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Abstract: In this work, we develop an electrochemical sensor using a polypyrrole nanotubes-modified
graphite screen-printed electrode (PPy NTs/GSPE) for sensing hydroxylamine. The PPy NTs/GSPE-
supported sensor has an appreciable electrocatalytic performance and great stability for hydroxy-
lamine oxidation. Compared to a bare graphite screen-printed electrode, we demonstrate that using
the PPy NTs/GSPE leads to a significant reduction in the oxidation potential of hydroxylamine. The
standard curve shows a linear relationship ranging from 0.005 to 290.0 µM (R2 = 0.9998), with a high
sensitivity (0.1349µA/µM) and a narrow limit of detection (LOD) of 0.001µM. In addition, the PPy
NTs/GSPE has satisfactory outcomes for hydroxylamine detection in real specimens.

Keywords: hydroxylamine; polypyrrole nanotubes; electrochemical sensor; voltammetry

1. Introduction

Hydroxylamine, NH2OH, is derived from ammonium as an intermediate during
the two primary microbial nitrogen processes of anaerobic ammonium oxidation and
nitrification. Hydroxylamine has a variety of industrial and pharmaceutical applications as
a raw material [1,2]. The characteristics of hydroxylamine were recently detected following
two major events; one involved the deaths of five people in the United States (February
1999), and the other involved the deaths of four people in Japan (June 2000). Moreover,
hydroxylamine is a mutagenic, toxic, and harmful agent for living organisms that produces
reversible and irreversible physiological alterations [3–5]. Accordingly, from environmental,
health, and industrial viewpoints, the achievement of a sensitive analytical method for the
detection of trace amounts of hydroxylamine is of remarkable importance.

Various techniques for the detection of hydroxylamine content have been developed,
such as spectrophotometric methods [6], high performance liquid chromatography [7], gas
chromatography [8], and polarography [9]. In spite of their many advantages, all these
methods present some challenges, such as their complexity, expensiveness, the need for
advanced equipment, and prolonged execution times [10].

For these reasons, electrochemical techniques are promising candidates for the con-
struction of cost-effective and portable electrochemical sensing systems because of their
high stability, lengthy linearity, possibility of miniaturization, simple instrumentation,
quick response, and higher sensitivity and selectivity [11–20].

Disposable electrochemical graphite screen-printed electrodes (GSPEs) possess special
features, such as low background current, capacity for mass production, cost-effectiveness,
and disposability that can compensate for the numerous shortcomings of glassy carbon
electrodes and carbon paste electrodes, including difficult cleaning procedures and memory
impacts [21–25].
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Most bare electrodes used for the electrochemical determination of analyte have
multiple restrictions (e.g., low selectivity, high overpotential, and negligible stability in
a broad spectrum of solution compositions). Hence, electrode modification can bypass
these barriers [26–30]. The mass transfer kinetics can be improved by chemically modified
electrodes (CMEs) at low overpotential, which reduces the impacts of interferants and
inhibits surface fouling [31–36].

In recent years, nanomaterials have been investigated extensively in various fields,
owing to their small size, impressive porosity, large specific surface area, and special
physicochemical traits [37–41]. Several advances in the field of nanomaterials have been
made to improve the performance of the sensors [42–45].

Conducting polymer nanomaterials have many applications in the fields of opto-
electronics, electronics, (bio)sensing systems, and energy storage [46]. Polypyrrole (PPy)
nanomaterials are popular polymers because of their admirable electronic conductivity,
high stability, ease of construction, and appreciable biocompatibility. In addition, their
outstanding electrical properties are related to the resonance of the delocalized π electrons
present in the entire carbon chain of the polymer structure [47,48].

It should be noted that conductive polymers such as the PPy nanomaterials can be
employed in various types of electrochemical equipment, such as voltammetric and corro-
sion sensors, because of their great electrical and electrochemical windows. In addition, the
morphology of polypyrrole nanomaterials affects the catalytic properties. In particular, the
PPy NTs are of unparalleled utility for sensing systems owing to their appreciable electron
transduction, large surface areas, huge surface functionalities and porous structure [49–51].

In this paper, a graphite screen-printed electrode modified with polypyrrole nanotubes
was fabricated for the determination of hydroxylamine. Such an electrode has not been
tested for this purpose before. The fabricated sensor exhibited an enhanced catalytic
performance for hydroxylamine oxidation.

