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Abstract: Website phishing is a cyberattack that targets online users for stealing their sensitive data
containing login credential and banking details. The phishing websites appear very similar to their
equivalent legitimate websites for attracting a huge amount of Internet users. The attacker fools the
user by offering the masked webpage as legitimate or reliable for retrieving its important information.
Presently, anti-phishing approaches necessitate experts to extract phishing site features and utilize
third-party services for phishing website detection. These techniques have some drawbacks, as
the requirement of experts for extracting phishing features is time consuming. Many solutions
for phishing websites attack have been presented, such as blacklist or whitelist, heuristics, and
machine learning (ML) based approaches, which face difficulty in accomplishing effectual recognition
performance due to the continual improvements of phishing technologies. Therefore, this study
presents an optimal deep autoencoder network based website phishing detection and classification
(ODAE-WPDC) model. The proposed ODAE-WPDC model applies input data pre-processing at the
initial stage to get rid of missing values in the dataset. Then, feature extraction and artificial algae
algorithm (AAA) based feature selection (FS) are utilized. The DAE model with the received features
carried out the classification process, and the parameter tuning of the DAE technique was performed
using the invasive weed optimization (IWO) algorithm to accomplish enhanced performance. The
performance validation of the ODAE-WPDC technique was tested using the Phishing URL dataset
from the Kaggle repository. The experimental findings confirm the better performance of the ODAE-
WPDC model with maximum accuracy of 99.28%.

Keywords: cybersecurity; internet of things; cloud computing; computational models; deep learning;
metaheuristics; phishing detection; website phishing

1. Introduction

Cybercrime can be defined as crime that targets networks or computers. Computer
crimes are covered by a wide range of potentially criminal actions. Phishing is regarded as
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most frequently employed attack over social networks. With these assaults, the phisher
endeavors to obtain personal data from the user to be utilized dishonestly toward users [1,2].
In the current digital business scenario, many corporations are making use of the ever-
evolving changes of cyberspace, owing to the development of the internet day by day,
particularly because of the impacts of COVID-19 which has pushed every person to highly
utilize internet in every field. As the largest computer network [3], the internet is a
serious platform for the success of business and its growth, as most marketable trades
are held online [4]. In spite of the ease linked with online transactions from businesses
as well as users, there occurs an online menace called phishing. Phishing indulges in
making a well-designed website (WS) that imitates prevailing authentic commercial WSs
for deceiving users and illegally acquiring their login credentials and documents, which
alleviates phishers in obtaining accessibility to the legitimate financial data of users [5].
Inappropriately, the phishing impact was fatal because legal users who were affected were
prone to find theft and data breaches and do not have a faith in electronic banking and
online trade. Phishing commonly appears through an email which is sent to users, from
trustworthy resources, which urges them in adjusting their login credentials by following
or clicking a hyperlink in these emails [6].

Phishing is symbolically the same as fishing in water bodies; however, rather than
catching fish, invaders attempt to obtain the confidential information of users. Phishing
WSs seem to be same as the corresponding legal WSs for alluring great numbers of internet
users. The current advancements in the detection of phishing have resulted in the progress
of several novel techniques on the basis of visual similarity [7]. In recent decades, the usage
of deep learning (DL), computational technique, and machine learning (ML) have grown
exponentially in evolving solutions for several fields, particularly education, medicine,
finance, and cybersecurity. Whereas such applications of ML methods have proven ad-
vantageous in several domains, they also have several disadvantages, such as adversarial
attacks, a lack of benchmark datasets, the cost of architecture, imbalanced datasets, and
the inability to learn from small datasets. Conversely, innovative techniques, namely DL,
generative adversarial networks, one-shot learning, and continuous learning, were applied
successfully for sorting several responsibilities in such domains. Thus, it becomes impor-
tant to implement such novel techniques in life-critical missions and measure the success
of less conventional techniques utilized in such domains [8].

