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Abstract: Wake steering control can significantly improve the overall power production of wind farms.
However, it also increases fatigue damage on downstream wind turbines. Therefore, optimizing
fatigue loads in wake steering control has become a hot research topic. Accurately predicting farm
fatigue loads has always been challenging. The current interpolation method for farm-level fatigue
loads estimation is also known as the look-up table (LUT) method. However, the LUT method is less
accurate because it is challenging to map the highly nonlinear characteristics of fatigue load. This
paper proposes a machine-learning algorithm based on the Gaussian process (GP) to predict the farm-
level fatigue load under yaw misalignment. Firstly, a series of simulations with yaw misalignment
were designed to obtain the original load data, which considered the wake interaction between
turbines. Secondly, the rainflow counting and Palmgren miner rules were introduced to transfer
the original load to damage equivalent load. Finally, the GP model trained by inputs and outputs
predicts the fatigue load. GP has more accurate predictions because it is suitable for mapping the
nonlinear between fatigue load and yaw misalignment. The case study shows that compared to LUT,
the accuracy of GP improves by 17% (RMSE) and 0.6% (MAE) at the blade root edgewise moment
and 51.87% (RMSE) and 1.78% (MAE) at the blade root flapwise moment.

Keywords: machine learning; Gaussian process; damage equivalent load

1. Introduction

Wind farm owners schedule turbine layouts more and more tightly for higher profits.
Unfortunately, this tight layout has a more pronounced wake effect, which leads to more
power loss. Therefore, active wake control (AWC) is introduced to reduce the power
loss caused by wake [1]. AWC can be implemented in two ways. One is wake steering
control (WSC), which reduces the wake effect on the downstream turbine by deflecting
the wake propagation direction through yaw misalignment [2]. The other is axial induced
control (AIC), which reduces the wind energy capture of the upstream turbine by adjusting
the generator speed and pitch angle [3]. The wake steering control has been proven to
improve power production more than axial induction control in large eddy simulation
(LES) simulation [4], wind tunnel [5], and field tests [6]. Moreover, the new research proved
that WSC also affects the fatigue load on the downstream turbine, reducing turbine service
life [7]. Consequently, recent developments in AWC have heightened the need for fatigue
loads prediction.

Most studies have focused on fatigue load estimation at the turbine level, which
did not consider the effects of yaw misalignment and wake interaction between turbines.
Schröder et al. [8] proposed an artificial neural network (ANN) model to improve the
prediction accuracy of fatigue load in a single turbine. Compared with the polynomial
chaos expansion (PCE) model [9], the ANN model shows lower NRMS error, faster eval-
uation time, and small sample adaptability. However, the effect of wake features is not
considered in this paper. Similar work such as Singh’s [10] research uses chained Gaussian
processes to provide probabilistic predictions, which is valuable for robust control [11,12].
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Ervin Bossanyi [13] performed a study surrogate model for turbine loads in two-turbine
farms. This surrogate model added different wind and control factors to the steady wind.
The limitation of this paper is the accuracy of influence factors, which may differ in complex
layouts. Georgios [14] applied the regression method to map the relationship between
the load and de-rating control strategy. This method can estimate the short-term fatigue
load. However, it does not consider the effect of yaw control. Finally, a multi-dimensional
look-up table was proposed to predict the farm load in [15]. This method obtains the load
prediction from interpolation, significantly reducing the computational time. However,
with the increase in wind farms, this method will be time-consuming and inaccurate. Some
studies have considered the balance between wind farm power generation and load [16,17].
Nevertheless, these studies rely on computational fluid dynamics models, which have
unaffordable computing time.

In summary, the fatigue load prediction for wake steering control must have the
following properties:

• Running fast: The fatigue load predictions will be used in the optimization loop.
Therefore, the computational time must be as short as possible.

• Nonlinear mapping capability: The ambient wind and wake interaction influence the
fatigue loads. Thus, a complex nonlinear relationship exists between fatigue load and
ambient wind and wake interaction.

• Considering wake interaction: The load of the downstream turbine is influenced
by the upstream turbine’s wake effects, including partial wake, wake meandering,
and wake superposition.

• Considering wake deflection: The wake deflection affects the load as it changes
the wake propagation direction by yaw misalignment, so wake deflection must
be considered.

