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Abstract: 3D shape clustering is developing into an important research subject with the wide ap-
plications of 3D shapes in computer vision and multimedia fields. Since 3D shapes generally take
on various modalities, how to comprehensively exploit the multi-modal properties to boost clus-
tering performance has become a key issue for the 3D shape clustering task. Taking into account
the advantages of multiple views and point clouds, this paper proposes the first multi-modal 3D
shape clustering method, named the dual contrastive learning network (DCL-Net), to discover the
clustering partitions of unlabeled 3D shapes. First, by simultaneously performing cross-view con-
trastive learning within multi-view modality and cross-modal contrastive learning between the point
cloud and multi-view modalities in the representation space, a representation-level dual contrastive
learning module is developed, which aims to capture discriminative 3D shape features for clustering.
Meanwhile, an assignment-level dual contrastive learning module is designed by further ensuring the
consistency of clustering assignments within the multi-view modality, as well as between the point
cloud and multi-view modalities, thus obtaining more compact clustering partitions. Experiments on
two commonly used 3D shape benchmarks demonstrate the effectiveness of the proposed DCL-Net.

Keywords: multi-modal clustering; unsupervised learning; 3D shapes; contrastive learning

1. Introduction

With the development of 3D scanning and modeling technology, 3D shapes have
been widely employed in various applications of computer vision and multimedia fields,
such as 3D printing, model retrieval, augmented reality, etc. [1–3]. How to effectively
analyze large numbers of 3D shapes has become a research hot spot. In recent years, owing
to the advanced development of deep learning, a series of deep 3D shape classification
methods [4–6] have obtained satisfactory results. However, the success of deep neural
networks critically relies on large-scale human-annotated data [7–9], which requires a
laborious data annotation procedure. Under these circumstances, clustering has received
increasing attention due to its powerful ability to divide massive amounts of unlabeled
data [10,11]. Exploring effective 3D shape clustering methods has become a promising
approach to overcome the above obstacle.

In practical application scenarios, 3D shapes are generally represented by different
modalities due to the diversity of acquisition devices. As two popular 3D modalities, point
clouds and multiple views are produced by 3D scanners and RGB cameras respectively,
which have the advantages of flexible acquisition and low costs [12]. Specifically, point
clouds describe 3D shapes with a series of disordered points, and the positional arrange-
ment of those points preserves the spatial geometry of the 3D shapes [13]. Different from
point clouds, multiple views are formed by a series of 2D images corresponding to different
camera angles [14,15]. They contain rich visual information of 3D shapes, such as texture
and color [16]. Since point clouds and multiple views describe 3D shapes from different
perspectives, effectively exploiting the multi-modal properties is conducive to capturing
more discriminative descriptions of 3D shapes and better revealing compact 3D shape
clustering partitions.
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Recently, contrastive learning has shown great success in unsupervised representa-
tion learning [17]. The core idea of contrastive learning is to maximize the representation
similarities of positives while minimizing those of negatives, thus capturing more effec-
tive representations of data. Driven by this, some unsupervised 3D shape representation
learning methods [18,19] successfully extract better cross-modal 3D shape representations
by performing contrastive learning among different 3D modalities. However, since the
above methods lack clustering-oriented learning objectives, the performance is usually
limited when directly applying traditional clustering algorithms to the learned representa-
tions. In order to learn cross-modal representations that are suitable for clustering, several
previous works [20,21] have integrated contrastive learning into multi-modal clustering
for text and image data. By maximizing the similarities among the representations or
the clustering assignments of different modalities in a contrastive learning manner, these
methods have achieved encouraging results. Nonetheless, no existing work has focused on
the multi-modal 3D shape clustering task. For the point clouds and multiple views of 3D
shapes, in addition to the inter-modal correlations, different views within the multi-view
modality also describe different local appearances of 3D shapes from particular angles.
Therefore, how to jointly explore the inter-view correlations within the multi-view modal-
ity and the inter-modal correlations between the point cloud and multi-view modalities
during the learning procedure of contrastive clustering remains a challenging issue for the
multi-modal 3D shape clustering task.