This study presents an optimal deep autoencoder network based website phishing
detection and classification (ODAE-WPDC) model. The proposed ODAE-WPDC model
applies input data pre-processing at the initial stage to get rid of missing values in the
dataset. Then, feature extraction and artificial algae algorithm (AAA) based feature selection
(FS) are utilized. The DAE model with the received features carries out the classification
process, and the parameter tuning of DAE technique is performed using the invasive
weed optimization (IWO) algorithm to accomplish enhanced performance. The IWO is a
derivative-free real parameter optimization technique that mimics the ecological behavior
of colonizing weeds. The performance validation of the ODAE-WPDC methodology was
tested utilizing benchmark Kaggle repository. In short, the paper’s contributions can be
summarized as follows.

• Propose an intelligent model using metaheuristic and deep learning model to identify
phishing websites via feature selection and classification processes;

• Employ AAA based feature subset selection process to reduce curse of dimensionality;
• Apply IWO with DAE classifier and the hyperparameter tuning process using the

IWO algorithm helps in achieving enhanced performance;
• Validate the performance of the proposed model on the Phishing URL dataset from

the Kaggle repository.

2. Related Works

Numerous works related to cybersecurity-based solutions are available in the litera-
ture [9,10]. The authors in [11] concentrate on implementing a DL structure for detecting
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phishing WSs. This work initially designs two kinds of features for web phishing, such
as original and interaction features. The detection method dependent upon DBN is then
projected. In [12], it can be projected a manner for detecting malicious URL addresses with
accuracy, utilizing CNNs. In contrast to the preceding mechanism, whereas URL or traffic
statistics or web contents are analyzed, it can be analyzed only the URL text. Therefore,
this technique is faster and detects zero-day attacks. Do et al. [13] establish the model of
phishing and DL from the context of cybersecurity. Afterward, classifications of phishing
detection and DL techniques are offered for classifying the recent works into several types.
Then, taking the presented classification as baseline, this research widely analyzes the
recent DL approaches and examines their benefits and drawbacks.

The authors in [14] examine a novel technique for identifying phishing WSs utilizing
hyperlinks accessible from the source code of HTML webpage from the equivalent WS.
This feature is utilized for training the supervised DNN approach with Adam optimizing
to differentiate fraudulent WSs from genuine WSs. The presented DL approach with
Adam optimizer utilizes a listwise method for classifying phishing as well as genuine
WSs. Odeh et al. [15] propose the recent methods for phishing WS recognition utilizing
the ML approaches. The popularly studied methods are concentrated on classical ML
approaches. Ada Boosting, SVM, RF, and NB are the powerful ML approaches studied
in the works. This review work also recognizes DL-based approaches with optimum
efficiency to detect phishing WSs related to the conventional ML approaches. Makkar
and Kumar [16] examine a cognitive spammer structure that eliminates spam pages if the
search engines compute the webpage rank score. The structure identifies web spam with
the assistance of the LSTM network by training the link features. In [17], a real-time anti-
phishing model that utilizes seven distinct classifier approaches and NLP based features
is presented. The model has the subsequent differentiating property in other studies in
analyses: language independence, utilization of massive size of legitimate and phishing
datasets, real-time implementation, recognition of novel WSs, independence in third-party
service, and utilization of feature-rich classifications.

Lee et al. [18] propose an effective phishing page detection model by the use of
multiple models, where every model is trained by the insertion of (controlled) noises in a
subset of arbitrarily elected features from entire set of features. Ghaleb et al. [19] introduce
a 2-stage ensemble learning approach with the integration of random forest (RF) based
pre-classification and multilayer perceptron (MLP) based decision making. The trained
MLP classification model substitutes the majority voting method of the three trained RF
models to make decisions. Kondracki et al. [20] present the initial examination of the
man-in-the-middle (MITM) phishing toolkit. With the detailed investigation of the toolkit,
the implicit network level characteristics are identified, which can be employed for the
detection process. In addition, an ML-based classification model is derived to find the
existence of toolkits for online communication purposes. Noah et al. [21] introduce an
anti-phishing model named PhisherCop, which is based on the stochastic gradient descent
(SGD) and a support vector classifier (SVC) model. The authors in [22] introduce the
Crawlphish model to automatically detect and categorize client-side cloaking utilized by
recognized phishing websites. The authors also present a taxonomy of eight distinct kinds
of evasion over three high-level classes.

