focused on hyperspectral data. In practice, multispectral remote
sensing data, such as Landsat series image [41,59,60], Sentinel-2 and 3 image [61,62], Mod-
erate Resolution Imaging Spectroradiometer (MODIS) image [63–65], Medium Resolution
Imaging Spectrometer (MERIS) image [66–68], Geostationary Ocean Color Imager (GOCI)
image [40,69,70], and Gaofen series image [71,72], are more frequently chosen, due to their
higher spatial and temporal coverage, and more importantly, their higher SNR that benefits
from their limited spectral bands. On the other hand, for these data, the accurate retrieval
of the atmosphere parameters, such as aerosol optical depth, water vapor content, and gas
content, are more challenging. Therefore, accurate atmospheric correction has long been a
problem for the optically complex water color multispectral remote sensing missions. Theo-
retically, if the atmospheric correction error is randomly distributed along the wavelengths,
our proposed SR method can improve the atmospheric correction results. However, for
the systematically biased errors, the performance will need a thorough discussion in the
future. If possible, the atmospheric-correction-then-denoise scheme will improve the image
quality for inland optically complex water monitoring.

5. Conclusions

In this research, we developed a SR denoising method for optically complex water
hyperspectral Rrs data and tested the method in three hyperspectral datasets. The results
indicated that the SR method can effectively remove the random errors and systematic
errors of the hyperspectral data and keep the useful signals at the same time. The method
is robust under different types of error distribution. The denoised hyperspectral data can
improve correlation coefficients between the spectra indices and Cchla and the dynamic
range of Cchla maps.
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