2. Experimental Procedure
2.1. Instrumentation

A Tescan Field Emission Scanning Electron Microscope (FE-SEM, Mira3-Xum, Brno,
Czech Republic) was used to capture FE-SEM images of the polypyrrole nanotubes. A
PAN analytical instrument (x,pert3, Almelo, The Netherlands) was applied to obtain the
X-ray diffraction (XRD) pattern of the polypyrrole nanotubes. Moreover, Fourier transform
infrared spectroscopy (FT-IR) was carried out on a Bruker spectrometer with KBr pellets
(Tensor-2, Bruker Corporation, Hanau, Germany) and was applied to obtain the functional
groups of the polypyrrole nanotubes. An Autolab electrochemical instrument (Metrohm-
PGSTAT302N, Metrohm Autolab B.V., 3526 KM, Utrecht, The Netherlands) was used for
the voltammetric measurements. The experimental settings were explored using General
Purpose Electrochemical System (GPES) software. The three-component DropSens screen-
printed electrode (DRP-110, DropSens, Oviedo, Spain) consisted of a graphite working
electrode, a silver pseudo-reference electrode, and a graphite counter electrode. All pH
adjustments were performed using a Metrohm 710 pH meter (Metrohm Autolab B.V.,
3526 KM, Utrecht, The Netherlands).

2.2. Materials

All chemicals and reagents were in a state of analytical purity, with no need for
further purification. Hydroxylamine, methyl orange, iron (III) chloride (FeCl3), pyrrole,
and ethanol were obtained from Sigma-Aldrich (St. Louis, MO, USA).

The preparation of a 0.1 M phosphate buffer solution (PBS) was carried out using
orthophosphoric acid and the respective salts in a pH range between 2 and 9.

2.3. Synthesis of the PPy NTs

The preparation of the PPy NTs was performed through pyrrole monomer oxidation
with iron (III) chloride in exposure to methyl orange as a structure-guiding agent [52].
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Thus, FeCl3 (3.888 g; 23 mmol) with methyl orange (0.784 g; 2.3 mmol) were dissolved in
deionized water (480 mL) followed by the addition of pyrrole (0.84 mL; 12.1 mmol), and the
solution was stirred at an ambient temperature for 24 h. Then, the deionized water/ethanol
(with proportions of 70:30) was used to thoroughly wash the attained PPy NTs precipitate
until the filtrate was colorless and neutral, followed by vacuum-drying at 65 ◦C for 20 h.

2.4. Modified Electrode Fabrication

The modification of the GSPEs with the PPy NTs was performed using the drop-casting
method. Briefly, 1 mg of the synthesized PPy NTs was poured into 1 mL of pure water
under ultra-sonication for one hour. Then, 4 µL of the PPy NTs suspension was placed
onto the working electrode surface of the GSPE. After solvent evaporation at an ambient
temperature, the electrode was stored for future use.

2.5. Real Sample

The real river and well water specimens were filtered (with a 0.45 µm filter) prior to
analysis using the standard addition method, and the variable hydroxylamine contents
were spiked in the specimens.

3. Results and Discussion
3.1. Characterization of the PPy NTs

The FE-SEM image captured of the PPy NTs is shown in Figure 1, illustrating a one-
dimensional nanotube structure of the PPy that is 87–150 nm in diameter and several
micrometers in length, which is consistent with that reported in the previous literature [53].
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Figure 1. FE-SEM image of the PPy NTs.

The FT-IR spectrum of the PPy NTs ranged from 400 to 4000 cm−1 (Figure 2). The
peaks at 1552 and 1450 cm−1 can be related to symmetric and asymmetric polypyrrole
ring stretching bonds, sequentially. Moreover, the peak at 1038, 1333, 1110, and 1603 cm−1

corresponds to C-H deformation vibrations, C-N stretching vibrations, C-C stretching, and
C=C stretching, sequentially. A broad peak at 3446 cm−1 can also be related to the N-H
stretching vibrations of the pyrrole ring. The successful PPy polymer formation is evident
based on the FT-IR patterns [52,54].
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The XRD pattern obtained of the PPy NTs can be seen in Figure 3. There is a wide
peak at the 2θ value of 24.8◦ (Figure 3). The wide peak indicates the amorphous polymer
and intramolecular stacking structure [55].
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3.2. Electrochemical Behavior of Hydroxylamine on the PPy NTs/GSPE

Since the selected analyte oxidation depends on the pH, the influence of the pH on the
hydroxylamine oxidation was determined for the optimization of the operational conditions
to reach the highest response. The electrochemical behavior of hydroxylamine on the PPy
NTs/GSPE was examined in 0.1 M PBS at variable pHs of 2.0–9.0 using cyclic voltammetry
(CV) (Figure 4). Reportedly, the hydroxylamine electro-oxidation on the PPy NTs/GSPE
surface was higher in neutral conditions than in an alkaline medium or acidic medium
(Figure 4A). Consequently, a pH of 7.0 was chosen as optimal for the hydroxylamine electro-
oxidation on the PPy NTs/GSPE surface. In addition, it was discovered that the values of
the peak potential shift to lower values with increasing pH, as shown in Figure 4B. Thus,
the peak potential is linearly dependent on the pH, according to the following equation:
Ep (mV) = −59.786 pH + 1208.6 (R2 = 0.9997). The value of the slope (−59.786 mV/pH)
was very close to the theoretical value (−59 mV/pH), indicating that the same electron and
proton numbers participate in the electrochemical oxidation process.