ML-based phishing website detection utilizes ML models for the detection of manually
extracted phishing website URL features. The efficacy of the recognition process can
be enhanced by this approach. It necessitates experts in the extraction of URL features
manually, designing a training set for phishing website detection, and, lastly, utilizing
supervised learning approaches for phishing website detection. To resolve the manual
feature extraction process, the DL models are found to be useful. At the same time, the
choice of proper DL model is a difficult process. In particular, when phishers alter the
attacking strategies for leveraging the system susceptibilities and the users’ unawareness,
the selection of the proper model can result in unpredicted outcomes, resulting in a waste
of effort and eventually affecting the model’s accuracy and efficiency. On the other hand,
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the fine-tuning procedure of DL models is another challenging problem that needs to be
resolved. Motivated to solve this problem, in this work, the IWO algorithm is applied to
fine tune the DAE parameters to accomplish maximum detection accuracy.

3. The Proposed Model

In this study, a novel ODAE-WPDC model is introduced for the recognition and
classification of WS phishing to achieve cybersecurity. At the primary stage, the proposed
ODAE-WPDC model applies input data pre-processing at the initial stage to get rid of
missing values in the dataset. This is followed by feature extraction, and the AAA based
FS process is utilized. Finally, the IWO with DAE model is applied for the classification
process. Figure 1 depicts the block diagram of the ODAE-WPDC approach.
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3.1. Data Pre-Processing

This is the initial processing of data for preparing them for initial processing or further
examination. It removes the feature which has missing values or null values. The significant
features compared with phishing WS URLs are removed with this phase. At this point,
features such as URL length, abnormal URL, statistical report, and so on, are extracted for
phishing URL recognition.

3.2. Design of AAA Based FS Technique

Once the raw data are pre-processed and features are extracted, the AAA-FS model is
utilized to choose feature subsets. In 2015, Uymaz et al. [23] presented AAA, a bio-inspired
metaheuristic optimized technique to overcome real-time and continuous optimization
issues. It is a stimulation for the search activity of microalgae. Every individual is regarded
as an artificial algal community (AAC) from the population-based technique; also, every
AAC resembles a solution from the problem space. The life cycle encompasses mitotic
reproduction, altering the dominant species, and environmental adaptation. The adaptation
stage, the reproduction or evolutionary stage, and the helical movement phase are the
three stages of AAA. The evolutionary/reproduction stage is exploited for replenishing
the community cell by resurrecting algae by mitotic division when they have enough light
and nutrients in the environment. Algae perform a movement named helical motion. The
algae population exists in liquid atmosphere and congregates nearer to the liquid surface
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wherever there is a sufficient light source. The algae cell uses their flagellum (organelle) for
helical motion [24]. Figure 2 depicts the flowchart of AAA and explained in Algorithm 1.

Algorithm 1: Pseudocode of AAA

Initialization: Generate N population of algae colonies
Determine fitness f (xi), i = 1, 2, . . . , N, D
where xi = algae colony, N = number of algae colonies, and that the D = problem dimensionality
while termination condition is unsatisfied do
for i = 1 to n do
while energy of ith colony not done do
Employ helical movement stage
end while
end for
Employ evolutionary/reproduction stage
Employ adaptation stage
end while
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The fitness function (FF) utilized in the presented AAA-FS system was planned to
contain a balance between the amount of chosen features from all the solutions (min-
imal) and the classifier accuracy (maximal) reached by utilizing these chosen features;
Equation (1) demonstrates the FF for evaluating the solution.