To address the above issue, this paper proposes a dual contrastive learning network
(DCL-Net) for multi-modal 3D shape clustering. The key motivation behind our design
involved two aspects. Firstly, as for a 3D shape, different views within multi-view modality
contain diverse appearances from different perspectives. Meanwhile, point cloud and
multi-view modalities mainly focus on the geometric and visual information about 3D
shapes, respectively. Simultaneously exploring the cross-view consistent representations of
different views, as well as the cross-modal consistent representations of point cloud and
multi-view modalities, contributes to obtaining more discriminative 3D shape descriptions.
Secondly, different views within the multi-view modality and the corresponding point
cloud of the same 3D shape all share consistent semantics. In addition to learning consistent
representations, exploring the cross-view and cross-modal consistent clustering assign-
ments is beneficial to boosting the robustness of the 3D shape features for clustering, thus
further enhancing the compactness of clustering partitions. Therefore, by simultaneously
performing cross-view contrastive learning within multi-view modality and cross-modal
contrastive learning between point cloud and multi-view modalities at both the represen-
tation and clustering assignment levels, a representation-level dual contrastive learning
module and an assignment-level dual contrastive learning module were developed in the
proposed method. The key contributions of this paper are as follows:

(1) A dual contrastive learning network for multi-modal 3D shape clustering is proposed
to discover the underlying clustering partitions of unlabeled 3D shapes. To the best of
our knowledge, this is the first deep multi-modal 3D shape clustering method;

(2) By simultaneously ensuring the representation consistency within multi-view modal-
ity and between point cloud and multi-view modalities, a representation-level dual
contrastive learning module is proposed to capture discriminative 3D shape features
for clustering;

(3) To further boost the compactness of clustering partitions, an assignment-level dual
contrastive learning module is proposed to simultaneously capture consistent clus-
tering assignments within multi-view modality and between point cloud and multi-
view modalities;

(4) Experimental results on two widely used 3D shape benchmark datasets are presented
to demonstrate the superior clustering performance of the proposed DCL-Net.

The remaining of this paper is organized as follows. Section 2 briefly describes the three
aspects of current research that are the most relevant to the proposed method. Section 3
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introduces the proposed DCL-Net in detail. Section 4 presents a series of experimental
results and analyses. In Section 5, the conclusion is summarized.

2. Related Works
2.1. Unsupervised 3D Shape Feature Learning

Due to the rapid growth of 3D shapes, significant progress has been made in unsu-
pervised 3D shape feature learning. Many research works [22–28] have been proposed to
learn 3D shape features from various 3D modalities, such as multiple views, point clouds,
meshes, and voxels. For instance, Zhao et al. [23] proposed an autoencoder-based 3D point
capsule network to extract 3D shape features via point cloud reconstruction. The method
in [26] extracted structure-preserving 3D shape features by effectively encoding the local
geometry structures of 3D meshes. Han et al. [28] proposed a recurrent neural network
(RNN) architecture to learn global 3D features via the multiple view inter-prediction task.
Furthermore, considering the multi-modal characteristics of 3D shapes, several cross-modal
learning methods [18,19,29,30] have been proposed to boost the quality of 3D shape features
by adequately exploiting information from different modalities. For example, Wu et al. [29]
proposed a 3D generative adversarial network to capture 3D shape features by reconstruct-
ing 3D voxels from 2D images. Girdhar et al. [30] introduced a view encoder into the voxel
autoencoder network to learn robust 3D shape features based on image-to-voxel generation.
Nonetheless, the above methods are not oriented toward clustering tasks, thus it is difficult
to ensure that the learned features are suitable for clustering.

2.2. Deep Multi-Modal Clustering

Multi-modal clustering aims to capture consistent underlying category partitions
from multi-modal inputs, such as text [31], images [32], videos [33–35], etc. Due to
the powerful feature extraction capability of deep neural networks [36,37], a number
of deep multi-modal clustering methods [38–42] have been proposed over recent years.
Ngiam et al. [38] introduced a deep autoencoder network to extract consistent representa-
tions across different modalities and obtained promising results in speech and vision tasks.
Andrew et al. [39] adopted deep canonical correlation analysis (DCCA) to learn cross-modal
consistent representations by maximizing the correlations between multi-modal features.
Abavisani et al. [40] utilized multiple parallel autoencoders and a shared self-expression
layer [43] to capture a joint cross-modal affinity matrix for clustering. The method in [42]
adopted deep autoencoders to explore multi-modal shared representation while intro-
ducing adversarial training to disentangle the latent space. Zhou et al. [43] designed an
adversarial network with an attention mechanism to learn cross-modal consistent repre-
sentations for clustering. In summary, the current deep multi-modal clustering methods
have made remarkable progress. However, the existing works have not focused on the
multi-modal 3D shape clustering task. How to sufficiently exploit the advantages of deep
learning to design an effective multi-modal 3D shape clustering method still needs to be
further investigated.