Considering the above objectives, machine learning and artificial intelligence, such as
SVM [18], GP [10], and DNN [19], are suitable for predicting the fatigue load because they
can achieve the above goals at the same time.

This paper proposes a machine learning model based on GP to predict fatigue loads un-
der yaw misalignment. Firstly, a series of mid-fidelity simulations based on FAST.Farm [20]
with yaw misalignment were designed to obtain the original load data, which considered
the wake interaction between turbines. Secondly, the rainflow counting and Palmgren
miner rules were introduced to transfer the original load to damage equivalent load. Finally,
the GP model predicts the fatigue load after training by inputs and outputs. The main con-
tributions of this paper are as follows: (1) A mapping from ambient wind, wake interactions,
and yaw misalignment to fatigue damage at farm level; (2) the effects of yaw misalignment
on blade root edgewise moment and blade root flapwise moment were measured.

The remainder of this paper is organized as follows: Section 2 introduces the main
framework and theoretical knowledge; the GP method and evaluation metrics are intro-
duced in Section 3. Lastly, case study results and conclusions are presented in Sections 4
and 5, respectively.

2. Main Framework and Theoretical Knowledge
2.1. Main Framework

A typical machine learning process includes data collection, data preprocessing, input
and output construction, model training, and testing. The load signal is affected by many
aspects, such as wind speed (WS), wind direction (WD), turbulence intensity (TI), axial
induction factor (de-rating), and yaw angles (θ). The scope of this paper covers wind speed,
wind direction, turbulence intensity, and yaw angles.

The flow chart of the main work is shown in Figure 1. In the beginning, the simulations
are executed to obtain the original load data corresponding to the inputs. Then, the function
of fatigue modeling is to calculate outputs from the original load data. Further, the GP
model is trained by inputs and outputs. Finally, the fatigue load can be predicted by the
trained GP model.
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Figure 1. Fatigue load prediction flowchart.

2.2. Fatigue Load Modeling

The raw load data cannot visually show the equivalent damage value because it is
presented in time series. Therefore the rainflow counting (RFC) method and the Palmgren–
Miner (PM) rule were proposed to calculate damage equivalent load (DEL). The calculation
process of DEL is shown in Figure 2. The RFC converts the load signals to a series of
cycles (ni) in terms of stress amplitude(si) [21]. The PM rule combined with the S–N curve
(material properties) transforms RFC results to equivalent damage load [22].

Raw 
load 

signal

Rainflow 
counting

Stress 
range 

histogram

Palmgren 
Miner 
rules

Damage
equivalent

load
Turbine 

Figure 2. Damage equivalent load estimation procedure.

Suppose that the cycles ni and the corresponding stress amplitude si are obtained by
the rainflow counting algorithm. i is calculated automatically and different i represent
different loop amplitudes. The ratio of fatigue cycles to total life failure cycles can be
defined as damage factor di [23]:

di =
ni
Ni

(1)

where ni is cycles calculated from RFC; Ni is number of cycles to failure in terms of the
stress amplitude Si.

As shown in Figure 3, the PM rule is used to express the relationship between stress
and the number of failure cycles, which is linear in the log–log coordinate system, where m
is the Wohler exponent.

The relationship can be expressed as

Ni =

(
S0

Si

)m
(2)

Then, Equation (1) can be expressed as

di =
ni
Ni

=
niSm

i
Sm

0
(3)
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Figure 3. S–N curve : The relationship between the magnitude of alternating stress and the number
of cycles to failure for a given material.

The total damage DEL(Damage Equivalent Load) can be summed for cycles of differ-
ence amplitudes:

DEL =
1

Sm
0

∑ niSm
i (4)

For a given number of cycles neq and the corresponding amplitude Seq, the DEL can
be expressed as

neqSm
eq

Sm
0

= DEL =
1

Sm
0

∑ niSm
i (5)

Finally, when neq equals signal length in seconds, the DEL of the signal is equal to the
damage of a 1 Hz sinusoidal signal of the same length with amplitude Seq. This method
avoids the use of extreme loads.