Fitness = αγR(D) + β
|R|
|C| (1)

whereas γR(D) implies the classifier error rate of provided classier (the K-nearest neighbor
(KNN) technique is utilized). |R| refers to the cardinality of the chosen subset and |C|
signifies the entire amount of features from the dataset. α, and β are two parameters
equivalent to the significance of classifier quality and subset length. ∈ [1, 0] and β = 1− α.

3.3. Process Involved in DAE Classification

When the features are selected, they can be fed into the DAE classification approach.
An SAE is also known as DAE, which is the original deep network that comprises AE
using several hidden layers and generates sensitive power [25]. For the classifier issue, the
softmax classification is widely selected by the resultant layer. Next, the recreation of input
instances with lesser error is a popular method. The trained set is provided by

(X, Y) =
{(

x(n), y(n)
)∣∣∣n = 1, 2, . . . , N)

}
(2)

In Equation (2), y(n) indicates a sample trademark x(n). The number of instances
is represented as N. For each instance of trainable dataset x(n), the code encoded using
h(n) = f

(
x(n)

)
later decodes h(n) for reconstructing with x?(n) = g

(
h(n)

)
, and f and g

are the encoder and decoder variables. This is resolved by diminishing errors among the
inputs and reconstructions.

h(n) = s
(

Wx(n) + b
)

(3)

x?(n) = s
(

Wh(n) + b?
)

(4)

The sigmoid function is represented as s(·), a trained dataset using energy utilization
as follows:

(θ) =
1
N

N

∑
n=1

1
2
|
∣∣∣x(n) − x?(n)

∣∣∣|22 (5)

Parameter absence in s and θ from linear conversion. The standard auto-counter
is fundamental for the model of DAE that encodes x(n) to hidden notation h(n1) that
is provided to the following input port of DAE. The recurrence of the process of the
consequential layer for l = 1, . . . , L, where L characterizes the number of hidden layers
from DAE. The resultant layer is involved in the topmost hidden layer for monitoring the
trained procedure. All the layers produce the best outcomes because of training the design
parameter. Fine-tuning is commonly utilized from NN as a global optimization technique;
hence, it enhances the DAE accuracy. The deviation of true labels from output values is
decreased by the fine-tuning process. The representation of the square error cost depends
on ideal samples stated in the following:

J
(

W, b; x(n), y(n)
)
=

1
2
|
∣∣∣y(n) − y?(n)

∣∣∣|22 (6)

The energy function J(W, b) forces the results to be nearer to the true label throughout
the whole preparation and determines the procedure of fine-tuning.

J(W, b) =
1
N

N

∑
n=1

J
(

W, b; x(n), y(n)
)

(7)
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From the equation, (W, b) =
{(

W(l), b(l)
)
|1 = 1, 2, . . . , L

}
are encoder constraints of

the whole layer. The initialization of the parameter is the initial phase of the DL technique,
thus minimizes the constraint updating through energy function with a stochastic technique
to complete the DAE tuning.

3.4. Hyperparameter Optimization

At the final stage, the IWO algorithm assists in attaining maximum outcome by the use
of the IWO-based hyperparameter tuning process. The IWO algorithm is a bio-simulated
mathematical optimization technique that mimics the natural behaviors of weeds [26]. IWO
has lots of benefits, namely very strong robustness, simplicity of structure, and requiring
fewer parameters; it is utilized for solving linear, nonlinear, general, and multidimensional
optimization problems. It is assumed to be effective in converging to the most suitable
solution using fundamental characteristics, namely growth, seeding, and competition in a
weed colony.

Initial population: Firstly, the population is distributed in a random fashion through
the D-dimension solution space, as weeds are created at random.