2.3. Contrastive Learning

As a powerful approach to unsupervised representation learning, contrastive learning
has attracted increasing amounts of research attention and several contrastive learning-
based works [44–48] have recently emerged. He et al. [45] proposed a momentum con-
trastive method to facilitate unsupervised representation learning by regarding contrastive
learning as a dictionary lookup and building a dynamic dictionary. Chen et al. [46] effec-
tively simplified the framework in [47] by adopting a Siamese network with a prediction
head while introducing powerful data augmentations to boost the quality of the learned
features. Tian et al. [48] employed two asymmetric networks with an interactive prediction
mechanism to learn image representations and avoided model collapse without negative
samples. Motivated by the success of contrastive learning in unsupervised representation
learning, several methods [20,21,49] have applied contrastive learning to multi-modal learn-
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ing tasks. For example, Xu et al. [20] explored the common semantics of different modalities
using feature contrastive learning and label contrastive learning. Trosten et al. [21] intro-
duced contrastive learning to align multi-modal representations and achieved effective
improvements in clustering performance. Although the above methods have achieved
promising results, the existing explorations of multi-modal contrastive clustering have
mainly focused on text- and image-related tasks. In contrast, this paper effectively utilizes
the characteristics of multiple views and point clouds, and delivers a novel contrastive
learning-based multi-modal 3D shape clustering method.

3. The Proposed Method
3.1. Architecture of DCL-Net

The overview architecture of the proposed DCL-Net is illustrated in Figure 1. Let
D = {Iv

i , Pi}v=1...V
i=1...N denote a 3D shape dataset with N shapes, where Iv

i denotes the v-th
view in the multiple views of the i-th 3D shape and Pi denotes the corresponding point
cloud of the i-th 3D shape. As shown in the figure, the proposed DCL-Net includes a
multi-modal feature extractor, a representation-level dual contrastive learning (RDCL)
module, and an assignment-level dual contrastive learning (ADCL) module. Taking two
views from different angles and the corresponding point cloud as inputs, the multi-modal
feature extractor was adopted to extract the view and point cloud features. Afterward,
the RDCL module was designed to capture more discriminative 3D shape features by
simultaneously applying cross-view contrastive learning within the multi-view modality
and cross-modal contrastive learning between the point cloud and multi-view modalities
in the representation space. Moreover, by effectively applying cross-view and cross-modal
contrastive learning to the clustering assignments, the ADCL module was designed to en-
sure clustering assignment consistency among different views and the corresponding point
cloud, thus further boosting the 3D shape clustering performance. Finally, the clustering
results are obtained from the soft labels predicted by the ADCL module.

Figure 1. The architecture of the proposed DCL-Net for multi-modal 3D shape clustering.

3.2. Representation-Level Dual Contrastive Learning

For each 3D shape, different views within the multi-view modality and the corre-
sponding point cloud share consistent semantics while containing complementary 3D
shape information across both views and modalities. Simultaneously performing cross-
view contrastive learning within multi-view modality and cross-modal contrastive learning
between point cloud and multi-view modalities for consistent representation is conducive
to capturing more discriminative 3D shape information from a comprehensive under-
standing of 3D shapes. To this end, an RDCL module that adopts both cross-view and
cross-modal contrastive representation learning was developed to capture discriminative
3D shape features for clustering.
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First, for the i-th 3D shape in a given mini-batch D = {Iv
i , Pi}v=1...V

i=1...n of size n, two views
{Iv1

i , Iv2
i } from different angles in the multiple views and the corresponding point cloud Pi

are selected as the inputs for the network. Among them, Iv1
i and Iv2

i are arbitrarily chosen
from the V views, thereby providing more cross-view and cross-modal combinations for
the network learning. After that, to capture latent 3D shape features from the inputs
{Iv1

i , Iv2
i , Pi}, a three-branch multi-modal feature extractor including a shared view encoder

fθI (·) and a point cloud encoder fθP(·) is employed. The shared view encoder maps Iv1
i

and Iv2
i into the view features Fv1

i and Fv2
i respectively, while the point cloud encoder is

responsible for mapping Pi into the point cloud feature Fp
i . The mapping processes are

calculated as follows:
Fv1

i = fθI (Iv1
i ), (1)