The electrochemical behavior of 100.0 µM hydroxylamine in the buffer solution (pH 7.0)
was illustrated by using differential pulse voltammetry (DPV) techniques on the surfaces
of bare GSPE (Figure 5, curve b) and the PPy NTs/GSPE (Figure 5, curve a). The anodic
peak potential was approximately 1000 mV for the hydroxylamine oxidation on the bare
GSPE, while it was approximately 790 mV on the PPy NTs/GSPE. On other hand, the
GSPE exhibited a minimal current (4.0 µA), and the PPy NTs/GSPE exhibited an elevation
in the oxidation current (14.5 µA). Accordingly, the greatest electrocatalytic impact on
hydroxylamine oxidation was on the surface of the PPy NTs/GSPE as opposed to the bare
GSPE, which was caused by increasing the simplification of the electron transfer process.
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3.3. Scan Rate Exploration

The influence of the scan rate (v) on the hydroxylamine (100.0 µM) electrochemical
response in 0.1 M PBS at pH = 7.0 on the PPy NTs/GSPE was determined via linear sweep
voltammetry (LSV). The corresponding data are shown in Figure 6. The hydroxylamine
oxidation peak current (Ipa) was enhanced with an increasing scan rate from 10 to 500 mV/s
and the peak potential shifted towards a more negative value, confirming the irreversibility
of the oxidation reaction of hydroxylamine on the PPy NTs/GSPE. The peak current of the
hydroxylamine oxidation was proportional to the scan rate square root (ν1/2) (Figure 6,
inset), highlighting that the oxidation of hydroxylamine on the PPy NTs/GSPE was a
typical diffusion-controlled electrode process, and the peak potential shifted towards a more
negative value, confirming the irreversibility of the oxidation reaction of hydroxylamine on
the PPy NTs/GSPE.
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The rate-determining step was explored via the Tafel plot (Figure 7) according to the
rising domain of the current–voltage curve at a scan rate of 10 mV/s. This section of the
voltammogram (or the Tafel region) is influenced by electron transfer kinetics between the
hydroxylamine and the PPy NTs/GSPE surface. The Tafel slope was 0.2555 and the charge
transfer coefficient (α) was 0.77; thus, a two-electron transfer procedure can be discerned in
the rate-determining step for the electro-oxidation of hydroxylamine.

3.4. Chronoamperometry

The hydroxylamine oxidation on the PPy NTs/GSPE was explored by chronoamper-
ometry (Figure 8). Chronoamperometric determinations of the variable hydroxylamine
contents on the PPy NTs/GSPE were performed at a working electrode potential of 840 mV.
The obtained data were used to determine the diffusion coefficient (D) of the hydroxy-
lamine. For the hydroxylamine as an electroactive material with a certain D value, Cottrell’s
equation was used to describe the current for the electrochemical reaction at a mass-
transport-limited rate:

I = nFAD1/2Cbπ
−1/2t−1/2 (1)
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hydroxylamine contents. Nos. a–f: 0.1, 0.25, 0.4, 0.8, 1.3, and 1.8 mM of hydroxylamine. Insets:
(A) Plots of I versus t−1/2 derived from chronoamperograms a–f. (B) Corresponding slopes from the
chronoamperogram curves vs. the hydroxylamine concentration.

In this equation, I stands for the current (A), n for the number of transferred electrons,
F for the Faraday’s constant, A for the electrode surface area (cm2), t for time (s), Cb
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for the bulk concentration (mol/cm3), and D for the diffusion coefficient (cm2/s). The
experimental data of the I plot versus t−1/2 are shown in Figure 8A, with the optimal
fits for the various hydroxylamine contents. The achieved slopes of the straight lines in
Figure 8A were plotted versus the hydroxylamine content (Figure 8B). The average D value
of 4.8 × 10−5 cm2/s was based on the obtained slope and on Cottrell’s Equation (1).