Reproduction: The number of seeds generated by all the weeds is estimated based
on fitness. Every seed has a probability of reproducing; also, the reproduction rate ranges
from higher to lesser depends upon an optimal-to-worse-fit seed. Then, the seed develops
into a wild plant able to generate new units, and it is formulated as follows:

otn =
f − fworst

fbest − fworst
(S max − S min ) + S min (8)

In Equation (8), f denotes the fitness of the weed. fworst and fbest indicate the worse
and optimal fitness of the present population, correspondingly. Smin and Smax refer to the
lesser and higher counts of seeds.

Spatial distribution: The seed generated is distributed in a random fashion through
the D-dimension search space, usually an arbitrary number taking a mean corresponding
to zero with a variance. By scattering the seeds arbitrarily, it can be guaranteed that they
are nearer to the parental plant. However, the standard deviation (SD) (σ) would decrease
from a primary value (σinit) to last value

(
σf inal

)
. Then, it equated to the following.

σcur =
(iter max − iter)n

(itermax)
n

(
σinit − σf inal

)
+ σf inal (9)

In Equation (9), itermax denotes the maximal iteration count, σcur denotes the SD at
present step, σinit signifies the 1st SD, σf inal represents the final SD, and n indicates the
modulation index.

Competitive exclusion: Here, the weed number in a colony exceeds the maximal
population count with rapid reproductions. Next, the created seed is permitted for propa-
gating to search spaces. Next, lower fitness weeds are detached for attaining the maximal
population allowable from the colony. This process is continued till the maximal iteration
or ending condition is accomplished. The weeds using the optimum fitness are preferred
as the most suitable solution as illustrate in Algorithm 2.
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Algorithm 2: Pseudocode of IWO technique

Begin {
Initializing population of weeds, set parameters;
Current_iteration = l;
While (Current_iteration< Max_iteration) do
{
Estimate an optimum and worse fitness from the populations
Estimate the SD std depends on iteration
For all the weeds w from the population W
{
Calculate the amount of seeds for w depending on their fitness
Choose the seeds in the possible solution nearby the parent weed w from a neighborhood with
standard distribution containing mean = 0 and SD = std;
Increase seeds created to population W
If (|W| >Max_SizePopulation)
{
Sorting the population w based on its fitness
W = SelectBetter (weed, seed, Max_SizePopulation)
} End if
} End for
Current_iteration = Current_iteration+ 1;
} End whi1e
} End

The IWO system develops a FF for achieving maximal classifier efficacy. It solves a
positive integer for defining the best performance of candidate results.

fitness (xi) = Classifier Error Rate (xi)

=
number of misclassified samples

Total number of samples ∗ 100
(10)

4. Results and Discussion

The experimental validation of the ODAE-WPDC model is tested using a dataset from
the Kaggle repository [27]. The dataset holds 4898 samples under a legitimate class and
6157 samples under a phishing class as depicted in Table 1. The results are examined in
terms of distinct measures, such as accuracy, precision, recall, F-score, and Jaccard index.
For effective detection performance, the values of these measures should be high.

Table 1. Dataset details.