Fv2
i = fθI (Iv2

i ), (2)

Fp
i = fθP(Pi), (3)

where θI and θP denote the parameters of the view encoder and the point cloud en-
coder, respectively.

Afterward, to effectively ensure the discrimination of the learned 3D shape features,
a representation projection head gφ(·) is adopted in the RDCL module to further project
the learned features into the representation space:

Zv1
i = gφ(Fv1

i ), (4)

Zv2
i = gφ(Fv2

i ), (5)

Zp
i = gφ(Fp

i ). (6)

Considering the semantic consistency among different views and the corresponding
point cloud, multiple view representations and the point cloud representation of the
same 3D shape should maintain higher similarities than those of different 3D shapes.
Therefore, the view representations and point cloud representation of the same 3D shape
need to be taken as positives to be pulled together, while those of different 3D shapes need
to be regarded as negatives to be pushed apart. In view of this, a representation-level
cross-view contrastive loss LRCV and a representation-level cross-modal contrastive loss
LRCM are simultaneously applied to the representation space to ensure both the cross-
view representation consistency within the multi-view modality and the cross-modal
representation consistency between the point cloud and multi-view modalities.

Specifically, the representation-level cross-view contrastive loss for the input view Iv1
i

is calculated as follows:

Lv1
RCVi

= − log
exp(s(Zv1

i , Zv2
i )/τR)

n
∑

j=1
[exp(s(Zv1

i , Zv1
j )/τR) + exp(s(Zv1

i , Zv2
j )/τR)]

, (7)

where τR is the representation-level temperature parameter and is generally set to 0.5.
s(Zv1

i , Zv2
i ) denotes the pair-wise cosine similarity between Zv1

i and Zv2
i , which is calculated

by s(Zv1
i , Zv2

i ) =
(Z

v1
i ,Zv2

i )T∥∥∥Z
v1
i ,Zv2

i

∥∥∥ . By computing the representation-level cross-view contrastive

loss for each arbitrarily chosen view in the mini-batch, LRCV can be expressed in the form of:

LRCV =
1

2n

n

∑
i=1

(Lv1
RCVi

+ Lv2
RCVi

). (8)
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Similarly, the representation-level cross-modal contrastive loss for the view Iv1
i is

calculated as follows:

Lv1
RCM1i

= − log
exp(s(Zv1

i , Zp
i )/τR)

n
∑

j=1
[exp(s(Zv1

i , Zv1
j )/τR) + exp(s(Zv1

i , Zp
j )/τR)]

. (9)

Note that, to avoid the bias of the point cloud representation toward a particular view,
the cross-modal contrastive loss for the i-th shape is calculated between Zp

i and Zv1
i and

between Zp
i and Zv2

i , which are denoted as LRCM1i and LRCM2i , respectively. Therefore,
the representation-level cross-modal contrastive loss LRCM is calculated as follows:

LRCM =
1

2n

n

∑
i=1

(Lv1
RCM1i

+ Lp
RCM1i

+ Lv2
RCM2i

+ Lp
RCM2i

). (10)

By combining LRCV and LRCM, the overall loss of the RDCL module is expressed as:

LRDCL = LRCV + LRCM. (11)

Under the constraint of the representation-level dual contrastive loss LRDCL, the net-
work is encouraged to distinguish different 3D shapes according to the cross-modal and
cross-view consistent representations, thus effectively promoting the discrimination of the
extracted 3D shape features for clustering.