3.5. Linear Dynamic Range and Limit of Detection

The standard curves were obtained by preparing multiple hydroxylamine solutions
with various concentrations in 0.1 M PBS and measuring them on the PPy NTs/GSPE.
Figure 9 illustrates a voltammogram of the DPVs at variable hydroxylamine contents (0.005,
0.07, 1.0, 5.0, 15.0, 30.0, 75.0, 100.0, 150.0, 200.0, 250.0, and 290.0 µM of hydroxylamine).
According to our findings, there was an elevation in the peak currents with increasing
hydroxylamine content. The standard curve of the DPV peak current for the hydroxylamine
oxidation versus hydroxylamine concentration (Inset, Figure 9) demonstrates admirable
linearity over a broad range of concentrations (0.005–290.0 µM) at pH = 7, with a correlation
coefficient of 0.9998. In addition, the detection limit at 3σ equaled 0.001 µM. Table 1 lists the
limit of detection and the linear range of the PPy NTs/GSPE compared with some modified
electrodes used for hydroxylamine determination [56–61].
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3.6. Stability, Repeatability, and Reproducibility

The long-term stability test of the PPy NTs/GSPE using DPV was performed at room
temperature. The results exhibited that the peak current of 50.0 µM hydroxylamine on
the PPy NTs/GSPE remained at 92.7% of its primary current after seven days, 91.9%
after 14 days, and 88.7% after 21 days, indicating the superior long-term stability of the
proposed sensor.
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Table 1. Comparing the analytical performance of the PPy NTs/GSPE with other modified electrodes
used for hydroxylamine determination.

Electrochemical Sensor Method Linear Range Limit of
Detection Refs.

Graphene oxide/TiO2/
screen-printed electrode

Differential pulse
voltammetry 0.1–300.0 µM 0.065 µM [56]

Nickel(II)-morin complex modified
multi-wall carbon nanotube

paste electrode
Amperometry 2.5–400.0 µM 0.8 µM [57]

Gold nanoparticle-polypyrrole
nanowire/glassy carbon electrode

Differential pulse
voltammetry 1.0–500.0 µM 0.21 µM [58]

Gold nanoparticle-metal-
metalloporphyrin frameworks/

glassy carbon electrode

Differential pulse
voltammetry 0.01–20.0 µM 0.004 µM [59]

Cobalt(II) bis (benzoylacetone)
ethylenediimino multi-wall carbon
nanotube/carbon paste electrode

Square wave
voltammetry 5.0–50.0 µM 12 µM [60]

La2O3/Co3O4 nanocomposite/onic
liquid/carbon paste electrode

Differential pulse
voltammetry 0.06–240.0 µM 3.0 nM [61]

Polypyrrole nanotubes/graphite
screen-printed electrode

Differential pulse
voltammetry 0.005–290.0 µM 0.001 µM This Work

The oxidation of hydroxylamine (50.0 µM) on the same PPy NTs/GSPE electrode was
performed using ten repeated voltammetric measurements, the results of which confirmed
the superior repeatability of the fabricated sensor, with a relative standard deviation (RSD)
of 3.0%.

Similar conditions were provided for the measurement of the response currents of
hydroxylamine (50.0 µM) on five PPy NTs/GSPEs, the results of which confirmed the
excellent reproducibility of the fabricated sensor, with an RSD value of 3.7%.

3.7. Real Sample Analysis

The thus-fabricated sensor was examined for its applicability to the detection of
hydroxylamine spiked in real specimens, including river (Halil, Jiroft, Iran) and well
water (Graduate University of Advanced Technology, Kerman, Iran), by measuring via
the standard addition method (Table 2). The spike recovery rate ranged from 96.7% to
104.3%, underlining the capacity of the modified electrodes for sensor applications in
hydroxylamine determination in real specimens.

Table 2. Electrochemical determination of hydroxylamine in various water samples with the PPy
NTs/GSPE. Concentrations are reported as µM (n = 3).

Sample Spiked
Concentration

Found
Concentration Recovery (%) R.S.D. (%)

River water

0 - - -

5.0 5.1 102.0 2.2

7.5 7.3 104.3 3.0

Well water

0 - - -

6.0 5.8 96.7 3.1

7.0 7.1 101.4 2.0
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4. Conclusions

We fabricated an ultra-sensitive electroanalytical sensor for hydroxylamine detec-
tion using the modification of a graphite screen-printed electrode based on polypyrrole
nanotubes. The PPyNTs/GSPE was found to be a powerful platform for determining
hydroxylamine in a range from 0.005 to 290.0 µM, voltammetrically. The limit of detection
for hydroxylamine using the PPyNTs/GSPE was obtained as 0.001 µM. The recovery rate of
96.7% to 104.3% in real specimens verifies the appreciable potential of the newly developed
sensor for sensing hydroxylamine in real specimens. As a result, it is evident that the
PPyNTs/GSPE has an excellent electrochemical performance and potential for application
as an electrochemical detection platform.
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