Class Name No. of URLs

Legitimate 4898
Phishing 6157

Total Number of URL’s 11,055

Figure 3 illustrates the confusion matrices produced by the ODAE-WPDC model
under distinct folds. On fold-1, the ODAE-WPDC model recognizes 4816 samples under
the legitimate class and 6066 samples under the phishing class. On fold-3, the ODAE-
WPDC approach recognizes 4839 samples under the legitimate class and 6128 samples
under the phishing class. Additionally, on fold-4, the ODAE-WPDC system recognizes
4833 samples under the legitimate class and 6131 samples under the phishing class. At last,
on fold-5, the ODAE-WPDC methodology recognizes 4846 samples under the legitimate
class and 6129 samples under the phishing class.
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Table 2 and Figure 4 illustrate a brief classification result of the ODAE-WPDC approach
under varying folds. The experimental outcomes indicate that the ODAE-WPDC model
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has resulted in maximum performance under all folds. For sample, with fold-1, the ODAE-
WPDC model offers an average accuy of 98.44%, precn of 98.41%, recal of 98.42%, Fscore
of 98.41%, and Jindex of 96.88%. Simultaneously, with fold-2, the ODAE-WPDC approach
has an accessible average accuy of 99%, precn of 99.01%, recal of 98.97%, Fscore of 98.99%,
and Jindex of 98%. Concurrently, with fold-3, the ODAE-WPDC method has an obtainable
average accuy of 99.20%, precn of 99.23%, recal of 99.16%, Fscore of 99.19%, and Jindex of
98.40%. Along with that, with fold-4, the ODAE-WPDC system presents an average accuy
of 99.18%, precn of 99.21%, recal of 99.13%, Fscore of 99.17%, and Jindex of 98.34%. At last,
with fold-5, the ODAE-WPDC approach has an obtainable average accuy of 99.28%, precn
of 99.29%, recal of 99.24%, Fscore of 99.27%, and Jindex of 98.54%.

Table 2. Result analysis of ODAE-WPDC approach with various measures and folds.

Class Labels Accuracy Precision Recall F-Score Jaccard
Index

Fold 1

legitimate 98.44 98.15 98.33 98.24 96.53
phishing 98.44 98.67 98.52 98.59 97.23

Average 98.44 98.41 98.42 98.41 96.88

Fold 2

legitimate 99.00 99.06 98.69 98.88 97.78
phishing 99.00 98.96 99.25 99.11 98.23

Average 99.00 99.01 98.97 98.99 98.00

Fold 3

legitimate 99.20 99.40 98.80 99.10 98.21
phishing 99.20 99.05 99.53 99.29 98.58

Average 99.20 99.23 99.16 99.19 98.40

Fold 4

legitimate 99.18 99.46 98.67 99.07 98.15
phishing 99.18 98.95 99.58 99.26 98.54

Average 99.18 99.21 99.13 99.17 98.34

Fold 5

legitimate 99.28 99.43 98.94 99.18 98.38
phishing 99.28 99.16 99.55 99.35 98.71

Average 99.28 99.29 99.24 99.27 98.54

Figure 5 provides an average accuy inspection of the ODAE-WPDC methodology
under distinct folds. The figure implies that the ODAE-WPDC model has gained effectual
outcomes under every fold. For instance, with fold-1, the ODAE-WPDC model has obtained
an average accuy of 98.44%. Additionally, with fold-2, the ODAE-WPDC approach has
reached an average accuy of 99%. With fold-3, the ODAE-WPDC system has attained an
average accuy of 99.20%. In addition, with fold-4, the ODAE-WPDC approach has obtained
an average accuy of 99.18%. At last, with fold-5, the ODAE-WPDC methodology has gained
an average accuy of 99.28%.
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Figure 5. Average accuracy analysis of ODAE-WPDC approach with distinct folds.

The training accuracy (TA) and validation accuracy (VA) attained by the ODAE-WPDC
system on test dataset is demonstrated in Figure 6. The experimental outcomes imply that
the ODAE-WPDC algorithm has gained maximal values of TA and VA. Specifically, the VA
seems to be higher than TA.
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Figure 6. TA and VA analysis of ODAE-WPDC approach.

The training loss (TL) and validation loss (VL) achieved by the ODAE-WPDC approach
on test dataset are established in Figure 7. The experimental outcomes infer that the ODAE-
WPDC system has accomplished the least values of TL and VL. Specifically, the VL seems
to be lower than TL.
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Finally, a detailed comparative study of the algorithm with other algorithms on WS
phishing detection is given in Table 3 [28,29]. The experimental findings state that the
ODAE-WPDC methodology has gained maximal performance over the other models.

Table 3. Comparative analysis of ODAE-WPDC approach with recent algorithms.