3.3. Assignment-Level Dual Contrastive Learning

The ADCL module was designed to simultaneously ensure cross-view clustering
assignment consistency within the multi-view modality and cross-modal clustering assign-
ment consistency between the point cloud and multi-view modalities, thus further boosting
the compactness of the learned 3D shape features for clustering. Specifically, for the ex-
tracted view and point cloud features Fv1

i , Fv2
i , and Fp

i of the i-th 3D shape, the ADCL
module further maps them into soft labels using an assignment projection head hψ(·) with
the following process:

Yv1
i = hψ(Fv1

i ), (12)

Yv2
i = hψ(Fv2

i ), (13)

Yp
i = hψ(Fp

i ). (14)

Let Yu = [Yu
1 , Yu

2 , . . . , Yu
n ] denote the outputs of the assignment projection head for

the n 3D shapes in the mini-batch and Gu denote the transposed matrix of Yu, where
u ∈ {v1, v2, p}. In Gu, the i-th column vector denotes the soft label of the i-th 3D shape
and the k-th row vector denotes the clustering assignment distribution of the cluster k.

Considering that both different views within the multi-view modality and the cor-
responding point cloud of the same 3D shape contain consistent semantics, the obtained
clustering assignment distributions should be similar within the multi-view modality
and between the point cloud and multi-view modalities. Namely, the index of different
views and the corresponding point cloud that are assigned to a particular cluster should
be consistent. To this end, an assignment-level cross-view contrastive loss LACV and an
assignment-level cross-modal contrastive loss LACM are simultaneously applied to the
clustering assignments. The assignment-level cross-view contrastive loss for the Gv1

k is
calculated as follows:

Lv1
ACVk

= − log
exp(s(Gv1

k , Gv2
k )/τA)

c
∑

l=1
[exp(s(Gv1

k , Gv1
l )/τA) + exp(s(Gv1

k , Gv2
l )/τA)]

, (15)
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where τA denotes the assignment-level temperature parameter and is generally set to
1.0. Gv1

k and Gv1
l are the k-th and l-th row vectors of Gv1 , respectively. Then, the LACV is

calculated by computing the assignment-level cross-view contrastive loss for each cluster:

LACV =
1
2c

c

∑
k=1

(Lv1
ACVk

+ Lv2
ACVk

), (16)

where c denotes the number of clusters.
Similar to the representation-level cross-modal contrastive loss, the LACMk is also

obtained by computing the LACM1k between Gp
k and Gv1

k and the LACM2k between Gp
k and

Gv2
k . In this way, the bias of the consistent clustering assignments toward a particular view

is effectively removed, thus further boosting the robustness of the clustering assignments.
The assignment-level cross-modal contrastive loss for the Gv1

k is calculated as follows:

Lv1
ACM1k

= − log
exp(s(Gv1

k , Gp
k )/τA)

c
∑

l=1
[exp(s(Gv1

k , Gv1
l )/τA) + exp(s(Gv1

k , Gp
l )/τA)]

. (17)

Then, the LACM is naturally expressed as:

LACM =
1
2c

c

∑
k=1

(Lv1
ACM1k

+ Lp
ACM1k

+ Lv2
ACM2k

+ Lp
ACM2k

). (18)

Afterward, the overall assignment-level dual contrastive loss LADCL of the ADCL
module is obtained by summing LACV and LACM:

LADCL = LACV + LACM. (19)

As can be seen from Equation (19), the LADCL simultaneously maximizes the cross-
view and cross-modal assignment consistency of the same cluster, while minimizing that of
different clusters. This effectively enhances the intra-cluster compactness and inter-cluster
separation, thus further boosting the multi-modal 3D shape clustering performance.

Finally, the clustering results are easily obtained from the predicted soft labels using
the following formula:

qi = arg max
k

(Yu
ik), i = 1, . . . , N, k = 1, . . . , c, (20)

where qi is the final predicted label for the i-th 3D shape.

3.4. Implementation Details

In the proposed DCL-Net, except for the designed representation-level dual con-
trastive loss LRDCL and the assignment-level dual contrastive loss LADCL, an additional
regularization loss LRL [20] is imposed on the predicted soft labels from the ADCL, so as
to avoid trivial solutions in deep clustering. Therefore, the total loss of the DCL-Net is
calculated by summing the representation-level dual contrastive loss, the assignment-level
dual contrastive loss, and the regularization loss:

Ltotal = LRDCL + λ1LADCL + λ2LRL, (21)

where λ1 ≥ 0 and λ2 ≥ 0 are trade-off parameters to balance the roles of the different
loss terms.