Seq =

(
niSm

i
neq

) 1
m

(6)

3. Machine Learning Method
3.1. GP Model

The GP is an excellent machine learning model with the distribution of functions [24].
It is a random process with good adaptability to complex problems such as small samples,
nonlinearity, and high dimensionality. For a given dataset D = {(xi, yi)}n

i=1, where xi ∈ Rd

is the input data matrix, yi ∈ R is the output data matrix, given a limited set of data D,
f
(

x(1)
)

, f
(

x(2)
)

, f
(

x(3)
)

can form a set of random variables and have a joint Gaussian
distribution. All the statistical characteristics of the Gaussian process are defined by the
mean function m(x) and the covariance function k(x, x′).

f (x) ∼ GP(m(x), k(x, x′)) (7)

3.2. GP Model Prediction Procedure

Figure 4 shows the GP prediction procedure, which consists of two phases, i.e., training
and prediction. The training phase uses inputs and outputs to train the model, where
the inputs include wind speed, wind direction, TI, and yaw angles, and the outputs are
the damage equivalent loads from the fatigue load modeling. The predicted values are
obtained if the inputs and the trained model are given. For a particular load on a wind
farm with n turbines, n GP models are required.
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Figure 4. GP prediction procedure.

3.3. Evaluation Factor

The predicted fatigue loads will be used in the yaw offset optimization process. In ad-
dition, measuring the effect of yaw misalignment on the fatigue load will help decide
whether the fatigue load needs to be considered. Thus, the following metrics are defined:

RWTi = max(DELWTi(θ1, θ2, . . . , θn))−min(DELWTi(θ1, θ2, . . . , θn)) (8)

where RWTi is the max–min range of turbine i; DELWTi(θ1, θ2, . . . , θn) is the the fatigue
loads of turbine i in the whole yaw angle cases.

The root-mean-square error (RMSE) and mean absolute error (MAE) are used to
measure the accuracy of the prediction. RMSE and MAE are defined as follows [25]:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (9)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (10)

where N is the number of evaluation points, and yi and ŷi are the actual and predicted
outputs. The smaller the RMSE and MAE are, the more accurate the prediction is.
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4. Case Study

This section discusses the results of FAST.Farm simulations [20], damage equivalent
loads, and the GP prediction. The parameters of simulations are shown in the first subsection.

As a mid-fidelity simulation, FAST.Farm has a satisfactory calculation accuracy than
the low-fidelity simulation, such as FLORIS [26] , and its computational cost is lower than
the high-fidelity simulation, such as SOWFA [27]. FAST.Farm is based on an improved
dynamic wake meandering (IDWM) model, which addresses many of the limitations of the
original DWM model. The load calculation module of FAST.Farm relies on the ElastoDyn
module in Openfast to calculate the structural load, including tower, nacelle, drivetrain,
and blades.

4.1. Parameters

Wind farm simulation involves many parameters, including wind precursor, wind
turbine and farm layout, and simulation control parameters.

1. Wind precursor: A precursor is the wind data used in a simulation to generate ambient
wind. There are nine wind precursors with different wind speeds and turbulence
intensities generated by TurbSim [28]. The average wind speed (hub level), wind
direction, and turbulence intensity of precursors are shown in Table 1. A wind
precursor case is shown in Figure 5. The U, V, and W components of the wind speed
represent the horizontal, cross, and vertical directions of the wind speed in space,
respectively.

2. Turbine and layout parameters: The NREL 5 MW wind turbine is used, with a
diameter of 126 m and a nacelle height of 90 m [29]. The wind farm contains two
or three wind turbines, which are placed on a straight line, with a distance of five
times the diameter of the wind turbine. Figure 6 shows the velocity of FAST.Farm
simulation at 1900 s under precursor P7 and yaw offset (θ1 = 5 and θ2 = 0).

3. Yaw angle control strategy: The control strategy mainly focuses on yaw-based control.
Each simulation case runs at fixed yaw angles for 2000 s. The last 500 s of data are
used to calculate DELs. The range of yaw angles command in two turbine cases is
shown in Table 2. For example, in the control mode of Y1, the upstream wind turbine
WT1 of each case will move to a fixed angle (θ1), and the downstream wind turbine
will maintain an angle of 0 (θ2 = 0). Under Y2, the last turbine keeps zero yaw angles.
Moreover, the load types include blade root edgewise moment (BREM) and blade root
flapwise moment (BRFM), and their damage equivalent load values are DEL-BREM
and DEL-BRFM.