Methods Accuracy Precision Recall F-Score

ODAE-WPDC 99.28 99.29 99.24 99.27
DL-SGD 94.64 94.97 95.17 94.50

DL-RMSProp 92.84 93.77 95.34 95.52
DL-Adam 94.69 94.87 95.93 95.27

SI-BBA 94.93 94.59 94.84 94.78
PDGAN 94.12 94.96 94.02 92.21

NIOSELM 93.40 94.65 94.66 90.86
MLP-SL 87.80 88.75 87.41 74.75
SVM-SL 83.37 87.22 88.54 75.21

Figure 8 illustrates a comparative precn and recal inspection of the ODAE-WPDC
system with recent models. The figure implies that the ODAE-WPDC approach has
resulted in enhanced performance in terms of precn and recal . With regard to precn, the
ODAE-WPDC system has obtained improved precn of 99.29%, whereas the DL-SGD, DL-
RMSProp, DL-Adam, SI-BBA, PDGAN, and NIOSELM models have gained precn of 94.97%,
93.77%, 94.87%, 94.59%, 94.96%, and 94.65%, respectively. In addition, in terms of recal ,
the ODAE-WPDC model has obtained higher recal of 99.24% whereas the DL-SGD, DL-
RMSProp, DL-Adam, SI-BBA, PDGAN, and NIOSELM methods have achieved recal of
95.17%, 95.34%, 95.93%, 94.84%, 94.02%, and 94.66%, correspondingly.
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Figure 9 showcases a comparative accuy and Fscore examination of the ODAE-WPDC
methodology with recent techniques. The figure exposes that the ODAE-WPDC system
has resulted in enhanced performance with regard to accuy and Fscore. Interms of accuy,
the ODAE-WPDC system has obtained enhanced accuy of 99.28%, whereas the DL-SGD,
DL-RMSProp, DL-Adam, SI-BBA, PDGAN, and NIOSELM algorithms have reached accuy
of 94.64%, 92.84%, 94.69%, 94.93%, 94.12%, and 93.40%, correspondingly. With regard to
Fscore, the ODAE-WPDC system has obtained higher Fscore of 99.27%, whereas the DL-SGD,
DL-RMSProp, DL-Adam, SI-BBA, PDGAN, and NIOSELM systems have reached Fscore of
94.50%, 95.52%, 95.27%, 94.78%, 92.21%, and 90.86%, correspondingly.
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From the detailed results and discussion, it is clear that the ODAE-WPDC model has
shown effectual phishing WS detection and classification performance.

5. Conclusions

In this study, a novel ODAE-WPDC model was introduced for the recognition and
classification of WS phishing to accomplish cybersecurity. At the primary stage, the
proposed ODAE-WPDC model applies input data pre-processing at the initial stage to
get rid of missing values in the dataset. This is followed by feature extraction, and the
AAA based FS process is utilized. Finally, the IWO with the DAE model is applied for the
classification process, where the IWO algorithm assists in attaining maximum outcome.
The performance validation of the ODAE-WPDC model is tested utilizing the benchmark
Kaggle repository. The experimental findings confirm the better performance of the ODAE-
WPDC model over recent DL models. Thus, the presented ODAE-WPDC model can be
utilized for security in the digital era. In future, the presented ODAE-WPDC model can be
extended to the design of a weighted ensemble voting process.
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6. Limitations and Future Scope

In future, we would like to verify the performance of the proposed model on other
datasets and experiments with more novel features and their influence. A major drawback
of our model is that it cannot identify whether the URL is active or not; therefore, it is
essential to verify whether the URL is active or not before detection for ensuring the
detection performance. At the same time, the computational complexity of the proposed
model can be analyzed in future. Additionally, few attackers utilize URLs that are not
impersonations of other websites, and such URLs will not be identified. In addition, the
robust nature of the proposed model can be tested against adversarial attacks which are
commonly utilized by malicious parties. In the future, we plan to exploit novel models for
automatic extraction of other features to detect phishing sites, such as web code features,
web text features, and web icon features.
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