For the multi-modal feature extractor in the DCL-Net, ResNet18 [50] and PointNet [51]
are adopted as the encoder networks for the selected views and point clouds, respectively.
For the RDCL module, a multi-layer perceptron (MLP) with the dimensions of 512–128–128
is utilized as the representation projection head. For the ADCL module, another MLP
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followed by a Softmax operation are utilized as the assignment projection head, in which
the dimensions are set to 512–128–c.

4. Experimental Results
4.1. Experimental Setup

The proposed DCL-Net was implemented on the PyTorch platform using a GeForce
GTX 1080 Ti GPU and an Intel i7-8700K processor at 3.70 GHz. During the network training
phase, Adam [52] was adopted as the optimizer and the learning rate was set to 1.0 × 10−4.
The batch size was set to 128 for all of the experiments and the trade-off parameters λ1 and
λ2 were fixed to 1 and 5, respectively. After the training phase, Equation (20) was utilized
to calculate the final clustering results.

To evaluate the clustering performance of the proposed DCL-Net, experiments were
conducted on two widely used 3D shape benchmark datasets: ModelNet10 [53] and
ModelNet40 [53]. The ModelNet10 dataset consists of 4,899 3D CAD models from 10 classes,
while the ModelNet40 dataset includes 12,311 3D CAD models from 40 classes. Following
the experimental settings of [12], 1,024 points from the surface of each CAD model were
sampled to form the point clouds and twelve 2D views of each CAD model were rendered
to obtain multiple views. Note that this paper focused on unsupervised multi-modal 3D
shape clustering, thus the class labels were not provided in all of the experiments.

Following the previous clustering work [54], four commonly used evaluation metrics,
i.e., accuracy (ACC), normalized mutual information (NMI), adjusted rand index (ARI),
and F-score, were employed to evaluate the clustering performance of the proposed DCL-
Net and comparison methods. Different metrics were used to measure the consistency
between the predicted labels and the ground truth labels from different perspectives.
Specifically, the ACC represented the proportion of correctly predicted samples in the total
samples. The NMI was used as a normalized measure of the correlations between the
distributions of the predicted labels and the ground truth labels. The ARI was a modified
version of RI [55] and indicated the distribution correlations between the predicted labels
and the ground truth labels. Finally, the F-score was the harmonic mean of the precision and
recall, where precision and recall represented the fraction of correctly predicted samples
in the total positive predictions and the actual positives, respectively. For all of these
metrics, higher values indicated a better clustering performance.

4.2. Comparison Results

To demonstrate the performance of the proposed DCL-Net, several existing multi-
modal clustering methods were adopted for comparison, including DMSC [40], EAMC [43],
and CoMVC [21]. Note that the selected methods were not designed for the multi-modal 3D
shape clustering task, thus it was incapable of directly comparing them with the proposed
method. To this end, they were extended as DMSC*, EAMC*, and CoMVC* to adapt to
the multi-modal 3D shape clustering task. Specifically, the feature extractor corresponding
to the input point cloud was replaced with PointNet [51], which was consistent with the
proposed DCL-Net. Then, the point cloud and an arbitrarily selected view of each 3D shape
were fed into the corresponding feature extractors of different modalities to obtain the final
clustering results. Additionally, to ensure the reliability of the experimental results, all of
the experiments were repeated ten times with random initializations to reduce the effects
of randomness and the mean results of the repeated experiments are reported in this paper.