Table 1. Parameters of wind precursor.

Precursor Wind Speed (m/s) TI (%) Wind Direction
(Degree)

P1 5 5 0
P2 5 10 0
P3 5 15 0
P4 7 5 0
P5 7 10 0
P6 7 15 0
P7 9 5 0
P8 9 10 0
P9 9 15 0
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Table 2. Parameters of yaw control.

Mode Yaw Angle of Turbine 1
(Degree)

Yaw Angle of Turbine 2
(Degree)

Yaw Angle of Turbine 3
(Degree)

Y1 θ1 ∈ [−25, 25] θ1 ∈ N a θ2 = 0 -
Y2 θ1 ∈ [−30, 30] θ1 ∈ N θ2 ∈ [−30, 30] θ2 ∈ N θ3 = 0

a N is interger.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0
- 2

0

2

4

6

8

1 0

Wi
nd

spe
ed

(m
/s)

T i m e ( s )

W i n d s p e e d U c o m p o n e n t
W i n d s p e e d V c o m p o n e n t
W i n d s p e e d W c o m p o n e n t

-

Figure 5. Precursor of wind speed at 9 m/s and TI at 5% (P7).

WT2WT1

5D

Time: 1900s

Wind
direction

Figure 6. The 1900th second FAST.Farm simulation under precursor P7 and yaw offset (θ1 = 5 degree,
θ2 = 0 degree).

4.2. Fatigue Damage Results

Figure 7 shows the original load signal of BREM and its 1 Hz equivalent signal (from
fatigue damage modeling) under precursor P1. The 1 Hz equivalent signal for different
loads has a fixed frequency and a different amplitude. The amplitude represents the value
of the damage equivalent load. The figure shows that the 1 Hz equivalent signal has a
lower amplitude than the original signal at higher frequencies.

Figure 8 shows the DEL-BREM calculation results of WT1 and WT2, including sample
data and mean value. The sample data divide the original load into ten groups, and each
group calculates the damage equivalent load through the fatigue load modeling.
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Figure 7. BREM orignal load signal and its 1 Hz equivalent signal under precursor P7.
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Figure 8. DEL-BREM’s samples data and mean value in each yaw angle case.

4.3. GP Prediction Results
4.3.1. Two-Turbine Case

Figure 9 shows the predictions of LUT and GP in WT1 and WT2. In Figure 9a, the LUT
prediction looks better than GP because the fatigue load of WT1 is close to a straight
line. In contrast, the prediction of GP, Figure 9b, is more fitted to the samples than the
LUT algorithm.

Figure 10 shows the 95% confidence level probabilistic prediction results from GP,
which proves the predictions covered 9% of the samples.
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Figure 9. Prediction of normalized DEL-BREM by LUT and GP under yaw control mode Y1 and
wind precursor P1.

-30 -20 -10 0 10 20 30

0.52

0.58

0.64

0.70

0.76

0.82

0.87

0.93

0.99

1.05

 Samples
 GP
 95% Confidence interval

N
or

m
al

iz
ed

 d
am

ag
e 

eq
ui

va
le

nt
 lo

ad

Yaw angle of turbine 1 (degree)

Figure 10. Probabilistic prediction of normalized DEL-BREM by GP under yaw control mode Y1 and
wind precursor P1.

Tables 3 and 4 demonstrate the RMSE errors of BREM on WT2 for different wind
speeds and turbulence intensities. Table 3 shows that the prediction errors of LUT and GP
become more significant as the wind speed increases, from 22.69% to 50.09% for LUT and
from 5.45% to 15.19% for GP. However, the prediction accuracy of GP increases with wind
speed compared to LUT, from 17.24% to 34.90%. On the contrary, Table 4 shows that the
prediction error decreases with the increase of turbulence intensity. The TI increases from
5% to 15%, the LUT prediction error decreases from 22.69% to 7.56%, and the GP decreases
by about 2.5%. The improvement of GP relative to LUT prediction also decreases gradually.