The quantitative comparison results on the ModelNet10 and ModelNet40 datasets are
shown in Table 1. As shown in the table, the proposed DCL-Net achieved a better cluster-
ing performance than the comparison methods on both the ModelNet10 and ModelNet40
datasets, which effectively proved the superiority of the proposed method. In partic-
ular, the DCL-Net significantly outperformed CoMVC* and EAMC* by large margins.
Even compared to the advanced method DMSC*, the proposed method also achieved the
performance improvements of 2.94%, 9.27%, 2.20%, and 1.68% for the ACC, NMI, ARI,
and F-score metrics on the ModelNet10 and the performance improvements of 6.04%,
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3.99%, 5.25%, and 4.66% for the ACC, NMI, ARI, and F-score metrics on the ModelNet40.
This was mainly because the comparison methods were proposed for general multi-modal
clustering and directly transferring them into the 3D shape clustering task failed to leverage
the characteristics of 3D shapes, thus resulting in unsatisfactory clustering performances.
In contrast, the proposed method took full advantage of the inter-view correlations within
the multi-view modality, as well as the inter-modal correlations between the point cloud
and the multi-view modalities, and developed a dual contrastive learning network. By
jointly exploring the cross-view and cross-modal consistent representations and cluster-
ing assignments, the proposed method was more suitable for the multi-modal 3D shape
clustering task. Additionally, it is worth mentioning that the clustering accuracy of the
comparison methods dropped by more than 20% when the benchmark dataset was changed
from ModelNet10 to ModelNet40. The main reason for this was that ModelNet40 held more
classes and more imbalanced data distributions than ModelNet10, making it challenging for
the multi-modal clustering task. Nevertheless, the proposed method obtained the values of
61.20%, 72.46%, 57.61%, and 60.22% for the ACC, NMI, ARI, and F-score metrics on the
ModelNet40 dataset respectively, which further proved the robustness of our method.

Table 1. The comparison of results from different clustering methods on the ModelNet10 and
ModelNet40 datasets.

Method
ModelNet10 ModelNet40

ACC NMI ARI F-score ACC NMI ARI F-score

CoMVC* 0.6703 0.6520 0.5920 0.6408 0.4191 0.5769 0.3608 0.3841

EAMC* 0.7040 0.6583 0.5890 0.6455 0.4563 0.5403 0.3259 0.3685

DMSC* 0.7638 0.7291 0.7426 0.7766 0.5516 0.6847 0.5236 0.5556

DCL-Net 0.7932 0.8218 0.7646 0.7934 0.6120 0.7246 0.5761 0.6022

To further evaluate the superiority of the proposed DCL-Net over the comparison
methods, t-SNE [56] visualizations of the 3D shape features utilized for clustering in the
different methods were provided on the ModelNet10 dataset. The visualization results
are shown in Figure 2, in which the different colors indicate different classes. As shown
in Figure 2a–c, the features extracted by the comparison methods were quite dispersed
and the boundaries between the different classes were inconspicuous. By contrast, the pro-
posed DCL-Net provided more clear and compact clustering partitions, which further
demonstrated the effectiveness of the proposed method.

Figure 2. The t-SNE visualization results of the latent 3D shape features on the ModelNet10 dataset.

4.3. Evaluation of Key Components
4.3.1. Evaluation of the Proposed RDCL Module and ADCL Module

In this paper, a representation-level dual contrastive learning module and an assignment-
level dual contrastive learning module were developed to discover the clustering partitions
of unlabeled 3D shapes by jointly learning consistent 3D shape representations and clus-
tering assignments. To validate the effectiveness of the two modules, evaluations were
conducted on the ModelNet10 and ModelNet40 datasets. The results are shown in Table 2,
in which “w/o ADCL” indicates the proposed method without the ADCL module and “w/o
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RDCL” indicates the proposed method without the designed RDCL module. When the
ADCL module was removed, the clustering results could not be directly predicted by
the model, hence the k-means algorithm [57] was introduced to perform clustering on
the consistent 3D shape representations obtained by the RDCL. As shown in the table,
the performance of the “w/o ADCL” method dropped significantly on both two datasets
compared to the DCL-Net and the ACC value dropped sharply by more than 10% on
ModelNet10. This was mainly because the removal of the ADCL module disconnected the
procedure of the representation learning and clustering, thus the obtained 3D shape fea-
tures were irrelevant to the subsequent clustering. Similarly, the “w/o RDCL” method also
obtained unsatisfactory clustering performances on both two datasets. The main reason
was that removing the RDCL module made it difficult to ensure the feature consistency
between different views and the corresponding point cloud, thus damaging the intra-cluster
compactness and inter-cluster separation of the latent 3D shape features for clustering.
Comparatively, the clustering results of the DCL-Net were consistently improved on both
two datasets when using the RDCL and ADCL modules simultaneously. This sufficiently
reflected the significance of both the representation-level dual contrastive learning and the
assignment-level dual contrastive learning for multi-modal 3D shape clustering.