In conclusion, the prediction error of GP increases with the wind speed and de-
creases with the increase of turbulence intensity. Similar conclusions can be obtained from
Tables 5 and 6.
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Table 3. RMSE error of blade root edgewise moment.

DEL Precursor Wind Speed LUT GP Improvement
m/s RMSE/% RMSE/% RMSE/%

BREM
P1 5 22.69 5.45 17.24
P4 7 35.58 9.53 26.05
P7 9 50.09 15.19 34.90

Table 4. RMSE error of blade root edgewise moment.

DEL Precursor TI LUT GP Improvement
/% RMSE/% RMSE/% RMSE/%

BREM
P1 5% 22.69 5.45 17.24
P2 10% 15.07 5.48 9.59
P3 15% 7.56 2.95 4.61

Table 5. RMSE error of blade root flapwise moment.

DEL Precursor Wind Speed LUT GP Improvement
m/s RMSE/% RMSE/% RMSE/%

BREM
P1 5 48.88 9.21 39.67
P4 7 164.16 43.13 121.03
P7 9 370.03 99.20 274.83

Table 6. RMSE error of blade root flapwise moment.

DEL Precursor TI LUT GP Improvement
/% RMSE/% RMSE/% RMSE/%

BREM
P1 5% 48.88 9.21 39.67
P2 10% 36.88 10.36 26.52
P3 15% 18.09 1.51 16.58

4.3.2. Three-Turbine Case

Figures 11 and 12 show the BREM and BRFM sample data on normalized damage
equivalent loads in three turbines. For this case, the wind speed, turbulence intensity,
and direction are 9 m/s, 5%, and 0 degrees. The axis scales of the four subplots are the
same. The obtained fatigue load is normalized for visual expression by dividing a fixed
value. The obtained fatigue load is normalized for visual expression by dividing a fixed
value. The fixed values, in this case, take the fatigue load of the first turbine under the yaw
offset [0, 0, 0].

Remark 1. The first-row turbine’s damage equivalent load in blade root edgewise moment is
less affected by yaw misalignment, while the second- and third-row turbines are more affected by
yaw misalignment.

As shown in Figure 11, the normalized BREM-DELs of WT1 remain essentially con-
stant, which proves that the BREM-DELs in the first row of turbines are less affected by yaw
misalignment. In contrast, the yaw misalignment affects the BREM-DELs of the second
and third rows of turbines because the BREM-DELs curves of WT2 and WT3 vary with
yaw angles.
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Figure 11. Blade root edgewise moment samples of normalized damage equivalent load under 9 m/s
wind speed and 5% turbulence intensity. The damage equivalent load of turbine 1 under zero yaw
offset case equals 1. The same axis scale is used in the four sub-pictures.

Remark 2. The damage equivalent load in blade root flapwise moment is affected in all turbines.

As shown in Figure 12, the normalized BRFM-DELs of WT1 stay constant when
the yaw angle of WT2 changes. However, this changes with the yaw angle of WT1.
Regarding WT2 and WT3, the normalized BRFM-DELs vary with WT1 and WT2 yaw angles.
Although all three turbines are affected by yaw misalignment, the influencing factors differ.
Specifically, the fatigue load of WT1 is affected by its yaw deflection. In addition, WT2 is
affected by WT1 wake and its yaw deflection. WT3, on the other hand, is affected by the
mixed wake of WT1 and WT2 since the yaw angle of WT3 is zero.

Figure 13 displays the max–min range (defined in Equation (8)) of normalized fatigue
load . Figure 13a is blade root edgewise moment, and Figure 13b is blade root flapwise
moment. In Figure 13a, the max–min range of WT1 is 2%, meaning the first row of turbines
is almost unaffected by its yaw misalignment. On the other hand, the max–min range of
WT2 and WT3 is 32% and 33% when the yaw misalignment is active. From Figure 13b, all
turbines’ blade root flapwise moments are affected by the yaw misalignment. The max–min
ranges of WT1, WT2, and WT3 are 38%, 100%, and 75%, respectively. Thus, the above
results confirmed the observations from Figures 11 and 12 (Remarks 1 and 2).
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Figure 14 presents the fatigue load of blade root edgewise moment under GP and LUT.
As shown in Figure 14a,d,g, LUT predictions in WT1 are close to the samples. However,
GP predictions are more partially fitted to the samples than LUT in Figure 14b,c,e,f,h,i.
A similar trend can be seen in Figure 15.
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Figure 14. Prediction of normalized damage equivalent load at blade root edgewise moment under
9 m/s wind speed and 5% turbulence intensity.