Table 2. The evaluation of the proposed RDCL module and ADCL module.

Method
ModelNet10 ModelNet40

ACC NMI ARI F-score ACC NMI ARI F-score

w/o ADCL 0.6901 0.7437 0.6538 0.6958 0.5572 0.7241 0.4573 0.4779

w/o RDCL 0.7921 0.7872 0.7476 0.7782 0.4966 0.6581 0.4321 0.4641

DCL-Net 0.7932 0.8218 0.7646 0.7934 0.6120 0.7246 0.5761 0.6022

4.3.2. Evaluation of the Cross-View and Cross-Modal Contrastive Learning

By adequately exploiting the characteristics of 3D shapes, the proposed method simul-
taneously performed cross-view contrastive learning within the multi-view modality and
cross-modal contrastive learning between the point cloud and the multi-view modalities,
so as to better explore the consistent semantic information of 3D shapes. To evaluate the ef-
fectiveness of the cross-view and cross-modal contrastive learning, validation experiments
were conducted on the ModelNet10 and ModelNet40 datasets. The experimental results are
reported in Table 3, in which “w/o cross-modal contrastive learning” denotes removing the
point cloud branch and only combining the cross-view contrastive losses for the network
constraints, and “w/o cross-view contrastive learning” denotes removing one of the view
branches and constraining the network via the cross-modal contrastive losses of the remain-
ing view branch with the point cloud branch. As shown in the table, the “w/o cross-modal
contrastive learning” and “w/o cross-view contrastive learning” methods only achieved
limited clustering performances on the two datasets compared to the DCL-Net. The main
reason was that removing either the cross-view contrastive learning or the cross-modal
contrastive learning prevented the network from exploring the consistent semantics from
more comprehensive 3D shape information. Specifically, when the cross-modal contrastive
learning was removed, the network was incapable of perceiving the spatial geometry of
3D shapes, which made it challenging to explore the discriminative 3D shape descriptions
from harder contrastive positives. Similarly, when the cross-view contrastive learning was
removed, the network could not observe the richer visual information about the 3D shape
from different angles, thus failing to ensure the compactness of view features of the same
3D shape and misleading the extraction of consistent information. Therefore, both the
cross-view and cross-modal contrastive learning adopted in the proposed DCL-Net were
crucial for the 3D shape clustering.
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Table 3. The evaluation of the cross-view and cross-modal contrastive learning.

Method
ModelNet10 ModelNet40

ACC NMI ARI F-score ACC NMI ARI F-score

w/o cross-modal contrastive learning 0.7644 0.7881 0.7214 0.7557 0.5666 0.7080 0.5204 0.5400

w/o cross-view contrastive learning 0.7791 0.8142 0.7526 0.7828 0.5566 0.6926 0.4940 0.5315

DCL-Net 0.7932 0.8218 0.7646 0.7934 0.6120 0.7246 0.5761 0.6022

5. Conclusions

3D shape clustering has become a promising research topic in computer vision and
multimedia fields due to its powerful ability to divide unlabeled 3D shape data. However,
little effort has been put into solving the 3D shape clustering task in previous works. To this
end, a novel DCL-Net for 3D shape clustering was proposed in this paper. Taking full
advantage of the data characteristics of multiple views and point clouds, the proposed DCL-
Net is the first deep multi-modal 3D shape clustering method. Specifically, a representation-
level dual contrastive learning module was first designed to extract discriminative 3D
shape features for clustering by ensuring cross-view representation consistency within
multi-view modality, as well as cross-modal representation consistency between point
cloud and multi-view modalities. Meanwhile, by simultaneously performing cross-view
and cross-modal contrastive learning at the clustering assignment level, an assignment-
level dual contrastive learning module was designed to further obtain consistent clustering
assignments based on the robust learned 3D shape features. Under the joint effects of the
two modules, the proposed DCL-Net is able to sufficiently exploit the consistency and
complementarity within multi-view modality as well as between point cloud and multi-
view modalities, thus obtaining more compact category partitions. As the first attempt
at solving the multi-modal 3D shape clustering task, the proposed DCL-Net achieved
remarkable performances on two widely used 3D shape benchmark datasets, which would
bring enlightening investigations in future unsupervised 3D shape analysis research.
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