Remark 3. The higher the nonlinearity of the fatigue load, the smaller the GP prediction error
compared to LUT.

From the previous analysis, it was concluded that the wake of the upstream turbine
influences the downstream turbine fatigue load and that the nonlinearity of this influence
becomes stronger as the number of upstream turbines increases. Figures 16 and 17 show
the errors of LUT and GP methods in three turbines.
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Figure 15. Prediction of normalized damage equivalent load at blade root flapwise moment under
9 m/s wind speed and 5% turbulence intensity.

Figures 16 and 17 show the errors of LUT and GP methods in three turbines. In both
pictures, the prediction error increases from WT1 to WT3. Specifically, RMSE increased
from 0 to 21.12% in Figures 16 and rose from 0 to 43.96% in Figures 17. A similar trend can be
seen in MAE error. However, there are differences between the two pictures. For example,
WT1 and WT2 have minor prediction errors lower than 1.2% on RMSE and 0.2% on MAE
in Figures 16. In contrast, Figure 17 shows a more significant error of up to 22.46% on
RMSE in WT2. The reason is that WT1 has weak nonlinear characteristics on BREM-DEL
and BRFM-DEL, and WT2 only has weak nonlinear characteristics on BREM-DEL. LUT
is more suitable for mapping the weak nonlinear characteristics between the fatigue load
and yaw angles. For example, Figures 16 and 17 show that LUT has a zero error in WT1,
compared to a slight error in GP, with nearly 1% RMSE and 0.1 MAE. Compared to LUT,
GP is suitable for the nonlinear dataset. As shown in Figure 16, GP has a 5.18% RMSE and
0.99% MAE error, compared to 21.12% and 1.63% in LUT. Similarly, GP shows lower errors
in Figure 17. The RMSE in GP is 6.99% (WT2) and 6.48% (WT3), compared to 22.46% (WT2)
and 43.96%(WT3) in LUT. The same trend can be seen in MAE. In summary, the prediction
accuracy of GP improved by 13.99% (RMSE) and 0.54% (MAE) at the blade root edgewise
moment and 51.87% (RMSE) and 1.78% (MAE) at the blade root flapwise moment.
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5. Conclusions

This paper introduces a GP-based machine learning model to predict the damage
equivalent load under yaw misalignment. This model considers the nonlinear relationship
between fatigue load and yaw misalignment, which solves the problem of inaccurate
prediction by LUT. The nonlinearity between the fatigue load and yaw misalignment
strengthens with the increase of turbine depth (row number in the downstream direction);
however, the sensitivity of the fatigue load to turbine depth is different. For example, in the
three-turbine case, the damage of the blade root edgewise moment is very little affected
by its yaw deflection, with a max–min range of 2% for the first row of turbines. However,
as turbine depth increases, the max–min range increases to 32% (WT2) and 33% (WT3).
The difference with the above load is that the blade root flapwise moment of the first row of
turbines is influenced by 38%. As the turbine depth increases, the max–min range increases
to 100% and 75%. Compared to the LUT algorithm, GP has a more accurate prediction
of fatigue loads. For example, in the three-turbine case, the prediction accuracy of GP
improved by 13.99% (RMSE) and 0.54% (MAE) at the blade root edgewise moment and
51.87% (RMSE) and 1.78% (MAE) at the blade root flapwise moment.

In the future, the wake steering control strategy will be optimized by farm-level fatigue
load prediction and farm power prediction, thus enabling the wake steering control to
balance power generation and turbine lifetime. Further, wake steering control will be
combined with independent pitch control to reduce wind farm loads.
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The following abbreviations are used in this manuscript:

WT Wind turbine
WT1 Wind turbine 1
WT2 Wind turbine 2
WT3 Wind turbine 3
LUT Look-up table
GP Gaussion process
DELs Damage equivalent loads
RMSE Root-mean-square error
MAE Mean absolute error
BREM Blade root edgewise moment
BRFM Blade root flapwise moment
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